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Abstract

Nonlinear deformations in fingerprint images, arising from
the elasticity of the skin as well as the pressure and move-
ment of the finger during image acquisition, lead to difficul-
ties in establishing a match between multiple impressions
acquired from the same finger. One solution to this prob-
lem is to estimate and remove the relative deformations
prior to the matching stage. In this paper, these relative
deformations are represented as an average deformation
model based on minutiae locations and orientations using
2-D Thin Plate Splines (TPS). The estimated average defor-
mation is used to pre-distort a template prior to matching
it with a query image in a verification task. Experimental
results show that the use of minutiae locations and orien-
tations to estimate the deformation leads to a more repre-
sentative deformation model than using minutiae locations
only. An index of deformation based on the bending energy
is also proposed to select templates with the least variabil-
ity in the deformations. The EER goes down by ≈ 1.1%
when we incorporate minutiae orientation information and
use the template selection strategy.

1 Introduction

There are several factors that impact fingerprint deforma-
tion: the amount of pressure applied by the subject, the dis-
position of the subject (sitting or standing), the motion of
the finger, the moisture content of the skin (dry, oily or wet),
the elasticity of the skin. Recently, several methods have
been presented to deal with this deformation from different
viewpoints. Ratha et al. [3] proposed a controlled acqui-
sition process by measuring the forces and torques on the
scanner directly with the aid of specialized hardware. Se-
nior et al. [4] suggested an automatic method to remove de-
formations by enforcing the constraint that ridges should be
constantly spaced, with deviations from constant spacings
indicating the presence of deformations. Watson et al. [12]
constructed deformation filters for template fingerprint im-
ages prior to using a correlation-based matching. Kovács-
Vajna [7] proposed a matching method that takes deforma-

Figure 1: Three impressions of a single finger showing the effect
of varying deformations.

tions into account by employing tolerance bounds for inter-
minutiae distances and angles. Bazen et al. [5, 6] used a
Thin-Plate Spline (TPS) model to describe the non-linear
deformations between two minutiae sets. However, most
of these techniques deal with the problem of non-linear de-
formation on a case-by-case basis. No attempt was made
to develop a finger-specific deformation model that can be
computed offline and then used for matching. The main ad-
vantage of an offline technique is that once a finger-specific
model has been computed, recomputation of the model is
not necessary during the matching stage. Also, by using
multiple impressions of the same finger to compute defor-
mations from a template, we avoid estimating optimal de-
formations for impostor pairs, resulting in low FAR values.

In [1], we have proposed such a finger-specific deforma-
tion model using 2-D TPS based on minutiae point patterns.
The TPS, a spatial generalization of the cubic spline, is an
effective tool for estimating the deformation that warps one
set of point patterns to another. The TPS model in [1] is
computed by distorting the minutiae set of one fingerprint
impression to match with others from the same finger. Al-
though the deformations observed in a fingerprint vary from
one acquisition to the next (Fig.1), it forms an informative
and representative feature space which is best characterized
through statistical modeling. However, this method only
employed the locations of minutiae points during deforma-
tion estimation, ignoring the fact that orientations of minu-
tiae points also provide additional and useful information
for a better estimate of the deformation.

In this paper, both the orientation and location informa-
tion of minutiae are incorporated in the TPS model. A new
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method to establish minutiae correspondences is also devel-
oped to compensate for the sensitivity of the TPS model to
incorrect correspondences. Incorrect correspondences are
caused due to false, missed or displaced minutiae points, or
when there is limited overlap between image pairs, resulting
in an unreliable TPS model. We also introduce the use of
the variance of the “bending energy,” instead of pixel-wise
covariance matrix of deformations as in [1], to rank the rela-
tive deformations associated with a finger. We demonstrate
that using the variance of the “bending energy” leads to
greater computational efficiency and a better performance
compared to [1].

The rest of the paper is organized as follows. Section
2 describes the general methodology, including the basic
concepts of the TPS model. Section 3 gives a modified al-
gorithm for obtaining reliable correspondences. Section 4
describes the transformations needed for incorporating the
minutiae orientations in the TPS model. Section 5 develops
an average deformation model for a template and ranks tem-
plates of the same finger based on the variance of the “bend-
ing energy.” Experimental results are provided in Section 6,
with summary and future work presented in Section 7.

2 General Methodology

Given a pair of grayscale fingerprint images, I0 and I1, de-
fined on a spatial domain R2, the deformation from I0 to I1

is given by a deformation function F : R2 → R2 such that
F (I0) = I1. In this paper, we focus on modelling F using
the Thin-Plate Splines (TPS). Pioneered by Bookstein [8],
the TPS modelling is particularly useful when two or three-
dimensional landmarks in a reference need to be mapped to
the corresponding landmarks in a target such that the “bend-
ing energy” of F is minimized.

Specifically, let U = (u1, u2, ..., ul)
T and V = (v1, v2,

..., ul)
T be a pair of point sets with known correspondences,

derived from I0 and I1, respectively. We assume U and V
have been aligned using the Procrustes analysis [10]. Here,
uk and vk denote the spatial coordinates of the kth corre-
sponding pair and l is the total number of correspondences.
The deformation function F is then required to satisfy

F (ui) = vi, i = 1, 2, ..., l. (1)

The TPS estimate of F is given by parameter vectors c, A
and W :

F (u) = c + A · u + W T s(u), (2)

where u ∈ R2, c and A define the affine parts of the
transformation and W gives the additional non-linear de-
formation. The distance measure s(u) is the vector (σ(u −
u1), σ(u − u2), ..., σ(u − ul))

T with

σ(u) = ‖u‖2 log ‖u‖. (3)

A total of (6 + 2l) parameters in equation (2) need to be
estimated, where c is a 2× 1 vector, A is a 2× 2 matrix and
W is a l×2 matrix. Since equation (1) enforces l constraints
in the spatial domain, we can reduce the number of degrees
of freedom by 2l. Further, we assume that the coefficients
W satisfy (i) 1T

l W = 0 (2 restrictions) and (ii) UT W = 0
(4 restrictions), where 1l is a vector of ones of length l.
Thus, the coefficients of the TPS model can be obtained
from the matrix equation:
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where S is the l× l matrix of (σ(uj −uk)), j, k = 1, 2, ..., l.
The above matrix gives rise to a TPS model that minimizes
the bending energy subject to the perfect alignment con-
straints in equation (1). A more robust TPS model can be
obtained by relaxing the constraints in equation (1) and re-
defining the transformation F which minimizes the expres-
sion

l
∑

j=1

(vj − F (uj))
T (vi − F (ui)) + λJ(F ), (5)

where

J(F ) =

2
∑

j=1

∫

R2

{(
∂2Fj(x, y)

∂x2
)2 + 2(

∂2Fj(x, y)

∂x∂y
)2

+(
∂2Fj(x, y)

∂y2
)2}dxdy (6)

represents the bending energy associated with F =
(F1, F2)

T , with Fj as the j-th component of F , and λ > 0.
The coefficients of this resulting TPS model can be obtained
using equation (4) with S replaced by S + λIl, where Il is
the l × l identity matrix. Generally, these splines do not ex-
actly interpolate all landmark points, but are allowed to ap-
proximate them in favor of a smoothing parameter λ. When
λ increases, the resulting spline becomes more smooth.

3 Establishing Point Correspondences

The TPS model relies on correct correspondences of point
patterns during deformation estimation. Thus, for finger-
print images, the accuracy of finding minutiae correspon-
dences can greatly affect the efficacy and efficiency of the
TPS. In order to obtain reliable minutiae correspondences,
we modified the Elastic Point Pattern Matching (EPPM) al-
gorithm proposed in [9] by incorporating a voting scheme
to find the optimal global translation and rotation. The pro-
cedure is described as follows:
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Figure 2: Improvement in correspondences (indicated by arrows) between two sets of minutiae point patterns. (a) and (b) are corre-
spondences obtained by the EPPM algorithm while (c) and (d) are correspondences obtained by the new algorithm for the same pairs of
fingerprint images.

1. Given a pair of images, I0 (called template) and
I1 (called query), we extract minutiae points us-
ing the method proposed in [9]. Assume M0 =
(u1, u2, ..., um0

) is the set of minutiae points extracted
from I0 and M1 = (v1, v2, ..., vm1

) from I1. We
also trace the ridge associated with each minutiae point
and extract sample points on that ridge (sampled ev-
ery 5-th point), with Rui

= (u∗
i,1, u

∗
i,2, ..., u

∗
i,a) and

Rvj
= (v∗j,1, v

∗
j,2, ..., v

∗
j,b) denoting the ridge points

corresponding to the minutiae ui and vj , respectively.

2. For a total of m0 · m1 possible pairings of minu-
tiae points, we select one (ui, vj), (i = 1, 2, ..., m0,
j = 1, 2, ..., m1) as the reference pair and transform
remaining minutiae points in M0 and M1 ,respectively,
to polar coordinates with centers at ui and vj .

3. The query minutiae set M1 is rotated about its ref-
erence minutiae vj in order to find candidate pair-
ings with M0. Each candidate pair is verified using a
bounding box. Let MPij be the total number of match-
ing pairs for (ui, vj).

4. Compute (∆xij , ∆yij , ∆θij) as the translational (in x
and y directions) and rotational offsets associated with
(ui, vj). Then add votes to V ote(∆xij , ∆yij , ∆θij)
with the number of votes equal to MPij .

5. Perform steps 2-4 until all possible reference pairs are
considered and votes for the corresponding transfor-
mation parameters are obtained.

6. Establish bins with size of (20, 20, 15) and col-
lect votes for each bin. The top 5 bins with the
maximum number of votes are selected and each
(∆xij , ∆yij , ∆θij) that contribute to one of the top 5
bins are sent to a 2-D dynamic matching algorithm to
get the matching score [13].

7. The one that results in the highest matching score is fi-
nally chosen as the optimal global transformation and
is used to establish the individual minutiae correspon-
dences within a bounding box.

Fig. 2 shows examples of correspondences generated by
using the original EPPM algorithm [9] and the modified al-
gorithm. Let (T/C) denote the ratio of the detected corre-
spondences to the number of correct correspondences that
are manually verified. Figs. 2(c) and 2(d) give higher ratios
of (7/7) and (10/10) compared to Figs. 2(a) and 2(b) that
give low values of (0/4) and (1/3).

4 Incorporating Minutiae Orientation

One difficulty in incorporating minutiae orientation infor-
mation is that transformation in the orientation space is
not equivalent to transformation in the the spatial domain;
for example, rotation in the spatial domain corresponds to
translation in the orientation space. Thus, in order to use the
TPS to model deformations using minutiae locations and
orientations, we convert the orientation information into the
spatial domain using the following method.
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Figure 3: Obtaining angle points u
c and v

c based on the minutiae
orientations θ and θ

′. Note that u and v are aligned for simplicity
of illustration.

Let the location and orientation of a minutiae point be
denoted by u = (x, y) and θ, respectively. We draw a
unit circle around u and find its corresponding “angle point”
uc = (xc, yc), where:

xc = x + cos θ, yc = y + sin θ. (7)

Assume u is in correspondence with the minutiae point
v = (x′, y′). The angle point vc = (xc, yc) of v is found
in the same way using the minutiae orientation θ′ for v (see
Fig. 3). Therefore, orientation information is converted into
the spatial domain as we generate an angle point pair for
each corresponding minutiae pair. As a result, the number
of corresponding point patterns for the TPS model is dou-
bled. The TPS deformation model is found as in Section
2 with U and V now containing both minutiae points and
angle points.

5 Average Deformation Models

Suppose we have N impressions of a finger, I1, I2, ..., IN .
Each impression Ik can be paired with the remaining im-
pressions to create N − 1 pairs of the form (Ii, Ij), i 6= j.
For the pair (Ii, Ij), we obtain a non-linear deformation
model Fij by employing the TPS technique described in
Section 2. Note that Fij then transforms every pixel in the
template fingerprint Ii, to a new location. Thus, we can
compute the average deformation of each pixel u in Ii as:

F̄i(u) =
1

N − 1

N
∑

j=1

j 6=i

Fij(u). (8)

The average deformation is the typical deformation that
arises when we compare one impression of a finger (the
baseline impression) with others of the same finger. This
offline process is repeated for every impression Ii, i =
1, 2, .., N , resulting in N average deformation models that
can be incorporated in the matching stage.

5.1 Index of Deformation

In [1, 2], a method to rank the average deformation mod-
els using the pixel-wise covariance matrix of the deforma-
tions was given. However, this method is computationally
expensive and does not necessarily reflect non-linear defor-
mations because of its sensitivity to linear transformations.
We propose a new ranking method based on the bending
energy, a measure of non-linear deformations that the TPS
tries to minimize. The minimized bending energy can be
computed by

J(F ) = trace(W T SW ), (9)

where W is the parameter for the non-linear transformation
and S is the distance matrix (see equation (4)).

Given N impressions per finger, if we choose Ii as the
template image, N − 1 deformation functions Fij will be
obtained when Ii is compared to Ij , j = 1, 2, ..., N, j 6= i.
Thus, a total of N − 1 values of bending energy J(F ), for
F = Fij , j = 1, 2, ..., N, j 6= i, are provided. The Φ-index
of deformation for template Ii is then defined as:

Φi =
1

N − 1

N
∑

j=1

j 6=i

(J(Fij ) − J̄i)
2, (10)

where J̄i =
1

N − 1

N
∑

j=1

j 6=i

J(Fij). (11)

Low (high) values of the Φ-index indicate that the
amount of bending energy applied by each deformation
function is similar (dissimilar) to each other. However, low
values of the Φ-index also occurs when the number of cor-
respondences is consistently small between a template and
other impressions of the same finger, which should not be
considered as a potentially good template. Therefore, for
each template Ii, we compute its total number of corre-
spondences Ci with each Ij , j = 1, 2, ..., N, j 6= i and
the mean of total correspondences for impressions of a fin-
ger by C̄ = 1

N

∑

Ci, i = 1, 2, ..., N . We exclude those
templates with Ci < C̄, i = 1, 2, ..., N , during the rank-
ing. Among the remaining templates, the one Ii∗ with
i∗ = argmini:Ci≥C̄Φi, is the optimal template for a finger.
It is considered to have the smallest variability in the non-
linear deformations compared to all other templates (Fig.4).

6 Experimental Results

In order to apply the TPS model to reliably estimate fin-
gerprint deformation, we need to have several impressions
of the same finger (at least 10). Large number of impres-
sions of a finger are not available in standard fingerprint
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Figure 4: Four templates before (left) and after (right) applying the average deformation model based on minutiae locations and orienta-
tions are shown on a reference grid with minutiaes marked. They correspond to (a) the highest Φ-value (b) the 6-th highest Φ-value (c) the
11-th highest Φ-value and (d) the lowest Φ-value when ranked using the bending energy.

databases (e.g., FVC 2002 [11]) and therefore, we used data
collected in our lab. We acquired fingerprint images of 50
fingers using the Identix Bio Touch USB 200 optical sensor
(256×255, 380 dpi) over a period of two weeks. There were
32 impressions corresponding to every finger, resulting in a
total of 1600 impressions. One half of the impressions (16
impressions per finger, with a total of 800 impressions) were
used as template to compute the deformation model while
the remaining 800 impressions were used as query images
for testing. The minutiae points and their corresponding
orientation information were extracted using the algorithm
outlined in [9]. For the 16 test impressions per finger, the
deformations Fij based on minutiae locations and orienta-
tions were obtained by fixing Ii as the template and the re-
maining Ij , j 6= i as the query with λ = 5 in equation (5).
The average deformation model Fi was then computed us-
ing equation (8). During the matching stage, Mi, the minu-
tiae set of Ii, was deformed to MDi = F̄i(Mi). Thus, a
total of 800 sets (50 × 16) of average deformation models
were obtained. We also use MD∗

i to denote the deformed
minutiae set using the TPS model based only on minutiae
locations [1].

In the first experiment, every template image Ii was com-
pared with every query image Ij . A modified matcher based
on the 2-D dynamic matching algorithm in [13] was used
to generate three types of matching scores for each com-
parison: the matching score obtained by matching (i) Mi

with Mj (no adjustment for deformations), (ii) MD∗
i with

Mj (deformed based on minutiae locations only) and (iii)

MDi with Mj (deformed based on minutiae locations and
orientations). The Receiver Operating characteristic (ROC)
curve plotting the genuine accept rate (GAR) against the
false accept rate (FAR) at various thresholds is presented
in Fig. 5(a). When the average deformation model based
on minutiae locations is applied to pre-distort the template
prior to matching, an improvement of approximately 3.0%
with respect to the non-deformed templates is observed at
a false accept rate of 0.01%. Using minutiae locations and
orientations results in an additional ≈ 1.0% improvement.
In the second experiment, the advantage of using the Φ-
index is demonstrated. We generate two sets of optimal
templates using (a) the knowledge of average pixel-wise
deformation and (b) the knowledge of the bending energy.
Each set contains 50 optimal templates (one per finger) from
the training data and 800 queries from the test data. Fig.
5(b) shows the ROC curve by applying these two optimal
sets, together with the ROC curve using method (i) in the
first experiment. We can see that the ranking method based
on the bending energy not only provides computational ef-
ficiency, but also leads to better performance in matching.

7 Summary and Conclusions

We have proposed a method to generate average deforma-
tion models based on minutiae locations and orientations.
By utilizing minutiae orientations, the proposed method im-
proves the performance of a fingerprint matching system. A
modified correspondence algorithm is also proposed to gen-
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Figure 5: (a) Improvement in matching performance using non-deformed templates (‘×’), deformed templates using the average defor-
mation model based on: minutiae locations (‘∇’) and minutiae locations and orientations (‘◦’). (b) Improvement in matching performance
using all deformed templates (‘◦’), the optimal templates ranked by Φ-index based on: pixel-wise covariance of deformation (‘- -’) and
bending energy (‘...’) when the average deformation model based on minutiae locations and orientations is applied.

erate reliable correspondences prior to computing the TPS
model. In addition, a more efficient and robust measure to
generate the index of deformation is defined by using the
bending energy of deformations. Future work includes in-
corporating more features like ridges and ridge orientations
into the framework. We also plan to adopt an incremen-
tal approach to update the average deformation model in a
coarse-to-fine fashion.
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