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Abstract

Testing of a composite null hypothesis versus a composite alternative is con-

sidered when both have a related invariance structure. The goal is to develop

conditional frequentist tests that allow the reporting of data-dependent error

probabilities, error probabilities that have a strict frequentist interpretation and

that reflect the actual amount of evidence in the data. The resulting tests are

also seen to be Bayesian tests, in the strong sense that the reported frequentist

error probabilities are also the posterior probabilities of the hypotheses under

default choices of the prior distribution. The new procedures are illustrated in

a variety of applications to model selection and multivariate hypothesis testing.

Key words and phrases. Conditional error probabilities; Bayes factors; Pos-

terior probabilities; Default prior distributions; Nested hypotheses; Group in-

variance.

1 Introduction

This paper considers conditional frequentist testing of composite hypotheses that have suit-

able invariance structures. A simple example is that in which the observations,X1, X2, . . . , Xn,

are i.i.d. f and it is desired to testH0 : f is Weibull (β, γ) versusH1 : f is Lognormal (µ, σ2),

where all parameters are unknown.
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The classical frequentist approach to testing constructs acceptance and rejection regions

and reports associated error probabilities of Type I and Type II. These error probabilities

are unconditional, in the sense that they depend only on whether the data is in the rejection

or acceptance region, and not on the evidentiary strength of the observed data. (Thus, for

a normal test at level α = 0.05, one reports the error probability of 0.05 whether z = 2

or z = 10.) The common ‘solution’ to this perceived shortcoming is to use p-values as

data-dependent measures of the strength of evidence against H0. Of course, a p-value is

not a true error probability in the frequentist sense; while α = 0.05 has the frequentist

interpretation that no more than 5% of true null hypotheses will be rejected in repeated

use, the proportion of true nulls that are rejected in repeated use of p-values will always

substantially exceed the average of the corresponding p-values. One might argue that p-

values are useful and interpretable from other statistical perspectives, but they simply do

not solve the frequentist problem of producing data-dependent frequentist error rates. (See

Sellke, Bayarri, and Berger, 1999, for discussion of this issue, from both frequentist and

Bayesian perspectives, as well as for earlier references discussing the issue.)

To obtain data-dependent error probabilities having a proper frequentist interpreta-

tion, it is natural to turn to the conditional frequentist approach, formalized by Kiefer

(1975,1976,1977) and Brownie and Kiefer (1977). The idea behind this approach is to find

a statistic measuring ‘strength of evidence’ in the data, for or against H0, and report Type

I and Type II error probabilities conditional on this statistic. The main difficulty in the

approach is that of finding an appropriate choice for the conditioning statistic. In Kiefer

(1977) and Brown (1978), admissibility considerations were employed to find “optimal” con-

ditioning statistics, but this proved successful in identifying a conditioning statistic only

in the simplest of testing problems, that of symmetric simple versus simple testing. Like-

wise, suitable ancillary statistics are rarely available for testing problems, so the conditional

frequentist approach to testing has languished.

In the Bayesian approach to testing, reported error probabilities vary with the observed

data and automatically reflect its evidentiary strength. However, it was long believed that

Bayesian error probabilities are incompatible with frequentist error probabilities, leading

to a sharp divide between Bayesians and frequentists over the issue of testing. (Note that

Bayesian error probabilities can be close to p-values in one-sided testing - see Casella and

Berger, 1987 - but, again, p-values do not have a direct interpretation as frequentist er-

ror probabilities; furthermore, we will concentrate on testing of null hypotheses that are
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more precise than the alternatives, in which case conditional frequentist or Bayesian error

probabilities differ dramatically from p-values.)

For testing simple hypotheses, Berger, Brown and Wolpert (1994) and Wolpert (1996)

found a conditioning statistic, S(X), that reflects the evidentiary strength in the data and

leads to a conditional frequentist test that is very easy to implement. The idea behind the

conditioning statistic is to declare data, with a given p-value under H0, to have the same

strength of evidence as data with the same p-value under H1. Note that this is essentially

stating that, within a given problem, p-values provide an ordering of ‘strength of evidence’

in the data. But any one-to-one transformation of p would provide the same ordering

(and hence the same conditioning statistic S(X)), so that the goal here could be viewed as

converting ‘strength of evidence’ into a frequentist error probability. For further discussion

of these issues, and the large differences in conclusions that can result, see Sellke, Bayarri,

and Berger (1999).

Surprisingly, it was also shown in Berger, Brown, and Wolpert (1994) that the condi-

tional frequentist Type I and Type II error probabilities, found by this pure frequentist

argument, coincide exactly with the Bayesian posterior probabilities of H0 and H1, respec-

tively. Therefore, a frequentist and a Bayesian using this test will not only reach the same

decision (rejecting or accepting the null) after observing the data, but will also report the

same values for the error probabilities. In this sense, the proposed test represents a uni-

fied testing procedure. Berger, Boukai and Wang (1997)generalized this to testing a simple

null hypothesis versus a composite alternative. The sequential version of this problem was

considered in Berger, Boukai and Wang (1999).

This paper considers the case in which both hypotheses are composite, the situation

that arises most frequently in practice. We focus here on the class of problems for which

the conditional frequentist Type I error probability, found by a generalization of the above

argument, will be constant over the null parameter space. The situations in which this

happens are situations in which there is a suitable invariance structure to the problem.

In addition, it will also be true that, if a suitable prior (that induced by the right Haar

measure) is used, the Bayesian posterior probability of H0 will exactly equal the frequentist

Type I error probability for these problems, so that the ‘unification’ between conditional

frequentists and Bayesians can be said to hold in a very strong sense.

It should be mentioned that the new conditional frequentist test has a number of com-

pelling advantages, when viewed solely from the frequentist perspective. One advantage has
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already been mentioned, namely that the error probabilities will vary with the evidentiary

strength in the data. Another advantage is that the new test is simpler than unconditional

tests, in several ways. First, it has a number of pragmatic benefits, in terms of ease of use

in practice, as discussed in the application in Section 2. Second, there is, in a sense, only

one general testing procedure that covers all testing problems (having suitable invariance

structure). In particular, the procedure applies equally well to sequential problems, so that

sequential testing is no harder than fixed sample size testing; among the many benefits is

the elimination of complications such as ‘spending alpha’ in sequential clinical trials. (In-

deed, the new conditional tests essentially follow the Stopping Rule Principle, eliminating

another major perceived division between the Bayesian and frequentist schools; see Berger,

Boukai, and Wang, 1997, for discussion.) Finally, from a pedagogical perspective, one no

longer needs to be greatly concerned that a naive user might misinterpret a frequentist error

probability as a posterior probability; here, they are the same.

Section 2 of the paper illustrates the new conditional test in the situation of testing a

Weibull model versus a Lognormal model. Section 3 reviews the conditional frequentist and

Bayesian approaches for simple versus simple hypothesis testing, primarily to set notation.

Section 4 discusses the general methodology of composite hypothesis testing in the presence

of group structures. Several classical multivariate testing scenarios are considered in Section

5, in part to indicate the scope of applicability of the conditional testing method and, in

part, to begin the process of redoing classical testing from the conditional perspective. As

will become clear, this will be a major project involving objective Bayesians and conditional

frequentists.

Section 6 considers the design problem of choosing an optimal sample size. At first sight,

it might seem that design evaluations would be the same for conditional and unconditional

testing; after all, before obtaining the data one can only perform an unconditional average

over all possible data. What can change, however, is the design criterion itself. For instance,

one might well desire to choose a sample size so that the reported conditional error proba-

bilities are small, with specified certainty; if it is the conditional error probability that will

be reported, ensuring that it is likely to be small is the natural goal. Designs based on such

conditional criteria will, in general, be different than designs based on unconditional criteria.
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2 An Application

2.1 The new conditional frequentist test for testing Weibull versus

Lognormal models

The bulk of the paper uses group-theoretic language to describe the results, but the actual

resulting methodology is easy to use. To illustrate this, we begin with an application to

testing between the two-parameter Weibull and Lognormal distributions.

Let X1, X2, . . . , Xn be i.i.d. f , where f is one of

H0 : fW (x;β, γ) =
γ

β

(
x

β

)γ−1

exp
[
−
(
x

β

)γ]
, x > 0, β > 0, γ > 0 (1)

H1 : fL(x;µ, σ2) =
1

x
√

2πσ2
exp[− (log x− µ)2

2σ2
], x > 0, σ > 0. (2)

Thus, (1) is the family of Weibull distributions with unknown parameters β > 0 and γ > 0,

whereas (2) is the family of Lognormal distributions with unknown parameters µ ∈ R and

σ > 0.

A (conventional) Bayesian approach to testing Weibull vs. Lognormal is described in

Section 4.1, leading to the test statistic

Bn =
Γ(n)

Γ((n− 1)/2)
√
n(nπ)(n−1)/2

∫ ∞

0

[
σ

n

n∑
i=1

exp
(
zi − z̄

szσ

)]−n

dσ , (3)

where zi = log(xi ), z̄ = 1
n

∑n
i=1 zi and s2z = 1

n

∑n
i=1(zi − z̄)2. The test statistic Bn is the

Bayes factor of H0 to H1, based on the data X1, X2, . . . , Xn and standard non-informative

priors. It is often regarded by Bayesians as the odds of H0 to H1 arising from the data,

although this interpretation is not necessary for what follows. Indeed, it suffices here to

simply view Bn as a specified test statistic.

Define the conditional test, T ∗, based on Bn as follows:

T ∗ =



if Bn ≤ r, reject H0 and report conditional error

probability (CEP) α∗(Bn) = Bn/(1 +Bn)

if r < Bn < a, make no decision

if Bn ≥ a, accept H0 and report conditional error

probability (CEP) β∗(Bn) = 1/(1 +Bn),

(4)

where a and r are defined as in (20) and (21). It should be noted that the no-decision region,

r < Bn < a, arises as an artifact of the analysis, rather than as a planned feature of the

methodology; this region will be further discussed later.
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It will be seen that T ∗ is an actual frequentist test; the reported CEPs, α∗(Bn) and

β∗(Bn), are conditional frequentist Type I and Type II error probabilities, conditional on

a certain statistic measuring strength of evidence in the data. Furthermore, α∗(Bn) and

β∗(Bn) will be seen to have the Bayesian interpretation of being (objective) posterior prob-

abilities of H0 and H1, respectively. Thus T ∗ is simultaneously a conditional frequentist and

a Bayesian test.

Note that this new conditional test is easy to use. The conditional error probabilities

are simple functions of Bn. The only potential computational difficulty is determining r

and a but, for the examples we present in this paper, they were quite easily calculated via

simulation. Note also that, while conditioning on the strength of evidence in the data is the

underlying principle behind the procedure, the conditioning statistic does not directly appear

in (4). In other words, this statistic can be viewed as part of the theoretical background of

the procedure, but need not be described as part of the methodology in application.

Because T ∗ is also a Bayesian test, it inherits many of the positive features of Bayesian

tests. Several of these features (e.g., not being affected by the stopping rule) were discussed

in the introduction. Among other features, one that is perhaps of particular interest to

frequentists is consistency: as the sample size grows, the test will eventually pick the right

model, assuming the data comes from either a Lognormal or a Weibull distribution. (If the

data actually arises from a third model, the test would pick the hypothesis which is closest

in Kullback-Leibler divergence to the true model : Berk, 1966, Dmochowski, 1995.)

2.2 Application to car emission data

We illustrate application of the conditional test defined in (4) with data from McDonald

et. al. (1995). The results obtained using T ∗ will also be compared with the results from

classical tests.

McDonald et. al. (1995) studies three types of emissions from vehicles at four different

mileage states. The types of emissions are hydrocarbon (HC), carbon monoxide (CO) and

nitrogen oxide (NOx) at mileage states 0, 4,000, 24,000 before maintenance and 24,000 after

maintenance. There were 16 vehicles measured at each mileage state.

The results of testing using T ∗ are given in Table 1. The values of a and r for T ∗ were

found to be 1.00 and 0.90, respectively. Therefore, the no-decision region is the interval

[0.90,1.00]. Out of the 12 cases considered, only one value of Bn, 0.962, fell in the no-decision

region. This corresponds to the emission of NOx at 24,000 miles before maintenance. Note
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Table 1: Decisions and conditional error probabilities (CEP) of T ∗

Mileage

0 4,000 24,000 24,000

(before (after

maint.) maint.)

HC

Bn 1.437 1.429 0.512 0.339

Decision Weibull Weibull Lognormal Lognormal

CEP 0.410 0.412 0.339 0.253

CO

Bn 0.406 0.111 0.161 0.410

Decision Lognormal Lognormal Lognormal Lognormal

CEP 0.288 0.099 0.139 0.291

NOx

Bn 5.184 0.418 0.962 0.532

Decision Weibull Lognormal No-decision Lognormal

CEP 0.162 0.295 - 0.347
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Table 2: Critical values and power of classical tests

α = .20 α = .10 α = .05 α = .01

Critical values

Chi-square 4.0 5.5 6.5 9.5

Kolmogorov-Smirnov .159 .175 .191 .220

Srinivasan .156 .174 .188 .218

Shapiro-Wilk .937 .922 .901 .862

RML 1.006 1.038 1.067 1.140

Power

Chi-square .282 .166 .117 .041

Kolmogorov-Smirnov .448 .313 .212 .092

Srinivasan .471 .330 .224 .096

Shapiro-Wilk .568 .433 .306 .150

RML .731 .605 .479 .238

that a Bayesian using Bn in this case would reject H0, but not with much confidence since

the Bayes factor is very close to 1. Indeed, we have generally found that the no-decision

region rarely arises and, when it does, the evidence is typically very weak for or against H0.

McDonald et. al. (1995) discusses several classical tests to distinguish between the

Weibull and the Lognormal distributions, including the Pearson chi-square goodness of fit

test, the Kolmogorov-Smirnov test, the Srinivasan test, the Shapiro-Wilks test, the Ratio

of Maximum Likelihood (RML) test, and the Mann-Scheuer-Fertig test. Critical values and

powers of the tests were computed (via extensive simulation) at various levels of α, and are

summarized in Table 2. Clearly the RML test is the most powerful among the classical tests

considered. The results of the various tests for the emissions data are given in Table 3.

In comparing T ∗ with the classical tests, the most important feature to note is simply

that the CEPs reflect the “strength of evidence” of the observed data. As an illustration,

compare T ∗ and the Mann-Schuer test for the emissions of CO and NOx at 4,000 miles. In

both cases, the Mann-Schuer test rejects the Weibull model at fixed level 0.05. In contrast,

the conditional test, T ∗, reports a CEP of 0.099 for the emission of CO at 4,000 miles, but

a much larger CEP of 0.295 for NOx at 4,000 miles. Obtaining such data-dependent error

probabilities was our pimary goal.
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Table 3: Conclusions of the classical tests
Mileage

0 4,000 24,000 24,000

(before ( after

maint.) maint.)

HC

H0 : lognormal vs. H1: weibull

Chi-square R1 A R2 A

K-S R1 R1 A A

Srinivasan R1 R1 A A

Shapiro-Wilk R1 R2 A A

RML R1 R1 A A

H0: weibull vs. H1: lognormal

RML A A R1 R2

Mann-Schuer A A R1 R1

CO

H0 : lognormal vs. H1: weibull

Chi-square A A A A

K-S R1 A R1 A

Srinivasan R1 A R1 A

Shapiro-Wilk A A A A

RML A A A A

H0: weibull vs. H1: lognormal

RML R1 R∗∗ R∗ R1

Mann-Schuer A R∗ R∗∗ A
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Table 3: Conclusions of the classical tests (cont.)

Mileage

0 4,000 24,000 24,000

(before ( after

maint.) maint.)

NOx

H0 : lognormal vs. H1: weibull

Chi-square A A A A

K-S A A A A

Srinivasan A A A A

Shapiro-Wilk R2 A A A

RML R∗ A A A

H0: weibull vs. H1: lognormal

RML A R1 A R1

Mann-Schuer A R∗ A A

A Accept null hypothesis

R1 Reject null hypothesis at α = .20 level

R2 Reject null hypothesis at α = .10 level

R∗ Reject null hypothesis at α = .05 level

R∗∗ Reject null hypothesis at α = .01 level
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The value of conditional error probabilities would have been even more apparent had

we not ‘cheated’ in Table 3, by reporting rejection at different levels. The strict frequen-

tist paradigm requires specification of the rejection region in advance, and does not allow

reporting of any type of attained level of significance. It would have been permissible to, in

advance, choose different levels for different tests, but one cannot do so after the fact and

maintain a strict frequentist interpretation. Thus, in this example, someone using the CEP

from T ∗ can claim that it is a strict frequentist error probability, whereas someone using

attained levels from Table 3 cannot claim that they are frequentist error probabilities. This

is not a pedantic distinction: true frequentist error probabilities (conditional or not) are

typically much larger than attained levels, so that the common use of attained significance

levels often produces a misleading sense of accuracy.

Another interesting distinction between T ∗ and the classical tests concerns the effect of

the choice of the null model. This choice has no effect on T ∗, which operates symmetrically

between the hypotheses, but it can have a pronounced effect on classical tests. For example,

consider the case of testing NOx at 24,000 miles before maintenance. When the test is posed

as Lognormal vs. Weibull, the RML test accepts the null. When the test is posed as Weibull

vs. Lognormal, the RML test again accepts the null. Of course, in classical testing, two

‘acceptances’ of the null simply means that the evidence for any one hypothesis is weak.

This can be confusing to nonstatisticians, however. Such inconsistencies never arise with

T ∗; with weak evidence, T ∗ will either simply give a large CEP or will end up concluding

no-decision, but this will not depend on which model is labeled the null hypothesis.

3 Conditional frequentist and Bayesian testing for sim-

ple hypotheses.

The primary purpose of this section is to introduce the notation needed for conditional

frequentist and Bayesian testing. With little loss of efficiency in exposition, this can be done

while reviewing the simple versus simple testing scenario, since the later developments will

be based on reduction (in part through invariance) to this situation.
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3.1 The conditional frequentist approach

Let X be a random variable, representing all the data, from the observation space X and

consider testing the simple hypotheses

H0 : X ∼ m0(x) versus H1 : X ∼ m1(x), (5)

where m0 and m1 are two specified probability density functions. Then

B(x) =
m0(x)
m1(x)

(6)

is the likelihood ratio of H0 to H1 (or equivalently, the Bayes factor in favor of H0). Let F0

and F1 be the c.d.f’s of B(X) under H0 and H1. The decision to accept or reject the null

will be based on B(x), where small values of B(x) correspond to rejection of H0.

The most powerful (unconditional) test of (5) is defined by a critical value c where

if B(x) ≤ c, reject H0,

if B(x) > c, accept H0.
(7)

The unconditional frequentist Type I and Type II error probabilities are α = P0(B(X) ≤

c) ≡ F0(c) and β = P1(B(X) > c) ≡ 1− F1(c).

The conditional frequentist approach considers a statistic, S(X), that represents evi-

dentiary strength (for or against H0), and then reports error probabilities conditional on

S(X) = s, where s denotes the observed value of S(X). The resulting conditional error

probabilities are

α(s) =Pr(Type I error | S(X) = s) = P0(B(X) ≤ c |S(X) = s)

β(s) =Pr(Type II error | S(X) = s) = P1(B(X) > c |S(X) = s).
(8)

Thus (7) becomes

if B(x) ≤ c, reject H0 and report conditional error probability α(s)

if B(x) > c, accept H0 and report conditional error probability β(s).
(9)

3.2 The Bayesian approach

For Bayesian testing of (5), one specifies prior probabilities for H0 and H1; here we will take

them to each be 1/2. (See Berger, Brown, and Wolpert, 1994, for discussion of conditional

frequentist testing corresponding to more general choices of these prior probabilities.) Then

the posterior probability (given the data x) of H0 is

P (H0|x) = α∗(B(x)) ≡ B(x)
1 +B(x)

(10)
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and the posterior probability of H1 is

P (H1|x) = β∗(B(x)) ≡ 1
1 +B(x)

. (11)

The standard Bayesian test for this situation can be written as

T :



if B(x) ≤ 1, reject H0 and report

posterior error probability α∗(B(x)).

if B(x) > 1, accept H0 and report

posterior error probability β∗(B(x)).

(12)

3.3 The new conditional test

Berger, Brown and Wolpert (1994) and Wolpert (1996) chose, as the conditioning statistic

to measure strength of evidence in the data,

S(X) = min{B(X), ψ−1(B(X))}, (13)

where ψ is defined in (19) over the domain Xd = {X : 0 ≤ S(X) ≤ r} and r is defined

in (20) and (21). This statistic is equivalent to defining strength of evidence by p-values,

for each hypothesis, as discussed in Sellke, Bayarri, and Berger (1999) (which also discusses

other possible choices of the conditioning statistic, concluding that the choice given here is

most attractive). Note that this conditioning statistic is only defined on Xd, so that the

complement of this region was termed the no-decision region. The resulting conditional

frequentist test, TB , was shown to be

TB :


if B(x) ≤ r reject H0 and report CEP α∗(B(x)),

if r < B(x) < a make no decision,

if B(x) ≥ a accept H0 and report CEP β∗(B(x)),

(14)

where a is defined in (20) and (21).

The surprise here is that this conditional frequentist test is the same as the Bayes test in

(12), except in the no-decision region. As mentioned earlier, however, data in the no-decision

region rarely occurs and, when it does, the evidence for either hypothesis is typically very

weak.
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4 General Methodology

4.1 Composite hypotheses testing

This section generalizes the unified testing theory to the testing of two composite hypothe-

ses that have the same group structure. Section 4.2 will consider the case when the al-

ternative hypothesis contains additional parameters. For definitions and explanations of

group-theoretic terms in bold type, see the Appendix.

Suppose X = (X1, X2, . . . Xn), where the Xi are i.i.d. f and we are interested in testing

the composite hypotheses

H0 : f = f0(·|θ0), θ0 ∈ Θ0 versus H1 : f = f1(·|θ1), θ1 ∈ Θ1, (15)

where θ0 and θ1 are the (unknown) nuisance parameters, and f0 and f1 are group invariant

densities. Furthermore, we require that the group acting on H0 and H1, G say, be the same

so that each family, f0 and f1, is G-invariant. The action of G on the observation space

induces groups Ḡ0 and Ḡ1 acting on Θ0 and Θ1, respectively. It will be assumed that Ḡ0

and Ḡ1 are transitive on their respective domains. If, in addition, Ḡ0 and Ḡ1 have trivial

isotropy subgroups, it follows that there is an isomorphism that maps Θ0 to Θ1. The

family of densities in H0 can, therefore, be parameterized by θ1 ∈ Θ1 instead of θ0 ∈ Θ0, and

the action of the group Ḡ0 on Θ0 can be replaced by the action of Ḡ1 on Θ1. Subsequently,

under this reparameterization, it can be assumed that the family of densities in (15) have

the same parameter space Θ, with a common group Ḡ (arising from the action of G) acting

on them.

For a set A ∈ Ḡ and ḡ, h̄ ∈ Ḡ, the set A · ḡ denotes the right translate of A and the set

ḡ ·A denotes the left translate of A.

Definition 1 A measure µ on Ḡ is said to be relatively invariant with left multiplier

αl and right multiplier αr if µ(A · ḡ) = αr(ḡ) · µ(A) and µ(ḡ ·A) = αl(ḡ) · µ(A).

Note that αr = 1 and αl = ∆l ( the left-hand moduli of Ḡ) corresponds to the right-Haar

measure on Ḡ. We will denote the right-Haar measure by ν. Similarly, αr = ∆r ( the

right-hand moduli of Ḡ ) and αl = 1 corresponds to the left-Haar measure on Ḡ. We

denote the left-Haar measure on Ḡ by µL.

Define a function φ : Ḡ −→ Θ by φ(ḡ) = ḡ ◦e, where e is the identity element of Θ. Since

Ḡ is assumed to be transitive, the function φ is onto. Thus a prior µ on Ḡ induces a prior
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µφ ≡ µφ−1 on Θ. We will say that µφ is relatively invariant if µ is relatively invariant. As

a special case, νφ will denote the prior induced by the right-Haar measure ν on Ḡ.

For any relatively invariant prior µφ, the Bayes factor of H0 to H1 is

B(x) =

∫
Θ

f0(x|θ) dµφ(θ)∫
Θ

f1(x|θ) dµφ(θ)
. (16)

The following theorem, whose proof is standard and hence omitted, explains our interest in

relatively invariant priors. The reader is referred to Eaton (1989) for a proof.

Theorem 1 For a relatively invariant prior µφ, the distribution of B(X) in (16) does not

depend on the nuisance parameter θ under H0 or H1.

As a special case of (16), the Bayes factor corresponding to the right-Haar prior is given

by

Bν(x) =

∫
Θ

f0(x|θ) dνφ(θ)∫
Θ

f1(x|θ) dνφ(θ)
. (17)

We will be particularly interested in the right-Haar prior for several reasons. The first

is because of the well-known difficulty, in Bayesian testing with improper priors, that the

Bayes factor will depend on the arbitrary normalization of the priors. However, when, as

here, we can assume a common parameter space and group action Ḡ for the two models,

Berger, Pericchi, and Varshavsky (1998) show that the right-Haar prior should be identically

normalized in the two models. The primary focus of Berger, Pericchi, and Varshavsky

(1998) is justifying this statement from the perspective of Intrinsic Bayes Factors (Berger

and Pericchi 1996b). In particular, it is shown in Berger, Pericchi, and Varshavsky (1998)

that one can start with any right-Haar priors for the models under consideration (i.e., can

begin with right-Haar priors with different multiplicative constants for different models)

and these differing constants will cancel out in the resulting intrinsic Bayes factor. Indeed

the resulting intrinsic Bayes factor is identical to that which would have been obtained by

formally computing the Bayes factor using the right-Haar prior for the two models with the

same multiplicative constant.

A second argument of this, on the Bayesian side, follows from the idea in Jeffreys (1961)

that a natural calibration for improper priors in testing can sometimes be obtained by

requiring that the Bayes factor for a ‘minimal sample’ be equal to one. A minimal sample
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is the smallest sample for which the Bayes factor is defined; for instance, in testing two

location-scale models, a minimal sample corresponding to the right-Haar prior can be seen

to be any two (distinct) observations. Jeffreys’ idea was that a minimal sample cannot

serve to discriminate between the models, and so the Bayes factor should equal one for

any minimal sample. (In the location-scale example, the two observations in the minimal

sample are needed to infer the location and the scale, with no observations being left for

model comparison).

The remarkable fact, observed in Berger, Pericchi, and Varshavsky (1998), is that, for two

models with a common parameter space and common group action Ḡ, using the right-Haar

prior with the same multiplicative constant guarantees that the Bayes factor equals one for

any minimal sample. The argument of Jeffreys (1961) would thus be that these priors can be

directly used to compute the Bayes factor (Alternatively, if one started out with right-Haar

priors having different multiplicative constants, applying Jeffreys idea would cause one to

renormalize them so that they have the same constant.) This fact is not, in general, true for

any other prior, so that use of right-Haar priors is compelling from a Bayesian perspective.

Other uses of this notion of ‘predictive matching’ for a minimal sample can be found in

Spiegelhalter and Smith (1982), and Berger and Pericchi (1997).

Finally, note that the results of this paper provide a third argument in support of the

use of a common multiplicative constant for the right-Haar prior; use of such guarantees a

procedure in which the posterior probabilities correspond with frequentist error probabilities

and many Bayesians are most attracted to Bayesian procedures which achieve such duality.

Denote by F ∗
0 and F ∗

1 the distribution function of B(X) under H0 and H1, respectively,

with densities f∗0 and f∗1 . By Theorem 1, F ∗
0 and F ∗

1 do not depend on θ0 and θ1, i.e., are

completely known. Hence, if we choose to base the test on the statistic B(X), the hypotheses

in (15) reduce to the simple versus simple test of

H0 : B(X) ∼ f∗0 versus H1 : B(X) ∼ f∗1 . (18)

The theory of Berger, Brown, and Wolpert (1994) can then be applied, as follows, to yield

a unified conditional frequentist and Bayesian test.

Define the conditioning statistic as in (13), where

ψ(s) = F ∗
0
−1(1− F ∗

1 (s)), (19)

and let

r = 1, a = ψ(1) if F ∗
0 (1) < 1− F ∗

1 (1) (20)
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r = ψ−1(1), a = 1 if F ∗
0 (1) > 1− F ∗

1 (1). (21)

The conditional test in (14) then becomes

TB =



if B(x) ≤ r reject H0 and report CEP

α∗(B(x)) = f∗0 (B(x))/[f∗1 (B(x)) + f∗0 (B(x))],

if r < B(x) < a make no decision,

if B(x) ≥ a accept H0 and report CEP

β∗(B(x)) = f∗1 (B(x))/[f∗1 (B(x)) + f∗0 (B(x))] .

(22)

It can be concluded from Berger, Brown, and Wolpert (1994) that this is simultaneously a

conditional frequentist test and a Bayesian test for (18).

There is a subtlety here on the Bayesian side, namely that the reduced problem in (18)

need not be equivalent to the original testing problem in (15). The issue is that the posterior

probability of H0 given B(x), namely P (H0|B(x)) = f∗0 (B(x))/[f∗1 (B(x)) + f∗0 (B(x))], is

not necessarily the same as the original P (H0|x) = B(x)/(1 + B(x)). In other words, the

reduction to (18) may not be valid from a Bayesian perspective. The following theorem

shows that all is well if the right-Haar prior distribution is used, providing another strong

justification for utilization of this prior.

Theorem 2 For the Bayes factor, Bν , derived from the right-Haar prior,

P (H0|Bν(x)) = P (H0|x) and P (H1|Bν(x)) = P (H1|x).

Proof: See the Appendix.

Finally, note that Bν(X) is the statistic used to construct the most powerful invariant

test in classical testing. Thus reduction to (18), based on Bν(X), is also natural from a

frequentist perspective. Thus the recommended unified test, TBν ≡ T ∗, is given by

T ∗ =



if Bν(x) ≤ r reject H0 and report CEP

α∗(Bν(x)) = Bν(x)/(1 +Bν(x))

if r < Bν(x) < a make no decision

if Bν(x) ≥ a accept H0 and report CEP

β∗(Bν(x)) = 1/(1 +Bν(x)) .

(23)

This has the property that the reported CEPs are simultaneously (i) Type I and Type II

error probabilities, conditional on S(x), and (ii) Bayesian posterior probabilities of H0 and

H1, respectively. Note that, implicit in this result is the fact that the conditional error

probabilities are constant over the parameter spaces.
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4.2 Testing when H0 is nested in H1

Now suppose that the alternative hypothesis contains additional parameters, i.e., the test is

of

H0 : f = f0(·|θ0) versus H1 : f = f1(·|θ1, ξ), (24)

where θ0 ∈ Θ0, θ1 ∈ Θ1 and ξ ∈ Ω are unknown parameters. As before, we assume that the

groupG acting on the families of densities is the same, and that Θ0 has been reparameterized,

if necessary, so that a common group Ḡ, arising from the action of G, acts on the parameter

spaces. Finally, assume that the parameterization of (θ1, ξ) is such that ξ is not affected by

the group action, i.e., that, for any ḡ1 ∈ Ḡ1 and (θ1, ξ) ∈ (Θ1,Ω), ḡ1 ◦ (θ1, ξ) = (ḡ1 ◦ θ1, ξ).

It will often be necessary to reparameterize the problem to achieve this, as will be seen in

the examples.

The prior density that will be considered for (θ1, ξ) will be of the form π(θ1, ξ) =

µφ(θ1)π(ξ), where µφ is a relatively invariant prior on Θ1 (and will also be the prior on

Θ0) and π is a proper prior on Ω. Typically, π will be chosen to be a conventional proper

prior used for nested Bayesian testing (following Jeffreys, 1961). As in Berger, Boukai, and

Wang (1997), one can integrate over ξ to form the ‘marginal alternative’ model

m1(x|θ1) =
∫

Ω

f1(x|θ1, ξ)π(ξ) dξ, (25)

and then consider the test of

H0 : f = f0(x|θ0) versus H1 : f = m1(x|θ1). (26)

Because of the choice of parameterization, it is easy to see that m1 retains the original

group action on Θ1, so this reduced testing situation is of exactly the form discussed in

Section 4.1. Hence the corresponding unified conditional frequentist tests, TB and T ∗,

can be constructed, based on B(x) defined as in (16) and (17), respectively, with f1(x|θ)

replaced by m1(x|θ). The following theorems define the properties of these conditional tests

in the original testing problem (24). The proof of Theorem 3 essentially follows the lines

of the corresponding result in Berger, Boukai and Wang (1997), while that of Theorem 4 is

essentially the same as the proof of Theorem 2.

Theorem 3 For TB as in (22), but defined for the testing problem in (26),

P (H0|B(x)) = PH0(Reject H0|S(x)) (27)

P (H1|B(x)) = Eπ(ξ|S(x)) Pξ(Accept H0|S(x)), (28)
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where Pξ(Accept H0|S(x)) is the conditional Type II error probability under (θ, ξ) in H1

(which will depend only on ξ), and π(ξ|S(x)) is the conditional posterior distribution of ξ

given S(x).

Theorem 4 For T ∗ as in (23), but defined for the testing problem in (26), P (H0|Bν(x)) =

P (H0|x) and P (H1|Bν(x)) = P (H1|x).

Note that the conditional Type I error probability for TB is still exactly equal to the

posterior probability of H0 given B(x). (Implicit, again, is the fact the conditional Type

I error probability is constant over θ0.) This equality is, in a sense, the main goal, since

Type I error is often perceived to be of primary importance in classical statistics. Under the

alternative, however, the conditional Type II error probability is no longer constant (it varies

with ξ), so that it cannot equal the posterior probability ofH1 given B(x). Interestingly, (28)

shows that the posterior probability of H1 given B(x) is the average of the conditional Type

II error probabilities, the averaging being done with respect to the posterior distribution of ξ

conditional on S(x). As the latter posterior can be thought of as describing where ξ is likely

to be under the alternative, this average power is a very reasonable quantity to consider for

a frequentist. See Berger, Boukai, and Wang (1997) for further discussion. Finally, as in

Section 4.1, we actually recommend use of T ∗, since the posterior probabilities of Hi given

B(x) are then equal to the posterior probabilities of Hi given x.

Before proceeding to the examples, it should be mentioned that the above development of

conditional frequentist tests is clearly dependent on the existence of suitable default or con-

ventional Bayesian tests. Indeed, we have chosen examples for which such default Bayesian

procedures exist. The development of default Bayesian procedures for important testing

situations thus defines a joint research agenda for Bayesians and conditional frequentists.
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5 Examples

5.1 Testing Weibull versus Lognormal

This is the testing problem discussed in Section 2.1. The group G, acting on the observation

space, X , that leaves both H0 and H1 invariant is

G = {gb,c : gb,c(x) = b xc, b > 0, c > 0}. (29)

Then, Ḡ0 and Ḡ1 are, respectively,

Ḡ0 = {ḡ0,(b,c) : ḡ0,(b,c)(β, γ) = ( b · βc, γ/c )} (30)

and

Ḡ1 = {ḡ1,(b,c) : ḡ1,(b,c)(µ, σ) = ( cµ+ log(b), c · σ )}. (31)

The reparameterization of (β, γ) to (µ, σ), given by µ = log (β) and σ = 1/γ, yields the

same group action on each parameter space. The right-Haar prior induced by this group

action on (µ, σ) is νφ(µ, σ) = 1/σ, which is the well-known right-Haar prior for location-scale

problems. Using (17), the Bayes factor for this problem reduces to Bn in (3). Hence, T ∗ in

(4) is the unified Bayesian-conditional frequentist test with α∗(Bn) and β∗(Bn), respectively,

being (i) posterior probabilities of H0 and H1, and (ii) Type I and Type II error probabilities

conditional on S(x).

The no-decision regions corresponding to various sample sizes are given in Table 4 and

are quite innocuous, usually arising only when the Bayes factor is in a small region near

one, which would indicate weak evidence in any case. These were computed by simulation

of the distribution of B(X) under both H0 and H1. The results here were based on 1000

generated values of the random variable.

5.2 Testing Exponential versus Lognormal

Let X1, X2, . . . , Xn be i.i.d. from f and consider testing

H0 : f is Exponential(θ) versus H1 : f is Lognormal(µ, σ2).

This is an example in which H1 contains an additional parameter and the analysis of Section

4.2 must be employed. The group acting on the observation space, X , is the multiplicative

group given by G = { gc : gc(x) = c x, c > 0}. Using the notation of Section 4.2, we can
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Table 4: The no-decision region for testing Weibull versus Lognormal.

Sample size, n No-decision region

5 (0.91,1.00)

10 (0.93,1.00)

20 (0.83,1.00)

30 (0.68,1.00)

40 (0.75,1.00)

50 (0.82,1.00)

define Θ0 = {θ : θ > 0}, Θ1 = {µ : µ ∈ R} and Ω = {σ : σ > 0}, and the groups

Ḡ0 and Ḡ1 are, respectively, Ḡ0 = {ḡc : ḡc(θ) = cθ} and Ḡ1 = {ḡc : ḡc(µ) = log(c) + µ}.

Observe that σ is invariant under this group action, as was required of the parameterization.

Furthermore, the transformation µ = log(θ) results in a common group action on Ḡ0 and

Ḡ1, leading to the usual right-Haar prior νφ(θ) = 1/θ.

To complete the analysis, it is necessary to choose a proper prior, π(σ), for the compu-

tation of (25) and the resulting Bayes factor. A proper conventional prior that has been

suggested for this testing problem is the intrinsic prior of Berger and Pericchi (1996b), given

by

π(σ) =
√

2E
(

| Z |
(1 + cosh(

√
2σZ)

)
, (32)

where the expectation is with respect to the standard normal random variable Z. The

resulting Bayes factor of H0 to H1 can be shown to be

B(x) =
Γ(n)

√
2nπn/2

∏n
i=1 xi

Γ(n/2)(
∑n

i=1 xi)n
·

(∫ ∞

0

1
(1 + cosh(

√
2v))(v +

∑n
i=1(yi − ȳ)2)n/2

dv

)−1

,

where yi = log(xi). Then (23) defines the unified conditional frequentist and Bayesian test.

Table 5 gives the no-decision region of this test for various values of n. These were

computed by simulation from the distributions of B(X) under H0 and H1, using 5000

generated values of the random variable. Again, the no-decision regions correspond to

Bayes factors that would be considered very weak evidence.
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Table 5: The no-decision region for testing Exponential versus Lognormal.

Sample size, n No-decision region

10 (1.00,2.20)

20 (1.00,2.09)

30 (1.00,1.91)

40 (1.00,1.91)

50 (1.00,1.82)

60 (1.00,1.57)

5.3 Testing correlations in multivariate normal populations

Let X1, X2, . . . , XN be i.i.d. p-vector observations from the normal population Np(µ,Σ),

p≥2. Of interest is ρ = ρ12·34...p, the partial correlation of the first and second components

given the others; that is, we want to know if there is an association between the first and

second components after the linear dependence of the others has been eliminated. The test

of no association versus association can be formulated as

H0 : ρ = 0 versus H1 : ρ 6= 0. (33)

This testing problem is invariant under G, the group of affine transformations X −→

AX + b, where b ∈ Rp and A is a matrix of the form

Ap×p =

 D U

0 C

 ,

where D2×2 is diagonal with positive entries d1 and d2, U2×(p−2) is arbitary and C(p−2)×(p−2)

is non-singular. G induces a group of transformations Ḡ on the parameter space (µ,Σ) by

Ḡ = {(A, b) : (A, b) ◦ (µ,Σ) = (Aµ+ b, AΣA
′
)}. (34)

The right-Haar density on Ḡ is

ν(b,D,U,C) =
1

|det(D)| |det(C)|p
dD dC dU db.

The elements dD,dC, dU and db represent elements of Lebesgue measure on the respective
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spaces. To better understand the action of Ḡ on the parameter space, let

Σ =

 Σ11 Σ12

Σ21 Σ22

 , (35)

where Σ11 is a 2× 2 matrix, Σ12 is a 2× (p− 2) matrix and Σ22 is a (p− 2)× (p− 2) matrix.

Define Σ11·2 = Σ11 − Σ12Σ22
−1Σ21. Then, Σ11·2 can be represented by the entries

Σ11·2 =

 σ2
11·34...p ρ σ11·34...p σ22·34...p

ρ σ11·34...p σ22·34...p σ2
22·34...p

 .

Reparameterize (µ,Σ) by (µ, σ11·34...p, σ22·34...p,Σ12,Σ22, ρ). The action of Ḡ in the new

parameterization is

(A, b) ◦ (µ, σ11·34...p, σ22·34...p, Σ12, Σ22, ρ )

= (Aµ+ b, d1σ11·34...p, d2σ22·34...p, DΣ12C
′
+ UΣ22C

′
, ρ ).

Using the notation in Section 4.2,

Θ0 = Θ1 = (µ, σ11·34...p, σ22·34...p,Σ12,Σ22).

Under the null, ρ = 0 and Ω = {ρ 6= 0}. The right-Haar prior νφ, induced by ν on Ḡ, is

νφ(σ11·34...p, σ22·34...p,Σ12,Σ22) =
1

σ11·34...p
· 1
σ22·34...p

dσ11·34...p dσ22·34...p dΣ12
1

|Σ22|(p+3)/2
dΣ22.

The prior on the ‘extra parameter’ ρ under H1 will be chosen to be uniform, as suggested

by Jeffreys (1961). This is proper, since the range of ρ is compact.

The Bayes factor, B(x), is then given by

B(x) =
2N−p+1 Γ2((N − p+ 1)/2)∫ 1

−1
(1− ρ2)−(N−p+1)/2f(ρ, ρ̂) dρ

,

where f(ρ, ρ̂) is given by

f(ρ, ρ̂) =
∫ ∞

0

∫ ∞

0

(yz)(N−p−1)/2exp{− 1
2(1− ρ2)

( y − 2
√
yz ρ̂ ρ+ z)} dy dz.

As in Jeffreys (1961), the substitution yz = α2, α > 0, and y/z = e2β , β ∈ R, allows this to

be expressed as

B(x) =
2nΓ2(n/2)∫ 1

−1

∫∞
0

(1− ρ2)n/2(cosh(β)− ρρ̂)−n dβ dρ
, (36)

where n = N − p+ 1.

The test T ∗ based on B(x) is given by (23), with a and r defined as in (20) and (21).

The Bayes factor in (36) is a function only of |ρ̂|, and decreases as |ρ̂| increases. Writing
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the distribution of |ρ̂| under H0 and H1 as F0,|ρ̂| and F1,|ρ̂|, respectively, the test T ∗ can,

alternatively, be given in terms of ρ̂ as

T ∗ =



if |ρ̂| ≥ ρr reject H0 and report

CEP α∗(B(ρ̂)) = B(ρ̂)/(1 +B(ρ̂))

if ρa < |ρ̂| < ρr make no decision

if |ρ̂| ≤ ρa accept H0 and report

CEP β∗(B(ρ̂)) = 1/(1 +B(ρ̂)) ,

where ρr and ρa satisfy, with B(ρ∗) = 1,∫ ρa∧ρ∗

0

F0,|ρ̂|(t) dt =
∫ 1

ρr∨ρ∗
F1,|ρ̂|(t) dt.

5.4 Testing for equality of means of several multivariate popula-

tions

Suppose Xij , i = 1, 2, . . . , k, j = 1, 2, . . . , n, are independent observations from N(µi,Σ),

where the µi’s and Σ are unknown. We are interested in testing the following hypotheses:

H0 : all µi = µ0 versus H1 : not H0.

Both H0 and H1 are invariant under G, the group of affine transformations X −→ AX + b,

where A is non-singular and b ∈ Rp.

The conventional hierarchical prior that is recommended for this testing problem is spec-

ified as follows. Given µ0 and Σ, let

µi
iid∼ Np(µ0, τΣ), for i = 1, 2, . . . , k,

τ ∼ g(τ) = 1√
2π
τ−3/2 exp(− 1

2τ ).

See Berger, Boukai and Wang (1997) for discussion of this prior when the null hypothesis is

that all the means µi, i = 1, 2, . . . , k, are equal to zero. It is natural to also use this when,

conditional on µ0 and Σ, the means all equal µ0.

Ḡ is the group of transformations on (µ0,Σ) given by

Ḡ = {(A, b) : (A, b) ◦ (µ0,Σ) = (Aµ0 + b, AΣA
′
)}.

The right-Haar measure on Ḡ is

ν(A, b) =
1
|A|p

dAdb.
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The induced prior, νφ, on (µ0,Σ) is

νφ(µ0,Σ) =
1

|Σ|(p+1)/2
dΣ dµ0.

Note that τ = 0 corresponds to H0 while τ > 0 corresponds to H1.

From (17), the Bayes factor is

B(X) =
(∫ ∞

0

|det(S0)|(n−1)/2

|det(Sτ )|(n−1)/2
· 1

(1 + nτ)p(k−1)/2
· g(τ) dτ

)−1

,

where

S0 =
k∑

i=1

n∑
j=1

(Xij − X̄i)(Xij − X̄i)′ + n
k∑

i=1

(X̄i − X̄)(X̄i − X̄)′

Sτ =
k∑

i=1

n∑
j=1

(Xij − X̄i)(Xij − X̄i)′ +
n

1 + nτ

k∑
i=1

(X̄i − X̄)(X̄i − X̄)′.

The unified test, T ∗, is then given in (23), with a and r calculated using formulas (20) and

(21).

6 Design Aspects

6.1 Motivation

In designing an experiment for which a conditional test is to be used, it is natural to

incorporate the conditional nature of the inference into the design criterion. In this section

we illustrate this notion on the simplest design problem, that of choosing the sample size n.

Denote, by CEPi, the reported conditional error probability when Hi is true, i = 0, 1.

Thus, under H0, CEP0 = 1/(1 + B(x)) and, under H1, CEP1 = B(x)/(1 + B(x)). For

specified values of 0 < pi < 1 and αi > 0, it is attractive to choose the smallest sample size

such that

PH0{CEP0 < α0 } ≥ p0 (37)

and

PH1{CEP1 < α1 } ≥ p1. (38)

If (37) holds then, under the null hypothesis and with a confidence of p0, we pre-experimentally

expect to report CEP0 less than α0. Likewise, (38) implies that we are confident, under

H1, that the reported CEP1 will be less than α1. Typically, p0 and p1 will be close to 1
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Table 6: The smallest n achieving the design goal, for testing Weibull versus Lognormal.

Values of p

B 0.80 0.85 0.90 0.95 0.99

5 58 69 84 113 170

10 72 83 96 122 190

100 110 120 139 170 236

and α0, α1 small. This pre-experimental assurance, that the reported error will be small, is

precisely the type of assurance that practitioners are likely to find appealing.

Allowing p0 and p1 to differ and α0 and α1 to differ enables differing treatments of Type

I and Type II errors. In the following examples, however, we simply choose α0 = α1 = α

and p0 = p1 = p. Furthermore, instead of choosing

various values of α, we choose values of B = α−1−1, which are the corresponding desired

evidence levels in terms of Bayes factors or odds.

Testing Weibull versus Lognormal: This is the example considered in Section 2 and

Section 5.1. Table 6 gives the smallest values of n for which the indicated design goals would

be achieved. Thus, if one desired to ensure that, with pre-experimental probability 0.90, the

conclusion of the study would report odds of at least 10 to 1 in favor of one the models, it

would be necessary to choose a sample size of at least n = 96. The computations in Table

6 were performed by simulation, using 1000 generated values of B(X).

Testing Exponential versus Lognormal: For the testing problem of Section 5.2, the

sample size needed to achieve the design goal is given in Table 7. These numbers were

computed using 5000 generated values of B(X).
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Table 7: The smallest n achieving the design goal, for testing Exponential versus Lognormal.

Values of p

B 0.80 0.85 0.90 0.95 0.99

5 27 34 45 68 122

10 40 45 58 81 142

100 73 84 100 125 181

Appendix: Group-theoretic definitions and proof of

Theorem 3

Definition 2 Let G be a group of measurable one-to-one transformations of X onto itself,

g : x −→ g◦x, such that the family {Pθ : θ ∈ Θ} is closed with respect to this transformation,

i.e., for x ∼ Pθ, g ◦ x ∼ Pθ′ for some θ
′ ∈ Θ, defined by θ

′ ≡ ḡ ◦ θ. In this case, the family

{Pθ} is G-invariant.

The action of the group G on X induces another group Ḡ on the parameter space Θ.

Actually it can be shown that G and Ḡ are isomorphic to each other.

Definition 3 For a group of measurable transformations G acting on a space X , G is said

to be transitive on X if for any x, x
′ ∈ X , there is a g in G such that x

′
= g ◦ x.

Definition 4 The isotropy subgroup of G at x is the subgroup

Gx = {g ∈ G : g ◦ x = x}. (39)

The isotropy subgroup of G is said to be trivial if Gx = e, ∀x ∈ X . Define a function

φ : Ḡ −→ X by φ(ḡ) = ḡ ◦ e, where e is the identity element of X . Then, transitivity of Ḡ

on X implies that φ is onto. If, furthermore, G has a trivial isotropy subgroup, then the

function φ is also one-to-one and, in that case, it is an automorphism of G and X .

Definition 5 Let G be a group of measurable transformations of X onto itself. A maximal

invariant, τ(x), is a function on X satisfying

• τ(x) is invariant under G, i.e., τ(g ◦ x) = τ(x) for g ∈ G and x ∈ X
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• τ(x) takes different values on different orbits of G, i.e. τ(x1) = τ(x2) ⇒ x1 = gx2 for

some g ∈ G.

Definition 6 The left-hand moduli of G, ∆l, is such that, for any right-Haar measure ν,

ν(g · A) = ∆l(g)ν(A) ∀g ∈ G. Similarly, the right-hand moduli of G, ∆r, is such that,

for any left-Haar measure µL, µL(A · g) = ∆r(g)µL(A) ∀g ∈ G.

∆l and ∆r are special examples of multipliers. A continuous function α(·), α : G → R+ is

said to be a multiplier if, ∀ g, h ∈ G, α(g · h) = α(g) · α(h).

Assume the family P = {Pθ : θ ∈ Θ} admits a family of densities {p(·|θ) : θ ∈ Θ} with

respect to a σ-finite dominating measure λ. Let G, Ḡ act on X ,Θ, respectively, and λ be

relatively invariant under G with multiplier χ(·). If the densities satisfy

p(x|θ) = p(gx|ḡθ)χ(g), (40)

then the family P = {Pθ : θ ∈ Θ} is G-invariant. Furthermore, gPθ = Pḡθ.

Definition 7 A measure µ is said to be relatively invariant with left-multiplier αl and right-

multiplier αr if, for any subset A of G and any g ∈ G, µ(g ·A) = αl(g)µ(A) and µ(A · g) =

αr(g)µ(A).

Proof of Theorem 2: We first state a few basic results:

Theorem 5 [Wijsman] For i = 0, 1, let Pi be a distribution on X with density pi, with

respect to a χ-relatively invariant measure λ. Let τ(x) be a maximal invariant with distri-

butions P τ
0 and P τ

1 , respectively. Then P τ
0 and P τ

1 are absolutely continuous with respect to

a dominating measure µτ and, for any x ∈ X ,

dP τ
0

dP τ
1

(τ(x)) =

∫
p0(gx)χ(g)dµL(g)∫
p1(gx)χ(g)dµL(g)

, (41)

where µL is a left-invariant measure on G.

Proof: See Wijsman (1990).

Theorem 6 For i = 0, 1, let Pi denote the family of distributions with densities {fi(·|θ) :

θ ∈ Θ} with respect to a χ-relatively invariant measure λ. Also, assume that the class of
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densities {fi(·|θ) : θ ∈ Θ}, for i = 0, 1, are G-invariant. Then,

dP τ
0

dP τ
1

=

∫
f0(x|θ)dνφ(θ)∫
f1(x|θ)dνφ(θ)

≡ Bν(x). (42)

Proof:

Bν(x) ≡

∫
f0(x|θ)dνφ(θ)∫
f1(x|θ)dνφ(θ)

=

∫
f0(x2|ḡ ◦ e)dν(ḡ)∫
f1(x2|ḡ ◦ e)dν(ḡ)

=

∫
f0(g−1x2|e)χ(g−1)dν(ḡ)∫
f1(g−1x2|e)χ(g−1)dν(ḡ)

=

∫
f0(gx2|e)χ(g)dµL(g)∫
f1(gx2|e)χ(g)dµL(g)

=
dP τ

0

dP τ
1

(τ(x)) ( by Theorem 5 ),

where dν(ḡ−1) = dµL(g). QED.

Theorem 7 Let F ∗
0 and F ∗

1 be the c.d.f.s of Bν(X), and denote their densities with respect

to Lebesgue measure by f∗0 and f∗1 . Then,

f∗0 (b)
f∗1 (b)

= b ∀b > 0. (43)

Proof:

F ∗
0 (b) =

∫ b

0

f∗0 (t)dt =
∫
{x:Bν(x)≤b}

dP τ
0 (τ(x))

=
∫
{x:Bν(x)≤b}

P τ
0 (τ(x))
P τ

1 (τ(x))
· dP τ

1 (τ(x))

=
∫
{x:Bν(x)≤b}

Bν(x) · dP τ
1 (τ(x)) (see Theorem 6)

=
∫ b

0

t · f∗1 (t)dt.

Differentiating both sides w.r.t. b yields the result. QED.
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To complete the proof of Theorem 2, note that

P (H0|Bν(x)) =
f∗0 (Bν(x))

f∗0 (Bν(x)) + f∗1 (Bν(x))
=

Bν(x)
1 +Bν(x)

(44)

and

P (H1|Bν(X)) =
f∗1 (Bν(x))

f∗0 (Bν(x)) + f∗1 (Bν(x))
=

1
1 +Bν(x)

, (45)

the final equalities in (44) and (45) following from (43).
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