
Propriety of Intrinsic Priors in Invariant Testing Situations

Sarat C. Dass

University of Michigan

October 5, 2006

Abstract

The Theory of Intrinsic Priors, developed by Berger and Pericchi (1996a,b), is a general

method of constructing objective priors for testing and model selection when proper priors

are considered for the simpler null hypotheses. When this prior distribution is improper, as is

typically the case for Objective Bayesian testing, they suggest approximating the (improper)

prior by a sequence of proper priors on compacts. This “limiting procedure” was formalized by

Moreno, Bertolino and Racugno (1998) who showed that the limiting Bayes factor is unique.

Still, the natural question of whether some component of the intrinsic prior on parameters in

the full model is proper in the limit (Sansó, 1997), remained to be answered. We develop a

method here to partially answer this question for testing problems involving group invariance

structures. We give a sufficient condition, which is easily verified, which implies that the

conditional intrinsic prior under the full model is proper. This hitherto had to be verified

by direct calculation. This paper also complements Berger, Pericchi and Varshavsky (1998),

who develop methods, under group invariance situations, for non-nested models. For nested

models, we give a class of initial non-informative priors and identify component parameters

in the full model for which the default analysis results in a proper prior for these parameters.

The proper prior is also identified as being the intrinsic prior arising from the use of the

Arithmetic Intrinsic Bayes Factor (AIBF) methodology for the default analysis.

Key words and phrases. Intrinsic Bayes Factors; Intrinsic priors; Group invariance; Nested

models; Non-informative priors.

1 Introduction

For a model selection problem, one can specify priors on model spaces and compute Bayes factors for

competing models as the ratio of weighted likelihoods. The evaluation of Bayes factors, therefore, depends
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significantly on prior specifications, making the choice of priors used on these model spaces important.

In the preliminary stages of model selection, a Bayesian might use certain kinds of non-informative

priors, say reference or Jeffreys’ priors, in the event that proper subjective priors have not been carefully

elicitated. These non-informative priors are typically improper. A problem which arises here with the use

of improper priors is that the corresponding Bayes factors are unique only up to multiplicative constants.

Hence, development of default Bayesian methodology is difficult in this respect. Efforts have been made to

conventionally specify the constants for the non-informative priors, for example, Smith and Spiegelhalter

(1980) , and Spiegelhalter and Smith (1982).

In order to overcome the problem described above, Berger and Pericchi (1996a,1996b) introduce

the Intrinsic Bayes Factor (IBF) approach to hypothesis testing and model selection, using initial non-

informative priors on model spaces and computing a quantity called the intrinsic Bayes factor. They

argued, with many examples, that the IBF approach is attractive with appropriate choices of initial non-

informative priors on the model spaces. Interestingly, the IBF approach relates closely to Bayes factors

derived from certain priors, thus called intrinsic priors. Berger and Pericchi (1996b) show that in testing

examples, the resulting intrinsic priors have many attractive features and are, indeed, proper priors. This

is the strongest argument in favor of the IBF approach since proper Bayes factors (Bayes factors derived

from proper priors) are easily interpreted.

Berger and Pericchi (1997) argued that there are potential benefits of using Intrinsic Priors to compute

actual Bayes Factors. This approach eliminates the need for computations with real training samples

and also eliminates concerns about its stability. However, what they prove is that if the initial prior on

the null model is proper, then the induced intrinsic prior in the alternative is also proper. For Objective

Bayesian testing, the assumed prior on the null is typically improper, and so they studied the propriety of

intrinsic priors directly on a case by case basis. For testing using improper priors for the null hypotheses,

Berger and Pericchi (1996a,b) suggest approximating the (improper) prior with proper priors supported

on a sequence of increasing compact sets under the null. This “limiting procedure” was formalized by

Moreno, Bertolino and Racugno (1998), who show that the limiting Bayes Factor is independent of the

choice of the increasing compact sets. However, the fundamental question which was first raised by Sansó

(1997) remained to be answered, namely, for which initial non-informative priors, the resulting intrinsic

prior for certain parameters, conditional on the others in the full model, is proper. If this conditional

prior is not proper, then the intrinsic prior does not obey the principle enunciated in Berger and Pericchi

(1996a,b), that is, sensible Bayesian procedures should correspond to reasonable priors. Thus, given that

the intrinsic prior on the full model is also improper, the question is also whether there is a decomposition

of the improper prior on the full model into components that are proper. Sanso, Pericchi and Moreno

(1996) study this problem for the location model. It is clear that the propriety of component priors, if

they exist, depend crucially on the choice of the initial non-informative priors on the reduced and full
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models. This raises another question as to whether there are classes of non-informative priors for which

the resulting intrinsic priors on component parameters in the full model are, indeed, proper.

The main result in the present paper is to (partially) answer this fundamental question in the Theory of

Intrinsic Priors as discussed above. For nested testing situations involving group invariance structures, we

give a sufficient condition in terms of a class of initial improper priors and identify component parameters

in the full model for which the default analysis results in a proper prior for these parameters, which are

typically the parameters of interest. The (conditionally) proper prior is also identified as being the

intrinsic prior arising from the use of the AIBF methodology for the default analysis when the intrinsic

prior on the reduced model is taken to be the initial non-informative prior as in Sanso (1997).

The organization of the rest of the paper is as follows. Section 2 gives a statement of the problem

that this paper aims to solve. Some background on intrinsic priors is presented in Section 3. Section 4

gives the group theoretic preliminaries and the structures on model spaces that will be relevant for the

derivation of the proper intrinsic priors. The main result of propriety of the intrinsic prior is shown in

Section 5. Section 6 discusses several examples relevant to the previous theory. Section 7 gives proofs of

theorems and relevant definitions in the paper.

2 Statement of the Problem

Let x1, x2, . . . , xn be iid f . Consider the following hypotheses testing scenario of

H0 : f = f0(·|θ0) vs. H1 : f = f1(·|θ1, ξ), (1)

where θ0 ∈ Θ0, θ1 ∈ Θ1 and ξ ∈ Ω are unknown parameters.

Definition 1 We will say that H0 is nested in H1 if for every θ0 ∈ Θ0,

f0(x|θ0) = f1(x|θ1, ξ1) (2)

for some θ1 ∈ Θ1 and ξ1 ∈ Ω.

We will only consider nested testing situations from now on. Typically, the parameters θ0 ∈ Θ0 and

θ1 ∈ Θ1 will denote “similar” parameters under the reduced and full models, respectively. For a brief

discussion of intrinsic priors and intrinsic equations, the reader is referred to Section 3. For initial non-

informative priors πN
0 (θ0) and πN

1 (θ1, ξ) on H0 and H1, respectively, Sanso (1997) shows that the limit

intrinsic Bayes factor (LIBF) of Moreno, Bertolino and Racugno (1997) actually corresponds to the Bayes

factor that is obtained when the intrinsic prior on the reduced model, πI
0(θ0), is the initial non-informative

prior, πN
0 (θ0). In fact, the LIBF of H1 to H0, B10, has the expression

B10(x) =

∫
Θ1

∫
Ω|Θ1

f1(x|θ1, ξ) πN
1 (θ1, ξ)E(θ1,ξ)

[
mN

0 (x(l))
mN

1 (x(l))

]
dξ dθ1

∫
Θ0

f0(x|θ0)πN
0 (θ0) dθ0

, (3)
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where x(l) denotes a theoretical minimal training sample (see Section 4 for a definition of a minimal

training sample), and mN
0 and mN

1 are the marginals under H0 and H1 with respect to priors πN
0 and

πN
1 , respectively. Given that the intrinsic prior on the full model, πI

1(θ1, ξ), is also improper, Sanso (1997)

asks the question whether the conditional intrinsic prior of ξ given θ1, πI
1(ξ|θ1), is proper. More generally,

the question is for which initial non-informative priors, πN
0 and πN

1 , does there exist a decomposition

of the parameter space of the full model into components where one component gets a (conditionally)

proper intrinsic prior while the other gets a non-informative prior. Sanso, Pericchi and Moreno (1996)

study this problem for the location model. In the case when group invariance structures are present for

both H0 and H1, we give a class of initial non-informative priors and identify component parameters in

the full model for which the resulting conditional intrinsic prior is proper.

2.1 Example of a conditional prior that is not proper

We present an example of nested hypotheses testing where the resulting conditional intrinsic prior is not

proper for a particular choice of the initial non-informative prior. This example is taken from Berger and

Pericchi (1996a). See Berger and Pericchi (1996a) for details and generalizations of testing nested linear

models. Consider the following testing of

H0 : y = x0β0 + ε0, ε0 ∼ N(0, σ2
0In)

versus

H1 : y = x0β1 + x1β11 + ε1, ε1 ∼ N(0, σ2
1In),

where y is a n × 1 vector of observations, xi’s are n × 1 vector of covariates for i = 0, 1, σ2
0 and σ2

1

are unknown positive numbers and β0, β1 and β11 are unknown real numbers. Here, Θ0 = (β0, σ
2
0),

Θ1 = (β1, σ
2
1) and Ω = (β11). With the choice of initial non-informative priors on H0 and H1 taken to

be the Jeffreys’ priors, namely,

πN
0 (β0, σ0) =

1
σ2

0

dσ0 dβ0

and

πN
1 (β11, β1, σ1) =

1
σ3

1

dβ11 dβ1 dσ1,

the conditional intrinsic prior, πI
1(β11|β1, σ1), integrates to 2

π 6= 1. Thus, not all initial choices of non-

informative priors on H0 and H1 give rise to conditional intrinsic priors that are proper. So, the problem

of finding initial non-informative priors for which intrinsic priors on component parameters are actually

proper is both relevant and important.
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3 Intrinsic Priors and Intrinsic Equations

This section gives a brief review of intrinsic priors and their derivation. The reader can consult Berger and

Pericchi (1996a,1996b) for more details. From asymptotic considerations, Berger and Pericchi (1996b)

show that the intrinsic Bayes methodology is equivalent to a Bayesian analysis using the intrinsic priors,

πI
1 and πI

0 , on H1 and H0, respectively, where πI
0 and πI

1 are solutions of the intrinsic equations

πI
1(θ1, ξ)πN

0 (P0(θ1, ξ))
πN

1 (θ1, ξ)πI
0(P0(θ1, ξ))

= B∗
1(θ1, ξ) (4)

and
πI

1(P1(θ0))πN
0 (θ0)

πN
1 (P1(θ0))πI

0(θ0)
= B∗

0(θ0), (5)

for initial non-informative priors, πN
0 and πN

1 . In equations (4) and (5), P0 and P1 are the Kullback-

Liebler projections onto H0 and H1, respectively and, B∗
1(θ1, ξ) and B∗

0(θ0) are constants closely related

to the choice of “averaging” for the intrinsic Bayes factor. Dmochowski (1995) characterizes the general

solutions of (4) and (5). In the nested case, it follows that (5) is contained in (4), that is, we have only

one intrinsic equation to determine πI
0 and πI

1 , giving us the freedom to choose one arbitrarily. Based on

the argument given for the LIBF in Section 2, we will choose πI
0 to be the initial non-informative prior

on the reduced model, πN
0 , as in Sanso (1997). The following section presents the general framework of

testing problems in the presence of group invariance structures.

4 Testing under Group Invariance Structures

For the hypotheses testing scenario of (1), that is,

H0 : f = f0(·|θ0) vs. H1 : f = f1(·|θ1, ξ), (6)

we have the following group invariance assumptions. We assume that a group G acts on the observation

space, X , and that each family f0 and f1 is G-invariant. For subsequent group theoretic terms in bold

type, refer to Section 7. The action of G on X induces groups Ḡ0 and Ḡ1 acting on Θ0 and (Θ1, Ω),

respectively. Furthermore, assume for any ḡ1 ∈ Ḡ1 and (θ1, ξ) ∈ (Θ1, Ω), ḡ1 ◦ (θ1, ξ) = (ḡ1 ◦ θ1, ξ),

i.e., ξ ∈ Ω is invariant under the action of Ḡ1. Ḡ0 and Ḡ1 are assumed to be transitive on their

respective domains. If, in addition, Ḡ0 and Ḡ1 have trivial isotropy subgroups, it follows that there

is an isomorphism that maps Θ0 to Θ1. The family of densities in H0 may therefore be parameterized

by θ1 ∈ Θ1 instead of θ0 ∈ Θ0, and the action of the group Ḡ0 on Θ0 may be replaced by the action of

Ḡ1 on Θ1. Subsequently under this reparameterization, we may assume that the family of densities in

(1) have the same parameter space Θ, with a common group Ḡ (arising from the action of G) acting on

them.
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For a set A ⊆ Ḡ and elements ḡ, h̄ ∈ Ḡ, the set A · ḡ denotes the right translate of A and the set ḡ ·A
denotes the left translate of A.

Definition 2 A measure µ on Ḡ is said to be relatively invariant with left multiplier αl and right

multiplier αr if µ(A · ḡ) = αr(ḡ) · µ(A) and µ(ḡ ·A) = αl(ḡ) · µ(A).

Note that αr = 1 and αl = ∆l ( the left-hand moduli of Ḡ) corresponds to the right-Haar measure

on Ḡ. We will denote the right-Haar measure by ν. Similarly, αr = ∆r ( the right-hand moduli of Ḡ

) and αl = 1 corresponds to the left-Haar measure on Ḡ. We denote the left-Haar measure on Ḡ by µL.

Define a function φ : Ḡ −→ Θ by φ(ḡ) = ḡ ◦e where e is the identity element of Θ. Since Ḡ is assumed

to be transitive, the function φ is onto. Subsequently, a prior µ on Ḡ induces a prior µφ ≡ µφ−1 on Θ.

We will say that µφ is relatively invariant if µ is relatively invariant. As a special case, νφ will denote the

prior induced by the right-Haar measure ν on Ḡ.

The goal is to obtain intrinsic priors for ξ and show that it is proper.

In presence of group invariance structures, it is reasonable to restrict the choice of priors on H0 and

H1 to a class for which posterior inferences will be invariant. Stone (1970) showed that priors on H0 and

H1 should then be relatively invariant. Relatively invariant priors are typically improper. Thus, for the

testing of (1), an initial non-informative prior, πN
0 , on H0 can be

πN
0 (θ0) ∝ a relatively invariant prior for θ0. (7)

A further argument based on the essential uniqueness of the left-Haar prior shows that, a non-informative

prior, πN
1 , on H1, should satisfy the product form

πN
1 (θ1, ξ) ∝ a relatively invariant prior for θ1 × arbitrary measure for ξ. (8)

Since θ0 and θ1 denote “similar” parameters for H0 and H1, respectively, we choose the same relatively

invariant prior for them. Thus, the initial “non-informative” priors on H0 and H1, πN
0 and πN

1 , will be

chosen according to (7) and (8), that is,

πN
0 (θ0) = µφ(θ0) (9)

and πN
1 (θ1, ξ) = µφ(θ1) · π(ξ), (10)

where µφ denotes a relatively invariant prior and π is arbitrary. A right-Haar version of the above non-

informative priors is obtained by replacing µφ with νφ in (9) and (10). The usual default priors used in

testing when subjective information is not available are the reference prior (Bernardo (1979), Berger and

Bernardo (1992)) and the Jeffreys’ prior (Jeffreys (1961)). It will be shown later that both the reference

and Jeffreys’ prior correspond to right-Haar priors on θ0 and θ1, and π’s that are typically improper.

Hence, for the ensuing discussion, π will typically denote an improper prior, defined up to a multiplicative

constant.
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Since Θ0 and Θ1 are isomorphic to each other as discussed earlier, there is a common parameter space,

Θ, and a common group, Ḡ (arising from the action of G on X ), acting on Θ for both H0 and H1.

For the initial non-informative priors chosen according to (9) and (10), the Bayes factor based on a

sample, xk, of size k is given by

Bµ,π
01 (xk) =

∫

Θ

f0(xk|θ) dµφ(θ)
∫

Ω

∫

Θ

f1(xk|θ, ξ) dµφ(θ)π(ξ) dξ

, (11)

for π possibly improper. Note that (11) is defined only up to a multiplicative constant due to the inherent

arbitrariness in the choice of improper π. Corresponding to the right-Haar prior νφ, we can obtain an

expression similar to (11), namely,

Bν,π
01 (xk) =

∫

Θ

f0(xk|θ) dνφ(θ)
∫

Ω

∫

Θ

f1(xk|θ, ξ) dνφ(θ) π(ξ) dξ

. (12)

It is clear that the integrals in the numerator and denominator of (11) and (12) must be finite for

the corresponding Bayes factors to be well-defined. Let m0 denote the smallest k for which this is so

(assuming this smallest k is defined with probability one). Berger and Pericchi (1996a,1996b) define a

minimal training sample to be a hypothetical sample, xm0
, of size m0, for which the Bayes factors in

(11) and (12) are well-defined. Thus, for a sample, xn, of size n, we denote the total number of distinct

minimal training samples obtainable from xn by L, and a generic minimal training sample by x(l) for

l = 1, 2, . . . , L.

The following theorem applies to the default Bayes factors derived in (11).

Theorem 1 For any k ≥ m0, the Bayes factor in (11), Bµ,π
01 (xk), has a distribution which does not

depend on θ0 under H0. Under H1, the distribution of Bµ,π
01 (xk) depends on (θ1, ξ) only through ξ.

Proof: See Section 7.

Recall that ξ is the invariant component under the group action in the full model, H1. The above

theorem implies that the expectation of Bµ,π
01 (x(k)) under f1(·|θ, ξ) in H1, is a function of ξ only. Thus,

for the arithmetic intrinsic prior (arising from arithmetic averaging in (4)), where the constant B∗
1(θ1, ξ)

is given by

B∗
1(θ1, ξ) = lim L→∞E(θ1,ξ)

[
1
L

L∑

l=1

B
µφ,π
01 (X(l))

]
,

we have

B∗
1(θ1, ξ) = lim L→∞

1
L

L∑

l=1

E(θ1,ξ)B
µφ,π
01 (X(l)) (13)
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= lim L→∞
1
L

L∑

l=1

EξB
µφ,π
01 (X(l)), (by Theorem 1)

which is just a function of ξ provided the limit exists. In situations where the {x(l)} are exchangeable,

the summation over all possible training samples and the limit as L → ∞ are unnecessary. Then, we

have

B∗
1(θ1, ξ) = E(θ1,ξ) B

µφ,π
01 (X(l))

= EξB
µφ,π
01 (X(l)) (by Theorem 1)

= B∗
1(ξ), say. (14)

We now state a theorem for Bν,π
01 (xk).

Theorem 2 For a prior π (proper or improper) on Ω, and for Bν,π
01 (xk), we have that

∫

Ω

Eξ(B
ν,π
01 (Xk)) π(ξ) dξ = 1. (15)

Proof: See Section 7.

The integrand in (15) is uniquely determined even though the choice of the improper prior π was arbitrary

up to a multiplicative constant. Equation (15) also shows that π∗(ξ) = Eξ {Bν,π
01 (Xk)}π(ξ) is a proper

prior on Ω regardless of whether π was initially proper or improper. We will use Theorem 2 applied to

k = m0 to show that the intrinsic priors for ξ will always be proper.

5 Propriety of the component intrinsic prior on ξ

We factor πI
1(θ1, ξ) as

πI
1(θ1, ξ) = πI

1(θ1) · πI
1(ξ), (16)

that is, the intrinsic prior on H1 also satisfies the product form (8). Choose the initial non-informative

priors, πN
0 and πN

1 , to be the right-Haar versions of (9) and (10) and choose an arbitrary (proper or

improper) π. We also choose

πI
0(θ0) = πN

0 (θ0) (17)

as in Sanso (1997). The intrinsic prior on ξ, πI
1(ξ), and on θ1, πI

1(θ1), is then given by

πI
1(ξ) = B∗

1(ξ) · π(ξ), (18)

and

πI
1(θ1) = πN

1 (θ1). (19)

Equations (18) and (19) above are a consequence of solving (4) for πI
1(θ1, ξ) taken as in (16). We state a

theorem for the intrinsic prior on ξ.
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Theorem 3 If the initial non-informative priors on H0 and H1 are taken as

πN
0 (θ0) = νφ(θ0) (20)

and πN
1 (θ1, ξ) = νφ(θ1) · π(ξ), (21)

where νφ is the right-Haar prior and π is an arbitrary prior for ξ, the intrinsic prior for ξ, πI
1(ξ), as

given in (18), is proper.

Proof: See Section 7.

Any default choice of an improper prior π(ξ) on Ω will result in a proper πI
1(ξ), as long as right-Haar

priors are used as initial priors on “similar” nuisance parameters for both models. Therefore, a testing

problem may acquire more than one proper intrinsic prior with the use of different initial default priors

on Ω. In other words, we have identified a class of initial non-informative priors and a component of

the full model, namely ξ, for which the intrinsic prior for that component is proper. The parameter ξ is

the invariant parameter under the group action in the full model, H1. In actual testing situations, we

may have to reparameterize H1 to identify ξ. We have also shown that intrinsic priors on component

parameters in H1 can be proper even when the intrinsic prior on H0 is taken to be improper.

6 Examples

We present some examples in this section as applications of the preceding theory. All cases considered

are nested testing situations.

6.1 Normal mean testing problem

Suppose X1, X2, . . . , Xn are iid N(µ, σ2
1) under H1 with unknown σ2

1 > 0 and µ ∈ R. Under H0, the

X ′
is are iid N(0, σ2

0), with unknown σ2
0 > 0. We proceed to identify the class of non-informative priors

generally given by (20) and (21), and the parameter ξ for this testing example.

We denote the observation space by X = {(x1, x2, . . . , xn) : xi ∈ R, i = 1, 2, . . . , n.}. The group

acting on X which leaves both H0 and H1 invariant is the multiplicative group (x1, x2, . . . , xn) −→
(cx1, cx2, . . . , cxn) for any c > 0. Using the notation in Section 4, we have that Θ0 = {σ0 : σ0 > 0}
and Θ1 = {σ1 : σ1 > 0}. Furthermore, Ḡ0 = Ḡ1 = { c : c > 0 } = Ḡ, say, where the action of Ḡ on

the space Θi is σi −→ cσi for i = 0, 1. If we reparameterize (µ, σ1) in H1 to (σ1, µ/σ1), it is easily seen

that ξ ≡ µ/σ1 is invariant under the group action. The right-Haar priors on Θi are 1
σi

dσi for i = 0, 1,

respectively.
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Lemma 1 If πN
0 and πN

1 are chosen such that

πN
0 (σ0) = (1/σ0) dσ0 (22)

and

πN
1 (σ1, ξ) = (1/σ1) dσ1 π(ξ) dξ, (23)

where π is arbitrary, the resulting intrinsic prior for ξ ≡ µ/σ1 is proper.

Proof: This is a direct consequence of Theorem 3.

Berger and Pericchi (1996b) take default priors on H0 and H1 to be πN
0 (σ0) = 1/σ0 and πN

1 (µ, σ1) =

1/σ2
1 , respectively. The non-informative prior πN

0 is the usual reference prior on H0 and πN
1 is the

Jeffreys prior on H1. The reference prior on H0 corresponds to the right-Haar prior on H0, while the

Jeffreys prior used for H1 corresponds to the choice of π(ξ) ≡ 1 in (23). It follows from Lemma 1 that

the intrinsic prior on ξ, πI
1(ξ), is proper where

πI
1(ξ) = B∗

1(ξ)π(ξ)

= Eξ

[
(Xi −Xj)

2

2
√

π(X2
i + X2

j )

]
· 1

in this example. Berger and Pericchi (1996b) showed the propriety of πI
1(ξ) by direct calculation.

6.2 Testing exponential versus Weibull distributions

Two competing models frequently considered for failure data are the exponential and Weibull distribu-

tions. These nested models are, respectively,

H0 : f0(x|θ0) = θ−1
0 exp{−x/θ0} (24)

vs.

H1 : f1(x|γ, β) = βx(β−1)γ−βexp{−(x/γ)β}. (25)

The spaces Θ0 and Θ1 are, respectively, the spaces of θ0 for H0 and γ for H1.

We will again identify a class of initial non-informative priors and the component parameter ξ for

which the conditional intrinsic prior is proper. Denote the observation space by X = {(x1, x2, . . . , xn) :

xi > 0∀ i = 1, 2, . . . , n}. As before, the group acting on X is the multiplicative group (x1, x2, . . . , xn) −→
(cx1, cx2, . . . , cxn). The group action on Θ0 and Θ1 are the same namely, θ0 −→ cθ0 and γ −→ cγ. Note

that β is invariant under the action of the group, so, using our notation, ξ ≡ β. The right-Haar priors

on Θ0 and Θ1 are 1
θ0

dθ0 and 1
γ dγ, respectively. The following lemma is again a direct consequence of

Theorem 3.
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Lemma 2 For any πN
0 and πN

1 satisfying

πN
0 (θ0) = (1/θ0) dθ0 (26)

and

πN
1 (γ, ξ) = (1/γ)dγ · π(β) dβ, (27)

where π(β) is arbitrary, the resulting intrinsic prior for ξ ≡ β is proper.

For H0, the standard non-informative prior is πN
0 (θ0) = 1/θ0. Two default priors for H1 are the Jeffreys

prior given by πJ
1 (γ, β) = (1/γ) dγdβ, and the reference prior, πR

1 (γ, β) = (1/γβ) dγdβ. For the reference

prior, the requirements of Lemma 2 are satisfied by choosing π(β) ≡ 1/β. The intrinsic prior for β

corresponding to the reference prior is given by

πI(β) = Eβ

[
2XiXj |log(Xi/Xj)|

(Xi + Xj)
2

]
· 1
β

. (28)

Using Lemma 2, ∫

β>0

Eβ

[
2XiXj |log(Xi/Xj)|

(Xi + Xj)
2

]
· 1
β
· dβ = 1, (29)

thus, proving the propriety of the intrinsic prior in (28).

For the Jeffreys prior, the requirements of Lemma 2 are satisfied by choosing π(β) ≡ 1. These intrinsic

priors were already shown to be proper by direct calculations in Berger and Pericchi (1996b), but the

general theory here eliminates the need for such direct calculations on a case by case basis.

6.3 IBFs in Linear Models

The linear model set-up that we consider is the following:

H0 : y = X0β0 + σ0 · ε vs. H1 : y = X0β1 + X1β11 + σ1 · ε (30)

where y is a n× 1 vector of observations, X0 and X1 are design matrices of full column rank and of order

n × k0 and n × k1, respectively, and ε ∼ Nn(0, In). We consider two separate cases: (i) σ0 = σ1 = σ

(known) and (ii) σ0 and σ1 both unknown. For both cases, we identify the appropriate class of initial

non-informative priors and the component parameter ξ for which the intrinsic prior is proper.

Case 1: σ0 = σ1 = σ (known)

The group G that leaves H0 and H1 invariant is the additive group whose action is given by y −→ y+X0b

for b ∈ Rk0 . Here, Θ0 = {β0 : β0 ∈ Rk0} and Θ1 = {β1 : β1 ∈ Rk0}, where the induced action of G on

the parameter spaces is given by β0 −→ β0 + b and β1 −→ β1 + b. The right-Haar priors on Θ0 and Θ1

are both proportional to 1. The parameter β11 is invariant under the group action, so ξ ≡ β11. We have

the following lemma
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Lemma 3 If πN
0 and πN

1 satisfy

πN
0 (β0) = 1 · dβ0 (31)

and

πN
1 (β1, β11) = 1 · dβ1 π(β11)dβ11 (32)

where π(β11) is arbitrary, the resulting intrinsic prior for ξ ≡ β11 is proper.

The proof of Lemma 3 again follows from Theorem 3.

An important distinction arises here compared to the previous hypothesis testing situations. The

minimal training samples are not exchangeable and so one cannot simplify the expression in (4) to obtain

a single expectation. Nevertheless, Theorem 3 still applies since group invariance properties are preserved

for each minimal training sample separately. This is essentially how Theorem 3 is proved in the Appendix.

The full generality of Theorem 3 for non-exchangeable training samples is utilized to obtain Lemma 3.

Berger and Pericchi (1996a) choose initial non-informative priors on H0 and H1 to be the Jefrreys’

priors and show by direct calculations that the intrinsic prior on β11 is proper. In our case, the default

Jeffreys prior is obtained as a special case by taking π(β1) ≡ 1 in Lemma 3.

Case 2: σ0 and σ1 are unknown

The group of transformations on y, in this situation, which leaves both H0 and H1 invariant is y −→
cy + X0b, where c > 0 and b ∈ Rk0 . The action of G on the space of observations induces group actions

on the parameter spaces given by (σ0, β0) −→ (cσ0, cβ0 + b) and (σ1, β1, β11) −→ (cσ1, cβ1 + b, cβ11). The

right-Haar priors on H0 and H1 are

ν(σi, βi) =
1
σi

dσi dβi (33)

for i = 0, 1, respectively. An invariant under the action of the group for H1 is β11/σ1. So, in the notation

of Section 4, ξ ≡ β11/σ1.

Lemma 4 For πN
0 and πN

1 satisfying

πN
0 (σ0, β0) =

1
σ0

dσ0 dβ0 and (34)

πN
1 (σ1, β1, ξ) =

1
σ1

dσ1dβ1 π(ξ)dξ

=
1
σ1

dσ1dβ1 π(β11/σ1) · 1
σk1

1

dβ11, (35)

where π is arbitrary, the resulting intrinsic prior for ξ ≡ β11/σ1 is proper.

The proof of Lemma 4 follows from Theorem 3 once again.

The choice of π ≡ 1 corresponds to the modified Jeffreys prior, suggested by Berger and Pericchi

(1996a) as a choice for a default prior for the testing in (30) for unknown variance. Berger and Pericchi
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(1996a) also show that the intrinsic prior arising from the reference prior is proper. The propriety of the

intrinsic prior when the reference prior is used could not be shown by our method.

Again, the minimal training samples, x(l), are not exchangeable but, by the same reasoning as in

Case 1, Theorem 3 applies.

7 Group-Theoretic Definitions and Proofs

The following definitions are taken from group invariance theory; see, e.g., Eaton (1989) and Wijsman

(1990).

Definition 3 Let G be a group of measurable one-to-one transformations of X onto itself; g : x −→ g ◦x

such that the family {Pθ : θ ∈ Θ} is closed with respect to this transformation, i.e., for X ∼ Pθ, g◦X ∼ Pθ′

where θ
′ ∈ Θ is given by θ

′ ≡ ḡ ◦ θ. In this case we say that the family {Pθ} is G-invariant.

The action of the group G on X induces another group Ḡ on the parameter space Θ. Actually it can

be shown that G and Ḡ are isomorphic to each other. Assume the family P = {Pθ : θ ∈ Θ} admits a

family of densities {p(·|θ) : θ ∈ Θ} with respect to a σ-finite dominating measure λ. Let G, Ḡ act on

X ,Θ respectively and λ be relatively invariant under G with a multiplier χ(·). If the densities satisfy

p(x|θ) = p(gx|ḡθ)χ(g), (36)

then the family P = {Pθ : θ ∈ Θ} is G-invariant. Furthermore, gPθ = Pḡθ.

Definition 4 For a group of measurable transformations G acting on a space X , G is said to be transitive

on X if for any x, x
′ ∈ X , there is a g in G such that x

′
= g ◦ x.

G in the above definition may be applied to Ḡ0 and Ḡ1 acting on the spaces Θ0 and Θ1 for the hypotheses

testing problem in (1).

Definition 5 The isotropy subgroup of G at x is the subgroup Gx,

Gx = {g ∈ G : g ◦ x = x} (37)

The isotropy subgroup of G is said to be trivial if Gx = e ∀x ∈ X . Define a function φ : Ḡ −→ X by

φ(ḡ) = ḡ ◦ e where e is the identity element of X . Then, transitivity of Ḡ on X implies that φ is onto.

If further, G has a trivial isotropy subgroup, the function φ is also one-one, and in that case it is an

automorphism of G and X .

Definition 6 Let G be a group of measurable transformations of X onto itself. A maximal invariant,

τ(x), is a function on X satisfying
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• τ(x) is invariant under G, i.e. τ(g ◦ x) = τ(x) for g ∈ G and x ∈ X ;

• τ(x) takes different values on different orbits of G, i.e. τ(x1) = τ(x2) implies x1 = gx2 for some

g ∈ G.

Definition 7 The left-hand moduli of G, ∆l, is such that for any right-Haar measure ν, ν(g · A) =

∆l(g)ν(A) ∀ g ∈ G. Similarly, the right-hand moduli of G, ∆r, is such that for any left-Haar measure

µL, µL(A · g) = ∆r(g)µL(A)∀ g ∈ G.

PROOF OF THEOREM 1

We assume all models under consideration have the structure given in (36). Consider samples, xk and

y
k
, of size k. Let τ(xk) be a maximal invariant. Then τ(xk) = τ(y

k
) ⇒ xk = gy

k
for some g.

Bµ,π
01 (xk) =

∫

Θ

f0(xk|θ)dµφ(θ)
∫

Ω

∫

Θ

f1(xk|θ, ξ)dµφ(θ)π(ξ)dξ

=

∫

Θ

f0(gy
k
|θ)dµφ(θ)

∫

Ω

∫

Θ

f1(gy
k
|θ, ξ)dµφ(θ)π(ξ)dξ

=

∫

Ḡ

f0(gy
k
|h̄ ◦ e) dµ(h̄)

∫

Ω

[∫

Ḡ

f1(gy
k
|h̄ ◦ e, ξ) dµ(h̄)

]
π(ξ)dξ

=
αl(ḡ)χ(ḡ)−1

∫

Ḡ

f0(yk
|h̄ ◦ e)dµ(h̄)

αl(ḡ)χ(ḡ)−1
∫

Ω

[∫

Ḡ

f1(yk
|h̄ ◦ e, ξ)dµ(h̄)

]
π(ξ)dξ

=

∫

Θ

f0(yk
|θ)dµφ(θ)

∫

Ω

∫

Θ

f1(yk
|θ, ξ)dµφ(θ)π(ξ)dξ

= Bµ,π
01 (y

k
)

So, Bµ,π
01 (·) is a function of the maximal invariant τ(·). Transitivity of Ḡ implies that the distribution of

τ is independent of θ0 and θ1 under H0 and H1 respectively, and hence the proof. QED.

PROOF OF THEOREM 2

We first state a few basic results:

Theorem 4 [Wijsman] For i = 0, 1, let Pi be a distribution on X with density pi, with respect to a χ-

relatively invariant measure λ. Let τ(x) be a maximal invariant with distributions P τ
0 and P τ

1 , respectively.
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Then P τ
0 and P τ

1 are absolutely continuous with respect to a dominating measure µτ and, for any x ∈ X ,

dP τ
1

dP τ
0

(τ(x)) =

∫
p1(gx)χ(g)dµL(g)

∫
p0(gx)χ(g)dµL(g)

, (38)

where µL is a left-invariant measure on G.

Proof: See Wijsman (1990).

Theorem 5 For i = 0, 1, let Pi denote the family of distributions with densities {pi(·|θ) : θ ∈ Θ}
with respect to a χ-relatively invariant measure λ. For i = 0, 1, assume that the class of densities

{pi(·|θ) : θ ∈ Θ} are G-invariant, and Ḡ is transitive on Θ. Then,

dP τ
1

dP τ
0

(τ(x)) =

∫
p1(x|θ)dνφ(θ)

∫
p0(x|θ)dνφ(θ)

. (39)

Proof: ∫
p1(x|θ)dνφ(θ)

∫
p0(x|θ)dνφ(θ)

=

∫
p1(x|ḡ ◦ e)dν(ḡ)

∫
p0(x|ḡ ◦ e)dν(ḡ)

=

∫
p1(g−1x|e)χ(g−1)dν(ḡ)

∫
p0(g−1x|e)χ(g−1)dν(ḡ)

=

∫
p1(gx|e)χ(g)dµL(g)

∫
p0(gx|e)χ(g)dµL(g)

=
dP τ

1

dP τ
0

(τ(x)) ( by Theorem 4 ),

where dν(ḡ−1) = dµL(g). QED.

Apply (39) to an f0(x(l)|θ) in M0 and f1(x(l)|θ, ξ) in M1 to obtain

dP τ
ξ

dP τ
0

(τ(x(l))) =

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)
∫

Θ

f0(x(l)|θ) dνφ(θ)
. (40)

Then,
∫

Ω

Eξ {Bν,π
01 (X(l))}π(ξ) dξ

=
∫

Ω




∫

τ(X (l))

∫

Θ

f0(x(l)|θ) dνφ(θ)
∫

Ω

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)π(ξ)dξ

· dP τ
ξ (τ(x(l)))


 π(ξ) dξ
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=
∫

Ω




∫

τ(X (l))

∫

Θ

f0(x(l)|θ) dνφ(θ)
∫

Ω

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)π(ξ)dξ

· dP τ
ξ

dP τ
0

· dP τ
0 (τ(x(l)))


 π(ξ) dξ

=
∫

Ω

∫

τ(X (l))

∫

Θ

f0(x(l)|θ) dνφ(θ)
∫

Ω

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)π(ξ)dξ

·

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)
∫

Θ

f0(x(l)|θ) dνφ(θ)
·

dP τ
0 (τ(x(l)))π(ξ) dξ from (40)

=
∫

τ(X (l))

∫

Ω

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)π(ξ) dξ
∫

Ω

∫

Θ

f1(x(l)|θ, ξ) dνφ(θ)π(ξ) dξ

· dP τ
0 (τ(x(l)))

=
∫

τ(X (l))

dP τ
0 (τ(x(l)))

= 1. QED.

PROOF OF THEOREM 3

∫

Ω

B∗
1(ξ) π(ξ) dξ

=
∫

Ω

limL→∞
1
L

L∑

l=1

Eξ{Bν,π
01 (X(l))}π(ξ) dξ

= limL→∞
1
L

L∑

l=1

∫

Ω

Eξ{Bν,π
01 (X(l))}π(ξ) dξ

= limL→∞
1
L

L∑

l=1

1 (by Theorem 2)

= 1. QED.

8 Acknowledgments

The author would like to thank Professor James O. Berger for his guidance. He would also like to thank

the two anonymous referees for their helpful suggestions in making the presentation of this paper clearer.

This work is part of the author’s Ph.D. thesis at Purdue University, and was supported by the National

Science Foundation, Grants DMS-9303556 and DMS-9802261, and by a Purdue Research Foundation

grant.

16



References

Berger, J. and Bernardo, J. M. (1992) On the development of reference priors (disc: P49-60). In Bayesian

Statistics 4. Proceedings of the Fourth Valencia International Meeting, pp. 35– 49.

Berger, J. and Pericchi, L. (1996a) The intrinsic Bayes factor for linear models. In Bayesian Statistics

5, pp. 25–44. Oxford University Press.

Berger, J. and Pericchi, L. (1996b) The intrinsic Bayes factor for model selection and prediction. Journal

of the American Statistical Association, 91, 109–122.

Berger, J., Pericchi, L. and Varshavsky, J. (1998) Bayes factors and marginal distributions in invariant

testing situations. Sankya Series A, 60, 307–321.

Berger, James O. and Pericchi, L. R. (1997) On The Justification Of Default and Intrinsic Bayes Factors.

In Modelling and prediction (Hsinchu, 1994). Springer, New York.

Bernardo, J. M. (1979) Reference posterior distributions for Bayesian inference. Journal of the Royal

Statistical Society, Series B, 41, 113–128.

Bertolino, F. and Racugno, E. (1996) Is Intrinsic Bayes Factor Intrinsic ? Metron, 1-2, 5–15.

Dawid, A. P., Stone, M. and Zidek, J. V. (1973) Marginalization paradoxes in Bayesian and structural

inference (with discussion). Journal of the Royal Statistical Society, Series B, 35, 189–233.

Dmochowski, J. (1995) Properties of intrinsic Bayes factors. Ph.D. Thesis. Purdue University, W.

Lafayette.

Eaton, M. L. (1983) Multivariate Statistics: A Vector Space Approach. Wiley, New York.

Eaton, M. L. (1989) Group Invariance Applications in Statistics. Institute of Mathematical Statistics,

Hayward, California.

Jeffreys, H. (1961) Theory of Probability ( 3rd ed. ). Claderon Press, Oxford.

Moreno, E., Bertolino, F. and Racugno, W. (1997) Default approaches to compare means of normal

populations. In Special issue of Rasegna di Metodici Statistici ed Applicazioni (ed. W. Racugno), pp.

133–148.

Moreno, E., Bertolino, F. and Racugno, W. (1998) An intrinsic limiting procedure for model selection

and hypotheses testing. Journal of the American Statistical Association, 93, 1451–1460.

17



Sanso, B. (1997) Discussion of ”Default approaches to compare means of normal populations” by Moreno

E., Bertolino F. and Racugno, W. In Special issue of Rasegna di Metodici Statistici ed Applicazioni

(ed. W. Racugno), pp. 149–151.

Sanso, B., Pericchi, L. and Moreno, E. (1996) On the robustness of the intrinsic Bayes factor for nested

models (with discussion). IMS Lectures Notes-Monograph Series, 29, 157–176.

Smith, A. F. M. and Spiegelhalter, D. J. (1980) Bayes factors and choice criteria for linear models.

Journal of the Royal Statistical Society, Series B, Methodological, 42, 213–220.

Spiegelhalter, D. J. and Smith, A. F. M. (1982) Bayes factors for linear and loglinear models with vague

prior information. Journal of the Royal Statistical Society, Series B, Methodological, 44, 377–387.

Stone, M. (1970) Necessary and sufficient condition for convergence in probability to invariant posterior

distributions. The Annals of Mathematical Statistics, 41, 1349–1353.

Wijsman, R. A. (1990) Invariant Measures on Groups and their Uses in Statistics. Institute of Mathe-

matical Statistics, Hayward, California.

18


