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ABSTRACT

Very little work has been done in determining the number of users needed to establish confidence intervals for an error
rate of a biometric authentication system. The independence assumption between multiple acquisitions of an individual is
too restrictive and is generally not valid. We relax this assumption and present a semi-parametric approach for estimating
the within-user correlation using multivariate Gaussian copula models. We describe how to obtain confidence bands for
the ROC and present the minimum requirements on the number ofusers needed to achieve a desired width for the ROC
confidence band. Rules of thumb such as the Rule of 3 and the Rule of 30 grossly underestimate the number of users
required. The underestimation becomes more severe when thecorrelation between any two acquisitions increases.
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1. INTRODUCTION

Evaluating the performance of a biometric authentication system involves utilizing multiple individuals (subjects)and, for
efficiency, performing multiple verification tests for eachindividual. It is well known that multiple queries corresponding
to each individual exhibit a certain degree of dependence (correlation) (see, for example,1–7). Earlier efforts to incorporate
this correlation include the subset bootstrap approach by Bolle et. al5, 8 to construct confidence regions for the ROC curve
in terms of confidence intervals for the FRR and FAR. However,90% confidence intervals for the FARs and FRRs will
not automatically guarantee a 90% confidence region for theentireROC curve. In fact, one can show that100(1 − α)%
level confidence intervals based onn a-priori selected thresholds will only guarantee a confidence level for the ROC curve
of at least100(1 − nα)%. Thus, the procedure in5 cannot give a specific confidence level for the ROC curve whenn
becomes large (and this is usually the case since we have to report confidence rectangles at various locations of the ROC
curve). Schuckers2 introduced the beta-binomial family to model the correlation between multiple queries as well as to
account for varying FRR and FAR values for different individuals. He showed that the beta-binomial model gives rise to
extra variability in the estimates of FRR and FAR due to the non-zero correlation between multiple queries of a subject.
However, a limitation of this approach is that it cannot be used to obtain a confidence band for the ROC curve.

We present a semi-parametric approach for investigating the effects of correlation on the reported authentication per-
formance of biometric systems by first modelling the distribution of the observed genuine and impostor similarity scores.
We show how to construct confidence bands for the ROC with a specific confidence level, and are able to demonstrate the
effect of varying degrees of correlations on the width of theROC confidence bands. We also present the minimum number
of individuals required to achieve a desired width for the ROC confidence bands. Rules of thumb such as the Rule of 39

and the Rule of 3010 grossly underestimate the number of users required to obtain a specific width for the ROC confidence
bands. The underestimation becomes more severe as the correlation between any two acquisitions of a subject increases.

2. PRELIMINARIES

Let the number of individuals available for testing a given biometric authentication system beN . Each of theN individuals
contributesK biometric acquisitions (queries) for testing, resulting in a total ofNK acquisitions. In the genuine case when
useri uses the system claiming himself/herself to be truly useri, the query-template pair is taken from theK acquisitions
of useri, Q1, Q2, . . . , QK , say. Avoiding self-match, each queryQk is matched with the remainingQh , h 6= k resulting
in K − 1 similarity scoresS(Qk, Qh) , h 6= k. The average of these similarity scores,S̄(Qk) = 1

K−1

∑

h6=k S(Qk, Qh)
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is taken as thequery-specificsimilarity score for the queryQk, and will subsequently be denoted bySk(i, i). In this way,
K scores, one per template, are generated for useri. When the useri is varied from1 to N , a total ofN genuine score
vectors, each withK components, are generated. When useri uses the system claiming himself/herself to be userj, j 6= i
(this is the impostor case), the query-template pair is taken from theK acquisitions of useri and userj, respectively, say,
Q1, Q2, . . . , QK andT1, T2, . . . , TK . Each queryQk is matched with the templatesTh , h = 1, 2, . . . ,K resulting inK
similarity scoresS(Qk, Th) , h = 1, 2, . . . ,K. The average of these similarity scores,S̄(Qk) = 1

K

∑K

h=1 S(Qk, Th), is
taken as the query-specific similarity score for the queryQk, and will subsequently be denoted bySk(i, j). In this way,K
scores are generated for useri. Wheni andj are varied from1 to N with the restriction thati 6= j, a total ofN(N − 1)
impostor score vectors, each withK components, are generated.

When useri claims the identity of userj, the system can either accept the claimed identity as true, or reject the claimed
identity as false. Thus, for a fixed thresholdλ, useri is accepted (respectively, rejected) as userj at thek-th attempt if
Sk(i, j) > (≤)λ. DefiningS0 = {(i, j) : i = j} andS1 = {(i, j) : i 6= j}, the genuine (respectively, impostor) scores
are given by observations{Sk(i, j), k = 1, 2, . . . ,K} with (i, j) in S0 (S1). We denote the number of elements inS0 and
S1 by N0 = N andN1 = N(N − 1), respectively.

Let S(i, j) = (S1(i, j), S2(i, j), . . . , SK(i, j))T denote the vector of similarity scores for a combination(i, j). Each
vectorS(i, j) is an element ofRK . We further assume that the vectorsS(i, j) for (i, j) ∈ S0 (respectively,S1) are
independent with a commonK-variate distribution function given byF0 (F1). Note that (i) bothF0 andF1 are multivariate
joint distribution functions onRK , and (ii) forh = 0, 1, Fh is the common distribution function for every(i, j) ∈ Sh. The
K marginal distributions ofF0 (respectively,F1) will be denoted byF0,k (F1,k), for k = 1, 2, . . . ,K. In the next sections,
we present the statistical model forF0 and its estimation based on the observed genuine scores. Themodel and estimation
procedure forF1 based on impostor scores follow in a similar fashion.

3. COPULA MODELS FOR F0 (AND F1)

Let H1,H2, . . . ,HK beK continuous distribution functions on the real line. Suppose thatH is aK-dimensional distrib-
ution function with thek-th marginal given byHk for k = 1, 2, . . . ,K. According to Sklar’s Theorem,11 there exists a
unique functionC(u1, u2, . . . , uK) from [0, 1]K to [0, 1] satisfying

H(s1, s2, . . . , sK) = C(H1(s1),H2(s2), . . . ,HK(sK)), (1)

wheres1, s2, . . . , sK are K real numbers. The functionC is known as aK-copula function that “couples” the one-
dimensional distributions functionsHk , k = 1, 2, . . . ,K to obtainH. Equation (1) can also be used to constructK-
dimensional distribution functionsH whose marginals are thepre-specifieddistributionsHk , k = 1, 2, . . . ,K: choose a
copula functionC and define the functionH as in (1). It follows thatH is a K-dimensional distribution function with
marginalsHk , k = 1, 2, . . . ,K.

The parametric family of copulas we consider in this paper istheK-dimensional multivariate Gaussian copulas12 given
by

CR(u1, u2, . . . , uK) = ΦK
R (Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(uK)) (2)

where eachuk ∈ [0, 1] for k = 1, 2, . . . ,K, Φ(·) is the distribution function of the standard normal,Φ−1(·) is its inverse,
andΦK

R is theK-dimensional distribution function of a random vectorZ = (Z1, Z2, . . . , ZK)T with component means
and variances given by 0 and 1, respectively, and with correlation matrixR. We define the(m,n)-th entry ofR asρmn,
wherem,n = 1, 2, . . . ,K. Note thatR is a positive definite matrix with 1 in the diagonal entries. The distribution function
F0 will be assumed to be of the form (1) withHk = F0,k for k = 1, 2, . . . ,K, andC = CR0

, for some correlation matrix
R0; thus, we have

F0(s1, s2, . . . , sK) = CR0
(F0,1(s1), F0,2(s2), . . . , F0,K(sK)). (3)

Similarly, the distribution functionF1 will be assumed to be of the form

F1(s1, s2, . . . , sK) = CR1
(F1,1(s1), F1,2(s2), . . . , F1,K(sK)), (4)

with another correlation matrixR1.



3.1. Estimation Of F0,k and R0

The marginal distribution functions,F0,k, and the correlation matrixR0 are unknown and have to be estimated from the
observed data of genuine similarity scores,{S(i, j) : (i, j) ∈ S0}. For k = 1, 2, . . . ,K, the empirical distribution
function for thek-th marginal given by

E0,k(s) =
1

N0

∑

(i,j)∈S0

I{Sk(i, j) ≤ s }, (5)

whereI(A) is the indicator function of the setA. Note thatE0,k(s) = 0 for all s < smin andE0,k(s) = 1 for all s ≥ smax,
wheresmin andsmax, respectively, are the minimum and maximum of the observations{Sk(i, j) : (i, j) ∈ S0}. A
partition of [smin, smax] is formed by choosingL − 1 equidistant points in[smin, smax]. For two consecutive partition
points defined bypl = smin + l · (smax − smin)/L andp(l+1) = smin + (l + 1) · (smax − smin)/L (l is an integer with

0 ≤ l ≤ (L − 1)), the estimate ofF0,k, F̂0,k is obtained by interpolation, namely,

F̂0,k(s) = 1 − (1 − E0,k(pl))
q(1 − E0,k(pl+1))

1−q (6)

for pl ≤ s ≤ pl+1 andq = (pl+1 − p)/(pl+1 − pl). To estimate the correlation matrixR0, we transform the genuine
similarity scores toZ(i, j) = (Z1(i, j), Z2(i, j), . . . , ZK(i, j))T where

Zk(i, j) = Φ−1(E0,k(Sk(i, j)), (7)

for k = 1, 2, . . . ,K, whereE0,k is as given in (5). The mean vector̄Z is given byZ̄ = 1
N0

∑

(i,j)∈S0
Z(i, j) and the

covariance matrix is given byJ0 = 1
N0

∑

(i,j)∈S0
(Z − Z̄) · (Z − Z̄)T . The estimate of the(m,n)-th entry ofR0, ρ̂0,mn,

is given by

ρ̂0,mn =
σ0,mn√

σ0,mnσ0,mn

, (8)

whereσ0,mn is the(m,n)-th entry ofJ0.

4. CONFIDENCE BANDS FOR THE ROC

DefiningAh(λ) = 1
K

∑K

k=1 Fh,k(λ) andGh(λ) = 1 − Ah(λ) for h = 0, 1, the ROC curve is a plot of(FAR,GAR) ≡
(G1(λ), G0(λ)) asλ varies. An alternative representation of the ROC curve is(p,W (p)), whereW (p) = G0(G

−1
1 (p)).

For two fixed numbersC0 andC1 such that0 ≤ C0 < C1 ≤ 1, let us consider allp = FAR values that fall in[C0, C1].
A confidence band for the true (claimed) ROC curve of a biometric system at confidence level100(1 − α)% gives a lower
bound,LB(p) and an upper boundUB(p) so that for everyp in [C0, C1]

LB(p) ≤ ROC(p) ≤ UB(p) (9)

with probability 100(1 − α)%. In equation (9),W (p) represents the value of GAR when the FAR is equal top. The
numbersC0 andC1 form the lower and upper bounds of the range of FAR, and will bechosen to cover typical reported
values of FAR in biometric applications.

Forh = 0, 1, the plug-in estimate ofAh, Âh, is given byÂh(s) = 1
K

∑K

k=1 F̂h,k(s) andGh is estimated bŷGh(s) =

1− Âh(s). This gives an estimate ofW (p), Ŵ (p) = Ĝ0(Ĝ
−1
1 (p)). To construct the100(1−α)% level confidence interval

for the ROC curve in the region of interest[C0, C1], we form the quantity

z ≡ maxC0<p<C1

√

N0 |sin−1
√

Ŵ (p) − sin−1
√

W (p)|. (10)

The functionf(x) = sin−1√x serves as a variance stabilizing transformation for quantities taking values in(0, 1), such as
W (p) andŴ (p).13 Assume for the moment that the distribution ofz is given. Ifz1−α denotes the100(1−α)% percentile
of the distribution ofz, the100(1 − α)% confidence band for the ROC curve is given by

LB(p) ≤ W (p) ≤ UB(p) (11)



for C0 < p < C1 with the lower and upper bounds defined as

LB(p) = (sin(sin−1
√

Ŵ (p) − z1−α/
√

N0))
2 (12)

and

UB(p) = (sin(sin−1
√

Ŵ (p) + z1−α/
√

N0))
2, (13)

respectively.

Unfortunately,z1−α is difficult to obtain analytically. We find an asymptotic approximation toz1−α for largeN based
on the multivariate Central Limit Theorem.13

5. EXPERIMENTAL RESULTS

5.1. Construction of the ROC

We used a fingerprint database consisting of fingerprint impressions collected from 50 fingers in our laboratory.14 The
fingerprint impressions were obtained using an Identix BioTouch USB 200 optical sensor (255x256 images, 380 dpi res-
olution). 16 impressions of each finger were obtained over 4 days, with 4 impressions taken each day. Thus, we have a
total of N = 50 different fingers with16 impressions per finger. To avoid the effect of different acquisition days on the
correlation, we only considered the first 4 fingerprint impressions taken on the first day. Thus,K = 4 in our case. A
fingerprint similarity score was generated using an asymmetric matcher, described in,15 based on comparing the minutiae
point patterns of a pair of fingerprint impressions. The similarity scores are bounded between0 and1000, and so the order
preserving transformationT (Sk(i, j)) = log{Sk(i, j)/(1000 − Sk(i, j))} was used to convert the similarity scores onto
the entire real line.

Estimates of the genuine and impostor4 × 4 correlation matrices,̂R0 andR̂1, are given by








1.0 0.5 0.5 0.4
0.5 1.0 0.7 0.6
0.5 0.7 1.0 0.8
0.4 0.6 0.8 1.0









and









1.0 0.2 0.2 0.3
0.2 1.0 0.2 0.2
0.2 0.2 1.0 0.3
0.3 0.2 0.3 1.0









, (14)

respectively. The off-diagonal entries ofR̂0 andR̂1 indicate the degree of correlation between the corresponding row and
column dimensions. Comparing the off-diagonal entries ofR̂0 and R̂1, we see that the genuine correlations are much
larger than the impostor correlations. One reason for this is that the genuine correlations arise from the same user using
the system a multiple number of times. Thus, typical user characteristics (for example, how the finger is placed on the
sensor, amount of pressure exerted on the finger, the sittingposition, etc.) are reflected in the similarity scores. In the case
of impostor scores, a variety of users smooths out this typicality resulting in smaller correlations.

Figure 1 shows the ROC confidence bands based on the (i) non-parametric bootstrap, and (ii) the asymptotic approaches.
The resulting upper and lower bounds of the two approaches closely match with each other indicating a good agreement of
the semi-parametric model to the true distribution of genuine and impostor similarity scores.

Next, we study the effect of correlation among the multiple impressions of a user on the width of the ROC confidence
band. As we require to vary the correlation, this experimentis not possible using real data. Our experiment was based on
simulated data from the multivariate GaussianK-copula models with genuine and impostor correlation matrices that have
a common correlation parameter for the off-diagonal entries, sayr. For the genuine case, we selected two values ofr:
rG = 0 (independence) andrG = 0.575 (this corresponds to the average of the 12 off-diagonal elements of theR̂0 matrix
in (14)). For the impostor case, we selected two values ofr: rI = 0 (independence) andrI = 0.255 (the average of the
12 off-diagonal elements of thêR1 matrix in (14)). Four pairs for the genuine-impostor correlations,(rG, rI), were thus
obtained:(0, 0), (0, 0.255), (0.575, 0) and(0.575, 0.255). The95% ROC confidence bands for the four pairs had median
widths of 8.70, 8.71, 10.82 and 10.97, respectively. Thus, higher correlations between multiple biometric observations
result in a wider confidence band for the ROC curve.

Next, we determine the number of users,N , required by a system to report a100(1 − α)% ROC confidence band with
a width of at mostw, wherew is pre-specified. The values of correlations selected in thesimulation study reflect zero
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Figure 1. 95% ROC confidence bands based on (a) the non-parametric ROC band(lines with ‘◦’), and (b) the asymptotic method (lines
with ‘*’). The dashed, solid and dot-dashed lines represent the estimated ROC curves, upper and lower confidence bounds, respectively.

Table 1. Values ofNmin for achieving a width of1% for the 95% confidence band. The total number of observations,NminK, is given
in parenthesis.

Correlation Number of acquisitions per user,K

r 1 2 4 8

0.0 65,962 32,582 16,475 8,234
(65,962) (65,164) (65,900) (65,882)

0.255 65,858 36,238 20,645 13,409
(65,858) (72,476) (82,580) (107,272)

0.575 65,399 42,036 29,418 22,498
(65,399) (84,072) (117,672) (179,984)

(total independence), moderate and high degrees of correlation between multiple acquisitions per user. Thus, the results
of the simulation study can be generalized to real data whichexhibit different degrees of correlation. Three choices ofthe
genuine-impostor correlation pairs were considered:(rG, rI) = (0, 0), (0.255, 0.255) and(0.575, 0.575). The minimum

number of users required is given by the formulaNmin =

[

(

2z1−α

w

)2
]

+ 1.

Table 5.1 reportsNmin for obtaining a95% confidence band withw=1%. We tookC0 = 0.1% andC1 = 10%.
The numbers in parenthesis in Table 5.1 give the total numberof observationsNminK. In other words, if a biometric
authentication system was tested based onN users, whereN is chosen according to the entries in Table 5.1, we will be95%
certain that the true ROCcurvewill lie in the interval[Ŵ −0.5 , Ŵ +0.5] for all 0.1% ≤ FAR ≤ 10%. Table 5.1 indicates
that as correlation among the multiple impressions of a finger increases for each fixedK, the total number of observations
needed to achieve the widthw for the confidence band increases. The same holds true whenK is increased for each fixed
non-zero correlation. Thus, in the presence of non-zero correlation, we are better off selecting a larger number of users
rather than increasing the number of multiple acquisitionsper user. We also obtained the minimum sample sizes determined
by the Rule of 3,N3, (9) and the Rule of 30,N30 (10). Since both rules were derived for setting up confidence intervals for
specific values FAR and GAR (and not confidence bands for a range of FAR and GAR values), we were required to modify
them slightly to suit the present case. For the Rule of 3, we computed the quantity1−LB(pl), l = 1, 2, . . . , L and derived
the minimum sample size asN3 = max1≤l≤L

3
1−LB(pl)

The smallest sample size based on the Rule of 30 was obtained

using the formulasFRRl = 1 − W (pl), el =
(

2(1.96)FRRl

W (pl)

)2

and,N30 = max1≤l≤L
el

FRRl

. We foundN30 ranged

between17, 300−17, 600 whereasN3 was approximately 105 for all values of the correlationr andK. Thus,N3 andN30

grossly underestimate the total number of biometric acquisitions required to achieve a desired width. The underestimation
becomes more prominent when significant correlation is present between multiple acquisitions of the biometric templates
from a subject.



6. SUMMARY & CONCLUSIONS

We present a semi-parametric approach for constructing ROCconfidence bands and determining the minimum number of
users required to achieve a desired width for the ROC confidence band based on multivariate Gaussian copula models. A
loss of efficiency is observed (in terms of the total number ofacquisitions required) when there is considerable correlation
present between multiple acquisitions per user. In this case, we are better off selecting a larger number of users ratherthan
increasing the number of acquisitions per user. Our future work will be to investigate the effects of user correlation on
sample size requirements for a larger fingerprint database.
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