Effects of User Correlation on Sample Size Requirements

Sarat C. Dassand Anil K. Jai?

aDepartment of Statistics & Probability, Michigan State \#sity, E. Lansing, MI, USA;
bDepartment of Computer Science & Engineering, MichiganeSthtiversity, E. Lansing, MI, USA

ABSTRACT

Very little work has been done in determining the number @rssieeded to establish confidence intervals for an error
rate of a biometric authentication system. The indeperglassumption between multiple acquisitions of an indiviidaia
too restrictive and is generally not valid. We relax thisumsption and present a semi-parametric approach for estighat
the within-user correlation using multivariate Gaussiaputa models. We describe how to obtain confidence bands for
the ROC and present the minimum requirements on the numbesen$ needed to achieve a desired width for the ROC
confidence band. Rules of thumb such as the Rule of 3 and theed®H0 grossly underestimate the number of users
required. The underestimation becomes more severe wheotiedation between any two acquisitions increases.
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1. INTRODUCTION

Evaluating the performance of a biometric authenticatimtesn involves utilizing multiple individuals (subject)d, for
efficiency, performing multiple verification tests for edadividual. It is well known that multiple queries corresytbng

to each individual exhibit a certain degree of dependenuedation) (see, for example?). Earlier efforts to incorporate
this correlation include the subset bootstrap approachdig Bt. a8 to construct confidence regions for the ROC curve
in terms of confidence intervals for the FRR and FAR. Howe9685 confidence intervals for the FARs and FRRs will
not automatically guarantee a 90% confidence region foettiige ROC curve. In fact, one can show that0(1 — «)%
level confidence intervals based orm-priori selected thresholds will only guarantee a configdavel for the ROC curve

of at least100(1 — na)%. Thus, the procedure incannot give a specific confidence level for the ROC curve when
becomes large (and this is usually the case since we havedd onfidence rectangles at various locations of the ROC
curve). Schuckersintroduced the beta-binomial family to model the correiatbetween multiple queries as well as to
account for varying FRR and FAR values for different indivéds. He showed that the beta-binomial model gives rise to
extra variability in the estimates of FRR and FAR due to the-mero correlation between multiple queries of a subject.
However, a limitation of this approach is that it cannot bedut obtain a confidence band for the ROC curve.

We present a semi-parametric approach for investigatiagffects of correlation on the reported authentication per
formance of biometric systems by first modelling the disttitin of the observed genuine and impostor similarity ssore
We show how to construct confidence bands for the ROC with eifspeonfidence level, and are able to demonstrate the
effect of varying degrees of correlations on the width of @C confidence bands. We also present the minimum number
of individuals required to achieve a desired width for the@Rnfidence bands. Rules of thumb such as the Rulé of 3
and the Rule of 3t grossly underestimate the number of users required toroatspecific width for the ROC confidence
bands. The underestimation becomes more severe as thiatorréetween any two acquisitions of a subject increases.

2. PRELIMINARIES

Let the number of individuals available for testing a givémmhetric authentication system Bé Each of theV individuals
contributes” biometric acquisitions (queries) for testing, resultingitotal of V K acquisitions. In the genuine case when
user; uses the system claiming himself/herself to be truly ustre query-template pair is taken from theacquisitions
of useri, Q1,Qo, ..., Qx, say. Avoiding self-match, each que®y, is matched with the remainin@,, , h # k resulting

in K — 1 similarity scoresS(Qy, Qn) , h # k. The average of these similarity scor8$Q;,) = = Sonzk S(Qk, Qn)
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is taken as theguery-specifisimilarity score for the querg);, and will subsequently be denoted By(, 7). In this way,
K scores, one per template, are generated for iiséthen the user is varied froml to N, a total of N genuine score
vectors, each witll’ components, are generated. When dseses the system claiming himself/herself to be yseér# i
(this is the impostor case), the query-template pair isrtdf@m the K’ acquisitions of usetr and userj, respectively, say,
Q1,Q2,...,Qx andTy,Ts, ..., Tk. Each quen@y is matched with the templatds,, h = 1,2,..., K resulting inK
similarity scoresS(Qy,T3,) ,h = 1,2,..., K. The average of these similarity scoré%(),) = % fo:l S(Qk,Tr), is
taken as the query-specific similarity score for the quggy and will subsequently be denoted By(4, j). In this way, K
scores are generated for useWheni and; are varied froml to NV with the restriction that # j, a total of N(N — 1)
impostor score vectors, each wilh components, are generated.

When uset claims the identity of usef, the system can either accept the claimed identity as truejext the claimed
identity as false. Thus, for a fixed thresholduser: is accepted (respectively, rejected) as ysat thek-th attempt if
Sk(i,7) > (L)A. DefiningSy = {(¢,5) : i = j} andS; = {(4,4) : i # j}, the genuine (respectively, impostor) scores
are given by observatiodsS, (¢, j), k = 1,2,..., K} with (4, ) in Sy (S1). We denote the number of elementsSnand
S by Ny = N andN; = N(N — 1), respectively.

LetS(i,5) = (S1(4,5),S2(4,7), ..., Sk (1,5))T denote the vector of similarity scores for a combinatjary). Each
vectorS(i, j) is an element ofR%. We further assume that the vecta®$i, j) for (i,j) € S, (respectively,S;) are
independent with a commadii-variate distribution function given b (£7). Note that (i) bothF, andF; are multivariate
joint distribution functions oriR%, and (ii) forh = 0, 1, F}, is the common distribution function for evefy, j) € S;,. The
K marginal distributions of, (respectivelyF}) will be denoted byFy 1, (Fy ), fork =1,2,..., K. In the next sections,
we present the statistical model fBg and its estimation based on the observed genuine scoresnddied and estimation
procedure forF; based on impostor scores follow in a similar fashion.

3. COPULA MODELSFOR F, (AND F})

Let Hy, Ho, ..., Hg be K continuous distribution functions on the real line. SuppthatH is a K-dimensional distrib-
ution function with thek-th marginal given by, for k = 1,2, ..., K. According to Sklar's Theorert, there exists a
unique functionC'(uy, us, . . ., ux ) from [0, 1]¥ to [0, 1] satisfying

H(Sl,SQ, . .,SK) = C(H1(81)7H2(82)7 e ,HK(SK)), (1)

wheresy, s, ..., sk are K real numbers. The functio@' is known as ai-copula function that “couples” the one-
dimensional distributions functiond ,k = 1,2,..., K to obtain H. Equation (1) can also be used to constrict
dimensional distribution functiond whose marginals are th@e-specifiedlistributionsH, ,k = 1,2, ..., K. choose a
copula functionC' and define the functio/ as in (1). It follows thatd is a K-dimensional distribution function with
marginalsy , k =1,2,..., K.

The parametric family of copulas we consider in this pap#ress -dimensional multivariate Gaussian copufagiven
by

Cr(u1,ug,...,ux) = @]Ig(q)_l(ul), O Huy),..., N ug)) (2

where each, € [0,1] for k = 1,2,..., K, ®(-) is the distribution function of the standard normat;!(-) is its inverse,
and®% is the K-dimensional distribution function of a random vectdr= (Z1, Zs, ..., Zx)T with component means
and variances given by 0 and 1, respectively, and with caticel matrixR. We define thém, n)-th entry of R as p,,..,
wherem,n = 1,2, ..., K. Note thatR is a positive definite matrix with 1 in the diagonal entriehe™istribution function

Fy will be assumed to be of the form (1) wittl, = Fy , fork =1,2,..., K, andC = Cp,, for some correlation matrix
Ry; thus, we have

Fo(sl, S92y .y SK) = CRO (F071(81), }’—‘072(82)7 e ,FQJ{(SK)). (3)
Similarly, the distribution functior#; will be assumed to be of the form

Fi(s1,82,...,5k) = Cr, (F1,1(51), F12(52), ..., F1,k(sK)), 4)

with another correlation matri®R; .



3.1. Estimation Of Fy ;, and Ry
The marginal distribution functionds ;,, and the correlation matri®, are unknown and have to be estimated from the

observed data of genuine similarity scoré§,(i,j) : (i,5) € So}. Fork = 1,2,..., K, the empirical distribution
function for thek-th marginal given by

Foxls) = S0 H{Su(ig) <s), ©)

o .7
(4,7)€So

wherel (A) is the indicator function of the set. Note thatEy ,(s) = 0forall s < s, aNdEy 1 (s) = 1 forall s > s,,44,
where s;,i, and sp,q., respectively, are the minimum and maximum of the obseswat{ Sy (i,7) : (i,j) € So}. A
partition of [s,in, Smaz] 1S formed by choosind. — 1 equidistant points ifis,in, Smaz]- FOr two consecutive partition
points defined by, = spin + 1 (Smaz — Smin)/L andpgi1) = smin + (I + 1) - (Smaz — Smin)/L (I is an integer with
0 <1< (L —1)), the estimate of7 , FM is obtained by interpolation, namely,

For(s) = 1= (1 = Eoa(pn)"(1 = Boa(pis)) ™ ©)

forp, < s < py1 andg = (pi+1 — p)/(pi+1 — p1). To estimate the correlation matrik,, we transform the genuine
similarity scores taZ (i, j) = (Z1(i,5), Z2(3,5), - - -, Zk (i,5))T where

Zk(i7j) = q)_l(EO,k(Sk(i>j))7 (7)

for k = 1,2,..., K, whereEy  is as given in (5). The mean vectdris given by Z = Nio Z(meso Z(i,7) and the
covariance matrix is given byo = x- >, e, (£ — 2) - (£ — 2)". The estimate of them, n)-th entry of R, /o,mn.
is given by ’

~ 00,
Po,mn = (8)

)
v 70,mn00,mn

whereoyg ., is the(m, n)-th entry of J,.

4. CONFIDENCE BANDSFOR THE ROC

Defining Ay (A) = & Sr, Frr(A) andGy(\) = 1 — A, ()) for h = 0,1, the ROC curve is a plot dfF AR, GAR) =
(G1()),Go())) as\ varies. An alternative representation of the ROC curv@j$V (p)), whereW (p) = Go(G1*(p)).
For two fixed numberg’y andC; such thal < Cy < C; < 1, let us consider alp = F AR values that fall inCy, C1].
A confidence band for the true (claimed) ROC curve of a bioimeyrstem at confidence leved0(1 — a)% gives a lower
bound,L B(p) and an upper bountd B(p) so that for every in [Cy, C4]

LB(p) < ROC(p) < UB(p) 9)

with probability 100(1 — «)%. In equation (9),W (p) represents the value of GAR when the FAR is equab.toThe
numbersCy andC; form the lower and upper bounds of the range of FAR, and wiltlhesen to cover typical reported
values of FAR in biometric applications.

Forh = 0, 1, the plug-in estimate afl,,, Ay, is given byA,(s) = + ST, FJ, 4 (s) andG), is estimated by, (s) =

1— Ay (s). This gives an estimate ®F (p), W (p) = Go(G7 (p)). To construct tha00(1 — «)% level confidence interval
for the ROC curve in the region of interdsl,, C1], we form the quantity

2 = Maxc,<p<c, vV No |sin™ty/ W (p) — sin~t /W (p)|. (10)

The functionf(z) = sin”"/x serves as a variance stabilizing transformation for gtiestiaking values irf0, 1), such as
W (p) andW (p).'3 Assume for the moment that the distribution:gé given. Ifz; _, denotes the00(1 — «)% percentile
of the distribution ofz, the100(1 — a))% confidence band for the ROC curve is given by

—1

LB(p) <W(p) <UB(p) (11)



for Cy < p < Cy with the lower and upper bounds defined as

LB(p) = (sin(sin"'\/W(p) — 21-a//No))* (12)
and

UB(p) = (sin(sin™" /W (p) + 21-a/V/No))?, (13)
respectively.

Unfortunately,z; _, is difficult to obtain analytically. We find an asymptotic appimation toz; _,, for large N based
on the multivariate Central Limit Theoreh.

5. EXPERIMENTAL RESULTS
5.1. Construction of the ROC

We used a fingerprint database consisting of fingerprint ésgions collected from 50 fingers in our laborattry The
fingerprint impressions were obtained using an ldentix Bie?h USB 200 optical sensor (255x256 images, 380 dpi res-
olution). 16 impressions of each finger were obtained oveaysdwith 4 impressions taken each day. Thus, we have a
total of N = 50 different fingers with16 impressions per finger. To avoid the effect of different asitjon days on the
correlation, we only considered the first 4 fingerprint ingsiens taken on the first day. Thus, = 4 in our case. A
fingerprint similarity score was generated using an asymaen@iatcher, described il¥, based on comparing the minutiae
point patterns of a pair of fingerprint impressions. The kinty scores are bounded betweaeand1000, and so the order
preserving transformatiof(Sx (i, j)) = log{Sk (7, 5)/(1000 — S(%, j))} was used to convert the similarity scores onto
the entire real line.

Estimates of the genuine and impostox 4 correlation matricesk, andR;, are given by

1.0 05 05 04 1.0 02 02 0.3
05 1.0 07 06 02 1.0 02 02
05 07 1.0 08 |2 02 02 10 03 | (14)
04 06 08 1.0 03 02 03 1.0

respectively. The off-diagonal entries &f and R, indicate the degree of correlation between the correspgraiw and
column dimensions. Comparing the off-diagonal entrieszgfand 2,, we see that the genuine correlations are much
larger than the impostor correlations. One reason for thikat the genuine correlations arise from the same useg usin
the system a multiple number of times. Thus, typical userattaristics (for example, how the finger is placed on the
sensor, amount of pressure exerted on the finger, the gittisigion, etc.) are reflected in the similarity scores. i thse

of impostor scores, a variety of users smooths out this &ipycresulting in smaller correlations.

Figure 1 shows the ROC confidence bands based on the (i) mamp#ic bootstrap, and (ii) the asymptotic approaches.
The resulting upper and lower bounds of the two approaclseigi match with each other indicating a good agreement of
the semi-parametric model to the true distribution of geawind impostor similarity scores.

Next, we study the effect of correlation among the multipipiessions of a user on the width of the ROC confidence
band. As we require to vary the correlation, this experinienbt possible using real data. Our experiment was based on
simulated data from the multivariate Gaussitarcopula models with genuine and impostor correlation roasrthat have
a common correlation parameter for the off-diagonal estrsayr. For the genuine case, we selected two values of
re = 0 (independence) and; = 0.575 (this corresponds to the average of the 12 off-diagonal etesnof thel?, matrix
in (14)). For the impostor case, we selected two values ef = 0 (independence) ang = 0.255 (the average of the
12 off-diagonal elements of th&, matrix in (14)). Four pairs for the genuine-impostor caatwns, (rq, ry), were thus
obtained:(0,0), (0,0.255), (0.575,0) and(0.575,0.255). The95% ROC confidence bands for the four pairs had median
widths of 8.70, 8.71, 10.82 and 10.97, respectively. Thighdr correlations between multiple biometric observatio
result in a wider confidence band for the ROC curve.

Next, we determine the number of usekg, required by a system to reporti@0(1 — a))% ROC confidence band with
a width of at mostw, wherew is pre-specified. The values of correlations selected irsitmilation study reflect zero
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Figure 1. 95% ROC confidence bands based on (a) the non-parametric ROQlip&sdvith ‘©’), and (b) the asymptotic method (lines
with *). The dashed, solid and dot-dashed lines represent the estiR€ curves, upper and lower confidence bounds, respectively.

Table 1. Values of N,,.;,, for achieving a width ofl % for the 95% confidence band. The total number of observati¥ips,, K, is given
in parenthesis.

Correlation Number of acquisitions per usek,
r 1 2 4 8
0.0 65,962 32,582 16,475 8,234

(65,962) (65,164) (65,900)  (65,882)
0.255 | 65858 36,238 20,645 13,409
(65,858) (72,476) (82,580) (107,272)
0575 | 65399 42,036 29,418 22,498
(65,399) (84,072) (117,672) (179,984)

(total independence), moderate and high degrees of ctorelaetween multiple acquisitions per user. Thus, theltesu
of the simulation study can be generalized to real data wxtlibit different degrees of correlation. Three choicethef
genuine-impostor correlation pairs were considered:, ;) = (0, 0), (0.255,0.255) and(0.575,0.575). The minimum

2
number of users required is given by the formig;,, = {(22;“) } + 1.

Table 5.1 reportsVv,,;, for obtaining a95% confidence band witlw=1%. We tookCy, = 0.1% andC; = 10%.
The numbers in parenthesis in Table 5.1 give the total nurabebservationsVv,,;, K. In other words, if a biometric
authentication system was tested basedarsers, wheréV is chosen according to the entries in Table 5.1, we wib#&
certain that the true RO€urvewill lie in the interval [ — 0.5, W +0.5] for all 0.1% < FAR < 10%. Table 5.1 indicates
that as correlation among the multiple impressions of a finggeases for each fixel, the total number of observations
needed to achieve the widthfor the confidence band increases. The same holds true Wherincreased for each fixed
non-zero correlation. Thus, in the presence of non-zereltaiion, we are better off selecting a larger number ofsuiser
rather than increasing the number of multiple acquisitfpersuser. We also obtained the minimum sample sizes detedmin
by the Rule of 3V3, (°) and the Rule of 30V3, (1°). Since both rules were derived for setting up confidenaals for
specific values FAR and GAR (and not confidence bands for arah§AR and GAR values), we were required to modify
them slightly to suit the present case. For the Rule of 3, wepded the quantity — LB(p;),l = 1,2, ..., L and derived
the minimum sample size @%; = max <;<r, % The smallest sample size based on the Rule of 30 was obtained
using the formulas"RR; = 1 — W(p,), e; = (% ’ and, N3y = maxi<;<z, 745 We foundNs, ranged
betweenl 7,300 — 17, 600 whereasVs; was approximately 105 for all values of the correlaticend K. Thus, N3 andN3q
grossly underestimate the total number of biometric adipis required to achieve a desired width. The underesiima
becomes more prominent when significant correlation isgelsetween multiple acquisitions of the biometric tengsat
from a subject.



6. SUMMARY & CONCLUSIONS

We present a semi-parametric approach for constructing &@dence bands and determining the minimum number of
users required to achieve a desired width for the ROC cordeleand based on multivariate Gaussian copula models. A
loss of efficiency is observed (in terms of the total numbeaaazfuisitions required) when there is considerable cdrosla
present between multiple acquisitions per user. In this,o&e are better off selecting a larger number of users réther
increasing the number of acquisitions per user. Our futuwekwvill be to investigate the effects of user correlation on
sample size requirements for a larger fingerprint database.
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