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Abstract

When testing a point null hypothesis versus an alternative that is vaguely speci�ed, a

Bayesian test usually proceeds by putting a non-parametric prior on the alternative and

then computing a Bayes factor based on the observations. This paper addresses the question

of consistency, that is, whether the Bayes factor is correctly indicative of the null or the

alternative as the sample size increases. We establish several consistency results in the aÆr-

mative under fairly general conditions. Consistency of Bayes factors for testing a point null

versus a parametric alternative has long been known. The results here can also be viewed

as the non-parametric extension of the parametric counterpart.
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1 Introduction

Non-parametric Bayesian methods have been popular and successful in many estimation

problems but their relevance in hypotheses testing situations have become of interest only

recently. In particular, the testing of a parametric null versus a non-parametric alterna-

tive has received considerable attention from Bayesians, e.g., Berger and Guglielmi (1998),

Verdinelli and Wasserman (1998), Carota and Parmigiani (1996), and Florens, Richard and

Rolin (1996). Berger and Guglielmi (1998) consider the problem of goodness of �t in the

framework of testing a parametric null versus a non-parametric alternative and derive mea-

sures of goodness of �t closely related to the Bayes factor. By looking at goodness of �t

as a Bayesian test of hypotheses, one can take advantage of many of its attractive features.

Bayesian hypothesis testing is not based on asymptotic results, and thus, can be used equally

e�ectively on small or moderate sample sizes. Bayesian hypotheses testing uses Bayes fac-

tors to decide between accepting or rejecting the null hypothesis. Thus, as the sample size

increases, one can ask if the Bayes factor is correctly indicative of H0 or H1 given that the

sampling density belongs to one of the two hypotheses. This is the question of consistency.

Even though Bayesian answers in hypothesis testing problems are not operationally based

on asymptotics, consistency of the resulting Bayes factor is an important issue that needs

to be addressed. In the case of estimation using non-parametric priors, Diaconis and Freed-

man (1986) show that some posteriors based on n samples need not be consistent, that is,

the posterior may not put mass tending to one for suÆciently small neighborhoods of the

true parameter value. Thus, inference based on such inconsistent posteriors can be highly

misleading.

Analogously, in hypotheses testing, it is important to know if the Bayes procedure based

on the Bayes factor actually leads to sensible answers as the sample size increases. Consis-

tency holds for Bayes factors when parametric families are involved in the testing scenario.

Even when the sampling distribution does not belong to either H0 or H1 in the paramet-
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ric case, the Bayes factor eventually chooses the hypothesis that is closest to the sampling

density in a Kullback Liebler sense. Exact rates of convergence are also well known.

In the case of in�nite dimensional parameter spaces, relatively little is known about

consistency and rates of convergence of Bayes factors in the case of general non-parametric

priors. We establish consistency for the Bayes factor when the null hypothesis is true for

any arbitrary non-parametric prior. In the case when the alternative hypothesis is true,

we show that the set of all sampling densities under which consistency holds has measure

one with respect to the non-parametric prior, regardless of the prior chosen. Our goal is to

establish consistency in terms of conditions satis�ed by a sampling density in the support of

an arbitrary non-parametric prior, and not only on a case by case basis. We only consider

non-parametric priors on the space of all probability density functions for reasons explained

in Section 3.

The remainder of this paper is organized as follows. Section 2 gives the motivation and

de�nition of consistency pertaining to Bayes factors. Section 3 discusses some well known

examples of non-parametric priors on the space of all densities. Sections 4 gives the proofs of

theorems in Section 2. We end this paper with a discussion of testing a composite parametric

null versus a non-parametric alternative in Section 5.

2 Consistency of Bayes Factors

The following notations will be used throughout the paper. Let X be a complete separable

metric space (or Polish space), � be a �-�nite measure on X and F be the space of all

probability densities with respect to � with support X . Also, denote by X1; X2; � � �, random

variables taking values in X , which are independent and identically distributed (iid) with a

density f 2 F . Consider the following hypothesis testing scenario

H0 : f = f0 versus H1 : f 6= f0: (1)
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Equation (1) is the most general form of testing a point null versus a non-parametric alter-

native. A Bayesian testing procedure would proceed by �rst specifying prior probabilities, �0

and �1, of the null hypothesis and the alternative, respectively, and a non-parametric prior

� on the space of the alternative, H1. We postpone the discussion of what an appropriate

prior should be until Section 3 but for now, assume that a non-parametric prior is given.

The Bayes factor for the testing of (1), based on a sample, xn, of size n, is the ratio of the

marginal under H0 to the marginal under H1, and is given by the expression

B(xn) =

Qn
i=1 f0(xi)R

H1

Qn
i=1 f(xi)�(df)

: (2)

The Bayes factor in (2) can also be interpreted as the ratio of posterior odds to the prior

odds of H0 to H1. To see this, de�ne an overall prior on H0 [ H1 as

��(f) = �0 � If0(f) + �1 � IH1
(f) � �(f); (3)

where IA(�) stands for the indicator function of the set A, i.e., IA(f) = 0 if f 62 A and

IA(f) = 1 if f 2 A. We use the following notation for generic priors and posteriors, namely,

if g(�) is a prior on H0 [ H1, then we will denote the posterior derived from g based on a

sample, xn, of size n, by g( � jxn). Thus, for the prior �
�, the posterior and prior odds ratio

is related to the Bayes factor by

��(H0jxn)

��(H1jxn)
=

�0
�1
�B(xn): (4)

For all subsequent discussions, we take the default choice for �0 and �1, namely, �0 = �1 =

1=2. In this case, the posterior odds ratio is exactly equal to the Bayes factor. Thus, given

the observations x1; x2; : : : ; xn, large values of B would indicate that there is very strong

evidence for H0 based on the data whereas small values of B would indicate otherwise. As

the sample size increases inde�nitely, we would expect to get perfect information about the

sampling density, say f , and the Bayes factor should also correctly and overwhelmingly be

able to decide between H0 andH1. This motivates the following de�nition for the consistency

of the Bayes factor.
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Let X n and X1 be the products of n and in�nite copies of X . Also, let P n
f and P1

f be

the n and in�nite products of the probability measure Pf , which has density f , on X n and

X1, respectively.

De�nition 1 The Bayes factor, B(xn), for the testing of (1) is said to be consistent if

lim
n!1

B(xn) =1; P1
f0
� a.s.;

and for any f 6= f0,

lim
n!1

B(xn) = 0; P1
f � a.s.:

Before we give the theorems establishing consistency of Bayes factors, we need a few

more de�nitions. The Kullback-Leibler divergence, K(f; g), provided it exists, between two

densities f and g in F is de�ned as

K(f; g) =

Z
f(x) log

f(x)

g(x)
�(dx): (5)

Also let

K�(f) = fg 2 F : K(f; g) < �g; for � > 0: (6)

We say f is in the Kullback-Leibler support of �, if

�(K�(f)) > 0; for all � > 0:

With the above de�nitions, we can now state three theorems establishing consistency of the

Bayes factor.

Theorem 1 Under f0 2 H0,

lim
n!1

B(xn) =1; P1
f0 � a.s.

Note that one cannot use Schwartz's criteria for consistency for the prior �� to obtain The-

orem 1. This is because Schwartz's criteria gives consistency only for weak neighborhoods
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of f0. We want consistency at f = f0. An involved proof of a weaker result appeared in

Verdinelli and Wasserman (1998) in the special case when � is taken to belong to the class

of in�nite dimensional exponential family priors. Our goal here is to establish strong consis-

tency (almost sure convergence) of the Bayes factor for a general prior � on H1. Our proof

of Theorem 1 follows from a rather simple observation that �� puts positive mass on H0

together with (4). Thus, the argument of Doob (1949) is applied without much change. For

the completeness, the proof is given in section 4.

Theorem 2 Let � = f f 2 H1 : B(xn) �! 0; P1
f � a:s::g. Then, �(�) = 1:

Theorem 2 states that the Bayes factor is, indeed, consistent for a large set of densities in

H1, namely, a set which has �-probability 1. However, Theorem 2 does not say much about

any one particular sampling density, f in H1. To obtain consistency for a particular sampling

density, f , we have to further assume that f belongs to the Kullback-Leibler support of the

prior, �. This is the result of

Theorem 3 Suppose f 2 H1 is such that f is in the Kullback-Leibler support of the prior

�. Then, under f ,

lim
n!1

B(xn) = 0; P1
f � a.s.

We give proofs of the above theorems in Section 4. In the following section, we give

examples of non-parametric priors, where the support condition of Theorem 3 has been

established for estimation problems. Note that this condition is also suÆcient to establish

consistency of Bayes factors in hypotheses testing situations by the result of Theorem 3.
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3 Examples

3.1 Posterior Consistency of Dirichlet Normal Mixtures

It is well known that the Dirichlet process prior (Ferguson (1973)) puts mass 1 on the space

of discrete distributions. However, if one convolutes the Dirichlet prior with an arbitrary

number of absolutely continuous density functions, the resulting non-parametric prior would

give mass 1 to the space of all probability densities. Using normal kernels gives rise to

the Dirichlet mixture of normals. We brie
y outline the construction of a Dirichlet normal

mixture prior from a Dirichlet process prior. Let u1; u2; � � � be iid random variables from

Beta(1; �(X )) and let Y1; Y2; � � � be independent random variables, independent of u1; u2; � � �,

each distributed according to the probability measure �0(�) = �(�)=�(X ), where �(�) is a

�nite measure on X . Then, the random P given by

P =
1X
i=1

piÆYi; (7)

where Æx is the degenerate probability measure at x, p1 = u1, and pi = ui
Qi�1

j=1(1 � uj)

has a Dirichlet process prior. See Sethuraman (1994). The equality in (7) is in the sense

of distribution. To obtain Dirichlet normal mixtures from this representation, replace the

degenerate probability measure by a normal density with mean Yi and standard deviation

�. Then, the random density, g(x), of P is of the type

g(x) =
1X
i=1

pi
1

�
�(
x� Yi
�

):

In this case, we say P has a Dirichlet normal mixture distribution. There can be various

other choices of mixtures based on di�erent choices of the kernel function. The modelling

and computational aspects of Dirichlet mixtures were studied, for instance, by MacEachern

and M�ulller (1998).

Recently, Ghosal, Ghosh and Ramamoorthi (1999b) studied the issue of posterior consis-

tency in the context of density estimation using Dirichlet mixtures. They gave conditions
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under which the sampling density, f , belongs to the Kullback-Leibler support of the Dirichlet

mixture prior.

Before we state the conditions for the posterior consistency of Dirichlet normal mixtures,

we introduce some notation and bounds for the tail probabilities of a random probability

measure from the Dirichlet process prior. These bounds are �rst shown by Doss and Sellke

(1982) and used by Ghosal, Ghosh and Ramamoorthi (1999b) in their result.

Let �h be the normal density with mean 0 and standard deviation h and f� = �� � f ,

i.e., f�(x) =
R
��(x� y)f(y)dy. Suppose P has a Dirichlet process prior with parameter �,

where � is a �nite measure on X ,i.e., P � DP (�). Then, there exist k > 0 and x0 such

that, for all P in a set of DP (�)-probability 1,

P (x;1) � l1(x); P (x+ k log x;1) � u1(x); for x > x0; and

P (�1; x) � l2(x); P (�1; x� k log jxj) � u2(x); for x < �x0;

where

l1 = exp[�2 log j log�0(x;1)j=�0(x;1)];

l2 = exp[�2 log j log�0(�1; x)j=�0(�1; x)];

u1 = exp[�
1

�0(x + k log x;1)j log�0(x� k logx;1)j2
];

u2 = exp[�
1

�0(�1; x� k log jxj)j log�0(�1; x� k log jxj)j2
]:

De�ne

Lh(x) =

8<
:

�h(k log x)(l1(x)� u1(x)); if x > 0;

�h(k log jxj)(l2(x)� u2(x)); if x < 0:

We give the conditions of Ghosal, Ghosh and Ramamoorthi (1999b) below.

Theorem 4 (Ghosal, Ghosh and Ramamoorthi 1999) Suppose 0 is in the support of the

prior on � and f is in the support of DP (�). If

lim
�!0

Z
f(x) log(

f(x)

f�(x)
)dx = 0;
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for all � > 0,

lim
a!1

Z
f(x) log(

f�(x)R a
�a

��(x� �)f(�)d�
)dx = 0;

for all h > 0,

lim
M!1

Z
jxj>M

f(x) log(
fh(x)

Lh(x)
)dx = 0;

then �(K�(f)) > 0 for all � > 0.

Note that the above conditions are also suÆcient for the consistency of Bayes factors for the

hypotheses testing situation by Theorem 3.

3.2 Posterior Consistency of Poly�a Tree Priors

We quote two theorems from Ghosal, Ghosh and Ramamoorthi (1999a). Here, fB�1;�2;���;�kg

represents a usual hierarchical partition of the real line associated with the construction of a

Poly�a Tree Prior, and the conditional probabilities P (B�1;�2;���;�k jB�1;�2;���;�k�1
) are distributed

according to Beta(��1;�2;���;�k; 1 � ��1;�2;���;�k) for some constants 0 < ��1;�2;���;�k < 1. The �rst

theorem gives conditions whereby the Poly�a tree prior puts mass one to the class of all

absolutely continuous distributions, i.e., distribution with densities.

Theorem 5 Suppose � is a continuous probability measure on R with �(B�1;�2;���;�k) = 2�k

for all k and further ��1;�2;���;�k = ak. If
P

k a
�1
k <1, then the resulting Poly�a tree gives mass

1 to the set of all distributions that are absolutely continuous with respect to �.

The next theorem gives conditions for a density to be in the Kullback-Leibler support of

a Poly�a tree prior.

Theorem 6 Suppose that � is a continuous probability measure with �(B�1;�2;���;�k) = 2�k for

all k and further ��1;�2;���;�k = ak. If
P

k a
�1=2
k <1, then any density f with respect to � withR

f log fd� <1 belongs to the Kullback-Leibler support of the Poly�a tree.

Thus, when a Poly�a tree prior is chosen as the prior for the non-parametric alternative in

(1), Theorem 6 provides conditions ensuring consistency of the resulting Bayes factor.
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3.3 In�nite Dimensional Exponential Family Priors

Verdinelli and Wasserman (1998) discuss the use of the in�nite dimensional exponential

family priors for testing goodness of �t. They cast the testing problem (1) into the testing

problem of

H0 : F0(X1); F0(X2); � � � ; F0(Xn)
iid
� Uniform(0; 1)

versus

H1 : F0(X1); F0(X2); � � � ; F0(Xn)
iid
6� Uniform(0; 1);

where F0 is the cumulative distribution function (cdf) of the density f0 in (1). The in�nite

dimensional exponential family is constructed for distributions with support on the unit

interval [0; 1]. They use a sequence of Legendre polynomials, f�j(�); j = 1; 2; : : :g, de�ned

by

�j(x) =
1

2jj!

dj

dxj
(x2 � 1)j;

and use the Legendre polynomials together with other coeÆcients, � = (�1; �2; : : :), to de�ne

in�nite exponential densities of the form

g(uj�) = exp(
1X
j=1

�j�j(u)� c(�));

where c(�) = log
R 1
0
exp(

P
j �j�j(u))du is the normalizing constant. In order to get random

densities, Verdinelli and Wasserman (1998) put priors on the coeÆcients, �, given by

�j � independent N(0; � 2=c2j); (8)

where � and cj's are constants. To establish the Kullback-Leibler support of a sampling

density, f , they quote a theorem from Barron (1988), namely,

Theorem 7 (Barron (1988))

If K(f0; f) < 1 and � is the in�nite dimensional exponential family prior with cj = jk in

(8) where k > 8 and � > 0, then f is in the Kullback-Leibler support of �.
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While Verdinelli and Wasserman (1998) showed that under an f 2 H1, the Bayes factor

converges to 0 in probability, Theorem 3 gives stronger convergence (almost sure) of the

Bayes factor for the same set of assumptions.

4 Proof of Theorems

In this section, we give the proofs of Theorems 1, 2 and 3. The reader is referred to Section

2 for the notation used here. We use the weak topology on F and the usual topology on

X1. The product topology on the space F � X1 is generated in the usual way.

Let � be a probability measure on F . Given an f sampled from �, the observations

X1; X2; : : : are independent and identically distributed according to Pf , the probability mea-

sure corresponding to f . The probability measure Pf is uniquely determined by f and vice

versa upto an equivalence class resulting from the equivalence relation, � , de�ned by

f � g if and only if f = g a.e. � (9)

The notation f will now stand for the equivalence class that it generates. For the prior

probability � on F , write Q� for the probability measure on F � X1 de�ned by

Q�(A� B) =

Z
A

P1
f (B) �(df); (10)

where A is Borel in F and B is Borel in X1.

Proof of Theorem 1. Assume, �rst, that there is a consistent estimate for f0, i.e., f0 2

�(X1; X2; � � �), the sigma algebra generated by X1; X2; : : : . Let �� be as before, namely,

��(f) = 1
2
� If0(f) +

1
2
� IH1

(f) � �(f). Since

��( ff0g jxn ) =

R
ff0g

Qn
i=1 f(xi)�

�(df)R
F

Qn
i=1 f(xi)�

�(df)

=

Qn
i=1 f0(xi)Qn

i=1 f0(xi) +
R
H1

Qn
i=1 f(xi)�(df)

=
B

B + 1
;
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it suÆces to show that

��( ff0g jxn )! 1; P1
f0 � a.s.:

By the martingale convergence theorem,

lim
n!1

E(If0(f)jX1; � � � ; Xn) = E(If0(f)jX1; X2; � � �); Q�� � a:s::

Since f0 2 �(X1; X2; � � �), If0(�) is measurable with respect to �(X1; X2; � � �); hence

E(If0(f)jX1; X2; � � �) = If0(f); Q�� � a:s::

Let


0 = f(f; x1; x2; : : :) : E(If0(f)jX1; X2; � � � ; Xn)! If0(f)g:

Then, we have shown that

Q��(
0) = 1:

For an f 2 F , de�ne 
f = f(x1; x2; : : :) : (f; x1; x2; : : :) 2 
0g. Then,

1 = Q��(
0) =

Z
F

P1
f (
f)�

�(df):

Hence, we get

P1
f (
f ) = 1; �� � a:s:

Since ��(ff0g) = 1=2 > 0, it follows that

P1
f0
(
f0) = 1:

To show that f0 is measurable with respect to �(X1; X2; : : :), we need only to compute Pf0

from X1; X2; : : :, since Pf0 uniquely determines f0. Thus, we need only compute
R
g dPf0 for

any bounded, continuous function g. But,
Z

g dPf0 = lim
n!1

1

n
[g(X1) + g(X2) + : : :+ g(Xn)]

by the law of large numbers. �

To prove Theorem 2, we need a few lemmas.
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Lemma 1 The posterior, ��(�jxn) �! Æf (�) weakly, Q���a:s:, where Æf (�) is the degenerate

probability at f .

Proof. The reader is referred to Diaconis and Freedman (1986) for a proof. The proof is

similar to the one given above for f = f0. �

Lemma 2 Fix f 2 H1. Let

�� = f(x1; x2; : : :) : B(xn) �! 0g

and

�f = f(x1; x2; : : :) : ��(�jxn) �! Æf (�) weakly.g:

Then, �� � �f :

Proof. Choose a (x1; x2; : : :) in �f , and a suÆciently small weak neighborhood of f , N , not

intersecting H0. Since

B(xn) =
��(H0jxn)

��(H1jxn)

and N � H1, we have �
�(H1jxn) �! 1 and ��(H0jxn) �! 0. It follows that B(xn) �! 0.

�

Proof of Theorem 2. De�ne

�0 = f(f; x1; x2; : : :) : �
�(�jxn) �! Æf (�) weakly g

and �f as in Lemma 2. By Lemma 1, we have Q��(�0) = 1. Since

Q��(�0) =
1

2
� P1

f0 (�f0) +
1

2
�

Z
F

P1
f (�f) �(df);

we have that P1
f0
(�f0) = 1 and P1

f (�f) = 1; � � a:s:. By Lemma 2, P1
f (��) = 1; � � a:s::

�

To prove Theorem 3, we need the following lemma.
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Lemma 3 Suppose X1; X2; � � � are iid from f and f is in the Kullback-Leibler support of �.

Then, for all � > 0,

lim inf
n!1

en�
Z Qn

i=1 g(xi)Qn
i=1 f(xi)

�(dg) =1:

Proof. Let � > 0 be given.

lim inf
n!1

en�
Z

exp(�n
1

n

nX
i=1

log
f(Xi)

g(Xi)
)�(dg)

� lim inf
n!1

en�
Z
g2K�=2(f)

exp(�n
1

n

nX
i=1

log
f(Xi)

g(Xi)
)�(dg)

= lim inf
n!1

Z
g2K�=2(f)

expfn(��
1

n

nX
i=1

log
f(Xi)

g(Xi)
)g�(dg)

�

Z
g2K�=2(f)

lim inf
n!1

expfn(��
1

n

nX
i=1

log
f(Xi)

g(Xi)
)g�(dg)

= 1:

The second to last inequality is due to Fatou's lemma and the last equality is by that fact

that, for all g 2 K�=2(f),

lim
n!1

��
1

n

nX
i=1

log
f(Xi)

g(Xi)
= ��K(f; g) > �=2; a:s:;

by the choice of g and the strong law of large numbers.

�

Proof of Theorem 3. The Bayes factor for testing (1) can be written as

B =

Qn
i=1 f0(Xi)=f(Xi)R Qn

i=1 g(Xi)=f(Xi)�(dg)

=
exp(�n 1

n

Pn
i=1 log f(Xi)=f0(Xi))R Qn

i=1 g(Xi)=f(Xi)�(dg)
: (11)

Let � = K(f; f0)=2 > 0. We will show the numerator in (11) multiplied by en� goes to 0 and

the denominator multiplied by en� goes to1. First, since limn!1(��
1
n

Pn
i=1 log f(Xi)=f0(Xi)) �
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��=6,

lim sup
n!1

expfn(��
1

n

nX
i=1

log
f(Xi)

g(Xi)
)g = 0 a:s:

Second, by Lemma 3,

lim inf
n!1

en�
Z nY

i=1

g(Xi)=f(Xi)�(dg) = 0 a:s:

Combining these two, we get the conclusion

B ! 0; P1
g � a:s:

�

5 Discussion

In this paper, we only considered the problem of testing a point null versus non-parametric

alternative and showed that under very weak conditions, the resulting Bayes factor was

consistent. Of course, what is more interesting is to see if the consistency results hold for

the more general composite testing of

H0 : f belongs to the N(�; �2) family

versus

H1 : f does not belong to the N(�; �2) family;

for example. The consistency of the Bayes factors for composite hypotheses testing situations

such as the above is still an open question.
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