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SUMMARY. Testing of hypotheses for discrete distributions is considered in this pa-

per. The goal is to develop conditional frequentist tests that allow the reporting of data-

dependent error probabilities such that the error probabilities have a strict frequentist

interpretation and also reflect the actual amount of evidence in the observed data. The

resulting randomized tests are also seen to be Bayesian tests, in the strong sense that the

reported error probabilities are also the posterior probabilities of the hypotheses. The

new procedure is illustrated for a variety of testing situations, both simple and composite,

involving discrete distributions. Testing linkage heterogeneity with the new procedure is

given as an illustrative example.

1. Introduction

In hypotheses testing situations where the underlying distributions are
discrete, a new test is proposed which can be interpreted from both the con-
ditional frequentist and Bayesian viewpoints. We call such tests “unified”.

It is desirable for a testing procedure to report error probabilities that
reflect the confidence with which a decision (either rejecting or accepting
the null hypothesis) is made based on the observed data. The classical fre-
quentist approach to testing constructs acceptance and rejection regions and
reports associated error probabilities of Type I and Type II. However, these
error probabilities are unconditional, in the sense that they depend only on
whether the data is in the rejection or acceptance region, and not on the
evidentiary strength of the observed data. Thus, if X follows a binomial
distribution with n = 50 trials and unknown proportion of success, θ, and
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it is desired to test H0 : θ = 0.5 versus H1 : θ 6= 0.5 at level α = 0.05, one
reports the error probability of 0.05 whether the observed count is X = 33
or X = 50, even though the latter is a ‘stronger’ rejection of H0. As a solu-
tion, p-values are introduced as data-dependent measures of the strength of
evidence against H0. However, p-values do not exactly solve the frequentist
problem; shortcomings of p-values as data-dependent measures are discussed
in detail in Sellke, Bayarri and Berger (2000) and also in earlier references
such as Edwards, Lindman and Savage (1963), Berger and Selke (1987), and
Berger and Delampady (1987).

The conditional frequentist approach, formalized by Kiefer (1975,1976,
1977) and Brownie and Kiefer (1977), can be used to obtain data-dependent
error probabilities which have a proper frequentist interpretation. A statistic
measuring ‘strength of evidence’ in the data, for or against H0, is found and
the Type I and Type II error probabilities are reported conditional on this
statistic. The main difficulty here is to find an appropriate conditioning
statistic; while constructing conditioning statistics for certain simple testing
problems is easy, finding suitable conditioning statistics for general testing
problems can be very difficult.

Reported error probabilities that vary with the observed data and re-
flect evidentiary strength arise naturally in the Bayesian setting. Recently,
Berger, Brown and Wolpert (1994) and Wolpert (1996) showed that a condi-
tioning statistic, S(X), that reflects the evidentiary strength in the data can
be found in the case of testing simple hypotheses. This leads to a conditional
frequentist test that is very easy to implement. Surprisingly, they observed
that the ensuing conditional frequentist Type I and Type II error probabili-
ties coincide exactly with the Bayesian posterior probabilities of H0 and H1,
respectively. Therefore, a frequentist and a Bayesian using this test will not
only reach the same decision (rejecting or accepting the null) after observing
the data, but will also report the same values for the error probabilities. In
this sense, the proposed test represents a unified testing procedure. Berger,
Boukai and Wang (1997) generalized this to testing a simple null hypothesis
versus a composite alternative. In this testing scenario, the resulting unified
test reports conditional Type I error probability that is exactly the same as
the posterior probability of the null hypothesis. Berger, Boukai and Wang
(1997) also show that the posterior probability of the alternative hypothesis
is a weighted average of the conditional Type II error probabilities. A fur-
ther generalization of the unification for simple versus composite hypotheses
using non-informative priors is reported in Dass and Berger (1998). The se-
quential version of this problem was considered in Berger, Boukai and Wang
(1999).
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All unified testing procedures that were obtained assumes that the un-
derlying distributions under H0 and H1 are continuous and admit densities.
However, for discrete distributions, densities do not exist with respect to
the Lebesgue measure. We resolve this problem by introducing a random-
ization independent of the discrete observations. So, essentially, the test
proposed is a randomized test. Our proposed (randomized) test has several
attractive properties: the error probabilities reported reflect the ‘strength
of evidence’ of the observed data, the reported error probabilities are si-
multeneously conditional frequentist error probabilities as well as Bayesian
posterior probabilities of the hypotheses, and furthermore, for the most part
of the decision space, the randomized test decides between accepting or re-
jecting the null and reports conditional error probabilities independent of the
randomization.

The rest of the paper is presented as follows. Section 2 discusses sim-
ple versus simple hypothesis testing under strict monotone likelihood ratio
(MLR) property. Section 3 discusses the general methodology of discrete
testing which includes simple versus composite and composite versus com-
posite testing situations. In testing situations involving composite hypothe-
ses, we show that one is able to choose appropriate priors reflecting one’s
belief while still maintaining a frequentist interpretation of the testing pro-
cedure. We illustrate the new methodology for the testing of presence of
genetic linkage from n informative offsprings.

2. Simple Versus Simple Hypothesis Testing Under Strict
Monotone Likelihood Ratio

We start with an example involving the monotone likelihood ratio (MLR)
property to fix ideas and provide motivation to classical statisticians. Later
we show that this restriction is really not needed. Let X denote a discrete
random variable taking values on the set of integers. Possible models for X
can be given by the family of densities (with respect to counting measure)
{f(·|θ), θ ∈ Θ} where Θ is a subset of the real line.

We make the following assumptions on the family {f(·|θ), θ ∈ Θ}:

(A1) Define Aθ = {x : f(x|θ) > 0 } for θ ∈ Θ. Assume that Aθ = A for all
θ ∈ Θ.

(A2) If x, y ∈ A and x < y, then x + 1, x + 2, . . . , y − 1 ∈ A.
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(A3) The family {f(·|θ), θ ∈ Θ} has the (strict) Monotone Likelihood Ra-
tio (MLR) property: for any θ0, θ1 ∈ Θ with θ0 < θ1, f(x|θ0)/f(x|θ1) is a
(strictly) decreasing function of x.

Consider the simple versus simple hypothesis testing of

H0 : θ = θ0 vs. H1 : θ = θ1, (1)

where θ0 < θ1. The Bayesian approach to this problem is to consider B(x),
defined by

B(x) =
f(x|θ0)
f(x|θ1)

, (2)

which is the likelihood ratio or Bayes factor of H0 to H1. This is often
regarded by Bayesians as the odds of H0 to H1 arising from the data. Thus,
values of B(x) greater than 1 lend support to H0 while values of B(x) less
than 1 support H1. Under the MLR property, B(x) is a decreasing function
of x. Thus, small values of x favour H0 while large values favour H1.

Let U be a uniform random variable independent of X, and define
X̃ = X + U . This randomized version of X, X̃, clearly has a continu-
ous distribution function and admits a density with respect to the Lebesgue
measure under both H0 and H1. The randomized distribution functions are
the key for obtaining the Bayesian and conditional frequentist unification.
Extend the definition of B(x) to include values of x̃ by

B(x̃) = B(x) if x = [x̃], (3)

where [z] denotes the greatest integer less than or equal to z. It is easy to
see that B(·) extended as in (3) is the Bayes factor corresponding to X̃.

Let F0 and F1 be the distribution functions (dfs) of X̃ under H0 and H1,
respectively. Let

xL = sup{x̃ : B(x̃) > 1 } (4)

and
xU = inf{x̃ : B(x̃) < 1 }. (5)

Under the MLR property, we have xL ≤ xU with equality if and only if
there is no value x such that B(x) = 1.

Let ψ be a function given by

ψ(x̃) = F−1
0 (1− F1(x̃)), (6)
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and define the quantities xa and xr by

xa = ψ(xU ) and xr = xU if xL > ψ(xU ) or, (7)
xa = xL and xr = ψ−1(xL) if xL ≤ ψ(xU ). (8)

Consider the following conditional test, T ∗, given by

T ∗ =





if x̃ ≥ xr, reject H0 and report conditional error
probability (CEP) α∗(B(x̃)) = B(x̃)/(1 + B(x̃)),

if xa < x̃ < xr, make no decision,
if x̃ ≤ xa, accept H0 and report conditional error

probability (CEP) β∗(B(x̃)) = 1/(1 + B(x̃)).
(9)

The interval (xa, xr) is called the no-decision region.
We proceed to state two important properties of the test T ∗ given in

(7-9) in the following theorem. Let S be a function of x̃ given by

S(x̃) = max{ψ−1(x̃), x̃}, (10)

where ψ is as given in (6).
Theorem 1. For xa and xr given by equations (7) and (8), and S as in

(10), we have

(a) α∗(B(x̃)) ≡ B(x̃)/(1 + B(x̃)) = PH0(Reject H0 |S(x̃)), and

(b) β∗(B(x̃)) ≡ 1/(1 + B(x̃)) = PH1(Accept H0 |S(x̃))
when either x̃ ≥ xr or x̃ ≤ xa.

We give details of the derivation of equations (7-9) as well as a proof of
Theorem 1 in the Appendix. Theorem 1 states that the error probabilities
of T ∗, α∗(B(x̃)) and β∗(B(x̃)), are interpretable, respectively, as frequentist
probabilities of Type I and Type II errors conditioned on the statistic, S, in
the randomized space of X̃, or as posterior probabilities of H0 and H1 for
a Bayesian under equal prior probabilities of H0 and H1. We will always
assume that H0 and H1 have equal prior probabilities of 1/2 each for the
Bayesian approach for the rest of this paper.

The statistic S defined in (10) is the conditioning statistic that makes
unification possible; the conditional frequentist error probabilities are iden-
tical to the Bayesian posterior probabilities of hypotheses as in Theorem 1.
The statistic S is a special case of general conditioning statistic based on
evidential equivalence statistic, E0 and E1, of the form

S = max{E0, E1}. (11)
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Conditioning statistic based on evidential equivalence statistics serve two
purposes: first, if E0 > E1, H0 will be accepted (indicating the “evidence”
for H0 is more than the “evidence” for H1), and rejected otherwise; second,
for S = s, data in the acceptance region with E0 = s has the same evidential
strength as data in the rejection region with E1 = s. Sellke, Bayarri, and
Berger (2001) discuss in detail the choice of the conditioning statistics, S, in
general and also the choice of S based on p-values.

We highlight several other attractive features of T ∗. One immediate
gain of T ∗ over unconditional tests is that the reported error probabilities
of T ∗ are data-dependent rather than being constant over the rejection and
acceptance regions. The error probabilities α∗ and β∗ are functions of the
randomized outcome, x̃, only through the observed data, x, where x = [x̃].
The proofs of these facts are given in the Appendix. The randomization
inherent in T ∗ affects only a small region of the decision space. There is
actually little practical difference between the decisions made based on the
outcome of the randomization in this small region. Except for this region,
the decision made and the reported CEP depend only on the observed value
of x.

We will illustrate these key features of the new test in the following sec-
tion using two testing examples where the underlying discrete distributions
possess the MLR property. In the testing situations that follow, we will as-
sume that there are no values of x such that B(x) = 1. Subsequently, if we
define

x∗ = min{x : B(x) < 1 , x is an integer}, (12)

we have that x∗ = xL = xU where xL and xU are as defined in (4) and (5).

2.1. Testing the unknown proportion for a Binomial distribution. Here,
f(x|θ) = Bin(x |n, θ) =

(n
x

)
θx(1− θ)n−x where θ ∈ [0, 1] is the parameter of

interest. The simple versus simple testing situation is

H0 : θ = θ0 vs. H1 : θ = θ1, (13)

where θ0 < θ1. The Bayes factor, B(x), is given by

B(x) =
Bin(x |n, θ0)
Bin(x |n, θ1)

(14)

=
(

1− θ0

1− θ1

)n

·
(

θ0/(1− θ0)
θ1/(1− θ1)

)x

, for x = 0, 1, 2, . . . , n. (15)

Here, B(x) is a decreasing function of x. In binomial testing, xa and xr

can explicitly be evaluated using the formulas given below. Define functions
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s0(·) and s1(·) by

s0(x) =
x−1∑

k=0

Bin(k|n, θ0) and s1(x) =
n∑

k=x

Bin(k|n, θ1),

and x∗ is the integer defined in (12).
If s0(x∗) ≤ s1(x∗), denote integer t = min{x : s1(x + 1) ≤ s0(x∗), x

integer} and q = (s0(x∗)− s1(t + 1))/Bin(t|n, θ1), and set

xa = x∗ and xr = t + 1− q. (16)

If s0(x∗) > s1(x∗), denote integer u = max{x : s0(x) ≤ s1(x∗), x integer}
and p = (s1(x∗)− s0(u))/Bin(u|n, θ0), and set

xa = u + p and xr = x∗. (17)

For the binomial testing of θ0 = 0.4 versus θ1 = 0.5 (n = 10), the
decisions and reported CEPs for the conditional test T ∗ are given in Table
1. The no-decision region (xa, xr), from (16) and (17), for this problem is
found to be (4.96, 5.00).

Table 1. Decisions and reported CEP based on T ∗ for the
binomial problem

Value Decision CEP Randomized Value Decision CEP Randomized
of x (if any) of x (if any)

0 Accept H0 0.138 - 5 Accept H1 0.449 -
1 Accept H0 0.195 - 6 Accept H1 0.352 -
2 Accept H0 0.267 - 7 Accept H1 0.266 -
3 Accept H0 0.353 - 8 Accept H1 0.195 -
4 Accept H0 0.448 0.96 9 Accept H1 0.140 -
4 No-decision - 0.04 10 Accept H1 0.097 -

As mentioned earlier, one immediate gain of T ∗ over conventional uncon-
ditional most powerful testing is that the reported error probabilities of T ∗

reflect the confidence with which a decision is made based on the observed
data. This is clearly seen from the entries in Table 1 where the magnitude
of the reported CEP varies according to whether x was observed at the
extremes or close to the center of the distribution under H0.

The randomization inherent in T ∗ affects only a small region of the deci-
sion space. Except for this region, the decision made and the reported CEP
depends only on the observed value of x. Thus, in Table 1, the decisions
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made and the reported CEPs are independent of the randomization except
only when x = 4. However, even when x = 4, there is little practical differ-
ence between stating “no-decision” and “accepting H0 with error probability
0.448”. The minimax unconditional test for this example also randomizes at
the boundary x = 4. However, the decisions made if x = 4 obtains are “reject
H0 with probability 0.1” and “accept H0 with probability 0.9”. Thus, the
practical effect of randomization in the unified testing situation is minimal,
making its use in conditional testing more attractive than in unconditional
testing, where the effect can be considerable.

As stated earlier (and proved in the Appendix), the reported error prob-
abilities of T ∗ also have simultaneous Bayesian and conditional frequentist
interpretations. In other words, the quantity α∗ in (9) can be interpreted
simultaneously as the posterior probability of H0 and the conditional fre-
quentist Type I error probability (see the Appendix for an explicit form of
the conditioning statistic). Similarly, the quantity β∗ in (9) can be inter-
preted as the posterior probability of H1 as well as the conditional frequentist
Type II error probability.

2.2. Testing for the mean of a Poisson distribution. Here, f(x|θ) =
Poi(x|θ) where Poi(x|θ) represents the Poisson distribution with mean pa-
rameter θ. The Poisson distribution is an example of a discrete distribution
with infinite range. The simple versus simple testing situation is

H0 : θ = θ0 vs. H1 : θ = θ1, (18)

where θ0 < θ1. As before, the Bayes factor for the testing problem of (18) is
given by

B(x) =
Poi(x | θ0)
Poi(x | θ1)

(19)

= e(θ1−θ0)
(

θ0

θ1

)x

for x = 0, 1, 2, . . . (20)

For the Poisson testing problem, xa and xr can explicitly be evaluated using
the formulas given below. The functions s0(·) and s1(·) are defined by

s0(x) =
x−1∑

k=0

Poi(k| θ0) and s1(x) =
∞∑

k=x

Poi(k| θ1),

and x∗ is defined in (12).
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If s0(x∗) ≤ s1(x∗), denote integer t = min{x : s1(x + 1) ≤ s0(x∗), x
integer} and q = (s0(x∗)− s1(t + 1))/Poi(t| θ1), and set

xa = x∗ and xr = t + 1− q. (21)

If s0(x∗) > s1(x∗), denote integer u = max{x : s0(x) ≤ s1(x∗), x integer}
and p = (s1(x∗)− s0(u))/Poi(u| θ0), and set

xa = u + p and xr = x∗. (22)

For θ0 = 1.0 and θ1 = 5.0, the unified test T ∗ is given in Table 2. The
no-decision region is found to be (2.76, 3.00) using (21) and (22).

Table 2. Decisions and CEP based on T ∗ for the Poisson problem
Value Decision CEP Randomized Value Decision CEP Randomized
of x (if any) of x (if any)

0 Accept H0 0.018 - 4 Accept H0 0.080 -
1 Accept H0 0.084 - 5 Accept H1 0.017 -
2 Accept H0 0.314 0.76 6 Accept H1 0.003 -

2 No-decision - 0.24 x ≥ 7 Accept H1
B(x)

(1+B(x))
-

3 Accept H0 0.304 -

The decisions made and the CEPs reported are independent of the ran-
domization for all values of x except for x = 2. For x = 2, one will randomly
choose between the following two decisions: with probability 0.76, “accept
H0 and report CEP 0.314” or,“make no-decision” with probability 0.24. The
probability of no-decision in Table 2 is greater than that in Table 1. How-
ever, there is still little practical difference between declaring “no-decision”
and “accepting H0 with large CEP of 0.314”.

3. General Methodology for Discrete Testing

We discuss the general problem of obtaining unified conditional frequen-
tist and Bayesian tests when both hypotheses are composite. Let X be a
discrete random variable with density (with respect to counting measure)
f(·|θ) for θ ∈ Θ. Suppose we wish to test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, (23)

where Θ0 and Θ1 are disjoint subsets of Θ. A Bayesian puts proper priors
π0 and π1 on Θ0 and Θ1, respectively, computes the marginals under H0
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and H1, and reduces the composite testing problem of (23) to the following
simple versus simple testing of

H0 : X ∼ m0 vs. H1 : X ∼ m1, (24)

where m0 is the marginal distribution of X under H0 given by

m0(x) =
∫

Θ0

f(x|θ) π0(θ) dθ (25)

and m1 is the marginal distribution of X under H1 given by

m1(x) =
∫

Θ1

f(x|θ) π1(θ) dθ. (26)

The Bayes factor, B(X), for the testing of (24) is given by

B(x) =
m0(x)
m1(x)

. (27)

Since, in general, B(x) need not be an decreasing (or increasing) function
of x, let B = {. . . , b−2, b−1, b0, b1, . . .} denote all distinct values of B(x) in
decreasing order. Define a new variable Y taking values on integers such
that Y = k if and only if b = bk for b ∈ B. Let fY

0 and fY
1 be the densities

(with respect to counting measure) of Y induced by m0 and m1, respectively.
Define BY (y) = fY

0 (y)/fY
1 (y). BY is the likelihood ratio of fY

0 to fY
1 . BY is

also the Bayes factor for the simple versus simple testing of an appropriate
null-alternative pair for Y .

As before, let U be a uniform random variable independent of Y and
define Ỹ = Y + U . Note that Ỹ is an implicit function of the observation
X and the uniform random variable U . The distribution functions of Ỹ
under H0 and H1, say, F0 and F1 respectively, are continuous due to the
randomization. Replacing X by Y and X̃ by Ỹ in Section 2, we get a
unified testing procedure for Ỹ for the testing situation in (24).

Furthermore, for any x, y and ỹ related by B(x) = BY (y) and y = [ỹ],
we have

P{H0|ỹ} =
BY (ỹ)

1 + BY (ỹ)
=

BY (y)
1 + BY (y)

=
B(x)

1 + B(x)
(28)

and
P{H1|ỹ} =

1
1 + BY (ỹ)

=
1

1 + BY (y)
=

1
1 + B(x)

. (29)

The significance of equations (28) and (29) is that the reported conditional
error probabilities, α∗ and β∗, depend only on the observed value of x, and
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not on the randomized outcome. We present an example of simple versus
composite binomial testing in the following section.

3.1 Composite Binomial testing. Let X ∼ Bin(n = 10, θ). We want to
test

H0 : θ = 0.4 vs. θ 6= 0.4. (30)

Since H1 is composite, we require a prior on the space of θ in H1. We choose
the conjugate family Beta(α, β) for constructing the unified test T ∗. The
Beta(α, β) family can model various types of prior beliefs by appropriate
choices of α and β. For the choice of α and β in this example, we select
them so that the prior distribution on H1 is centered around θ = 0.4. Since
the quantity α + β has the interpretation of ‘prior sample size’, we choose
a small positive value for it, say, α + β = 1. The choice of total mass, i.e.,
α + β can be a topic for further investigation but we choose it to be 1 here.
The values of α and β that satisfy both requirements above are α = 0.4 and
β = 0.6.

Using the above prior for H1 and integrating out, the marginal under H1

is

m1(x) =
∫ 1

0

(
n

x

)
θx(1− θ)10−x 1

B(0.4, 0.6)
θ0.4−1(1− θ)0.6−1 dθ

=
1

(10− x)!x!
· Γ(0.4 + x)Γ(10− x + 0.6)

Γ(0.4)Γ(0.6)
for x = 0, 1, . . . , 10,

where B(α, β) represents the value of the integral
∫ 1
0 xα−1(1− x)β−1 dx.

Also, m0(x), the distribution of X under the null, is

m0(x) =

(
n

x

)
θx (1− θ)10−x for x = 0, 1, . . . , 10.

The Bayes factor, B(x), is given by

B(x) =
m0(x)
m1(x)

=
Γ(0.4)Γ(0.6)Γ(11) · (0.4)x(0.6)10−x

Γ(0.4 + x)Γ(10− x + 0.6)
.

Following the general method prescribed in Section 3, we first rearrange the
values of B(x) in a decreasing order with b0 denoting the largest value.
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The unified test T ∗ is given by

T ∗ =





if ỹ ≥ 5.00 reject H0 and report CEP
α∗(B(x)) = B(x)

1+B(x) ,
if 3.09 < ỹ < 5.00 make no decision,
if ỹ ≤ 3.09 accept H0 and report CEP

β∗(B(x)) = 1
1+B(x) ,

(31)

where x, y and ỹ are related by B(x) = BY (y) for y = [ỹ]. The no-decision
region, (ya, yr) is given by ya = 3.09 and yr = 5.00. Table 3 gives the T ∗

in terms of the original binomial random variable X and the accompanying
randomization.

Table 3. Decisions and CEP based on T ∗ for
composite Binomial testing

Value Decision CEP Randomized Value Decision CEP Randomized
of x (if any) of x (if any)

0 Reject H0 0.022 - 6 Accept H0 0.336 0.09
1 Reject H0 0.251 - 6 No-decision - 0.91
2 No-decision - - 7 Reject H0 0.425 -
3 Accept H0 0.240 - 8 Reject H0 0.147 -
4 Accept H0 0.196 - 9 Reject H0 0.022 -
5 Accept H0 0.223 - 10 Reject H0 0.001 -

The no-decision region for the testing of (30) is larger than the previous
two examples. None the less, for x = 6, there is still little practical differ-
ence between declaring “no-decision” and “accepting H0 with large CEP of
0.336”.

3.2. An example of testing linkage heterogeneity. The number of observed
recombinations, r, from a total of n informative offsprings follows a Binomial
distribution with parameters n and θ, where θ denotes the probability of a
recombination. It is commonly assumed that 0 ≤ θ ≤ 1/2 where θ = 1/2
denotes the absence of linkage. A possible null-alternative pair is the testing
of no linkage versus presence of linkage, that is,

H0 : θ = 1/2 vs. H1 : 0 ≤ θ < 1/2. (32)

The distribution of the number of recombinations under the null follows a
Bin(n, θ = 1/2) with the probability mass function, m0, given by

m0(r) =

(
n

r

)
1
2n

for r = 0, 1, 2, . . . , n. (33)
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Figure 1: Graphs of π(·) for different values of a and b.

Since 0 ≤ θ < 1/2 for H1, following Risch (1988), we put a Beta(a, b) prior
on 2θ. Beta priors offer great flexibility in modeling prior information on θ
by choosing appropriate values for a and b. The prior on θ is

π(θ) =
Γ(a + b)
Γ(a)Γ(b)

2 · (2θ)a−1(1− 2θ)b−1 (34)

for 0 ≤ θ < 1/2. The graphs of π are plotted for four different choices of
the pair (a, b) each representing a certain prior belief on the alternative. See
Figure 1. The prior mean and variance is given by

u =
1
2

a

a + b
(35)

v =
1
4

ab

(a + b)2(a + b + 1)
(36)

and the marginal distribution of r, m1, is given by

m1(r) =

(
n

r

)
n−r∑

i=0

(−1)i

(
n− r

i

) (
1
2

)r+i Γ(a + b)Γ(a + r + i)
Γ(a)Γ(a + r + i + b)

(37)

for r = 0, 1, 2, . . . , n. The Bayes factor of H0 to H1 for the testing of (32) is

B(r) = m0(r)/m1(r) (38)

=
1

∫ 1/2
0 L∗(θ) π(θ) dθ

, (39)

where L∗(θ) is the antilog of the lod score, see Ott (1991). Therefore, the
Bayes factor is the inverse of the weighted average of L∗(θ), with weights
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proportional to π(·). Large values of L∗(θ) and hence small values of B(r)
provide evidence against H0. The testing scenario in (32) is a special case
of the more general set-up described in the beginning of Section 3 for which
we may obtain unified testing procedures. We take the total number of
informative offsprings,n, to be 10 in each case. Larger values of n would
lead to tables too large to be reported here.

Table 4 gives the unified testing procedure under uniform prior on H1

(a = 1, b = 1). Table 5 gives the unified testing procedure when a and b are
equal and large (a = 10, b = 10). In the limiting case, the distribution under
H1 will be concentrated at θ = 1/4, and hence, the unified testing procedure
for large and equal a and b will resemble the one for testing H0 : θ = 1/2
versus H1 : θ = 1/4. If b is held fixed with a becoming large, the prior mean
moves closer to 1/2 and the variance goes to 0. In this case, the unified
testing procedure will not be able to distinguish between H0 and H1. This
is reflected by the large conditional error probabilities for all values of r in
Table 6. On the other hand, if the prior belief of θ under the alternative
is strongly concentrated around a point sufficiently removed from 1/2, the
reported CEPs will be much smaller compared to the entries in Table 6.
Table 7 is such a case where a and b are chosen to be 1 and 10, respectively.

We have essentially presented four different situations reflecting various
kinds of prior belief on the alternative for the probability of a recombination,
θ. The four different priors have mass concentrated around specific mean
points of 5/11 (closest to 1/2), 1/4 (intermediate) and 1/22 (furthest from
1/2) reflecting various kinds of prior beliefs for θ. This gives the flexibility
of tailoring the alternatives to particular theories. In the intermediate case
of 1/4, (a = 1, b = 1) and (a = 10, b = 10), more concentration around the
prior mean as measured by the prior variance gives better unified testing
procedures in terms of the reported error probabilities. For all the above
priors and in fact for any prior π, the derived test T ∗ is always a valid test
from the conditional frequentist point of view even though a prior was used
in its derivation. The reported error probabilities arising from the use of T ∗

can be interpreted as the conditional frequentist Type I and Type II error
probabilities. In the case when subjective priors are not available, one can
use the ‘default’ choice of uniform prior on the alternative, while retaining
the frequentist interpretation of the reported error probabilities.
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Table 4. Decisions and CEP based on T ∗ for the testing of (32)
with a = b = 1.

Value Decision CEP Randomized Value Decision CEP Randomized
of r (if any) of r (if any)

0 Reject H0 0.005 - 5 Accept H0 0.270 -
1 Reject H0 0.051 - 6 Accept H0 0.195 -
2 Reject H0 0.200 - 7 Accept H0 0.149 -
3 Reject H0 0.421 - 8 Accept H0 0.119 -
4 No-decision - 0.63 9 Accept H0 0.098 -
4 Accept H0 0.391 0.37 10 Accept H0 0.083 -

Table 5. Decisions and CEP based on T ∗ for the testing of (32)
with a = b = 10.

Value Decision CEP Randomized Value Decision CEP Randomized
of r (if any) of r (if any)

0 Reject H0 0.014 - 5 Accept H0 0.210 -
1 Reject H0 0.048 - 6 Accept H0 0.096 -
2 Reject H0 0.142 - 7 Accept H0 0.043 -
3 Reject H0 0.335 - 8 Accept H0 0.020 -
4 No-decision - 0.32 9 Accept H0 0.009 -
4 Accept H0 0.412 0.68 10 Accept H0 0.004 -

Table 6. Decisions and CEP based on T ∗ for the testing of (32)
with a = 10 and b = 1.

Value Decision CEP Randomized Value Decision CEP Randomized
of r (if any) of r (if any)

0 Reject H0 0.231 - 5 Accept H0 0.483 0.47
1 Reject H0 0.299 - 6 Accept H0 0.444 -
2 Reject H0 0.364 - 7 Accept H0 0.411 -
3 Reject H0 0.422 - 8 Accept H0 0.381 -
4 Reject H0 0.473 - 9 Accept H0 0.356 -
5 No-decision - 0.53 10 Accept H0 0.333 -
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Table 7. Decisions and CEP based on T ∗ for the testing of (32)
with a = 1 and b = 10.

Value Decision CEP Randomized Value Decision CEP Randomized
of r (if any) of r (if any)

0 Reject H0 0.016 - 5 Accept H0 0.196 -
1 Reject H0 0.049 - 6 Accept H0 0.078 -
2 Reject H0 0.136 - 7 Accept H0 0.029 -
3 Reject H0 0.322 - 8 Accept H0 0.011 -
4 No-decision - 0.269 9 Accept H0 0.004 -
4 Accept H0 0.415 0.731 10 Accept H0 0.001 -
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Appendix

Some details of the derivation of equations (7-9) are presented here. Let
the interval [xLB, xUB] denote the common support set of the distributions
of X̃. Also, let IA = [xLB, xL) and IR = [xU , xUB] where xL and xU are
given by (4) and (5), respectively. The values of x̃ in IA, with B(x̃) > 1,
favor H0 while x̃ values in IR, with B(x̃) < 1, favor H1. The function ψ
(defined in (6)) is non-increasing in x̃ with ψ(xUB) = xLB. So, we either
have ψ(IR) ⊂ IA or ψ(IR) ⊇ IA. In the first case, ψ(xU ) < xL; thus, we
define the boundaries of the acceptance and rejection regions, xa and xr, by
xa = ψ(xU ) and xr = xU . This gives equation (7). In the second case, we
have ψ(xU ) ≥ xL; thus, we take xa = xL and xr = x0 where ψ(x0) = xL, or
in other words, x0 = ψ−1(xL). This gives equation (8).

The conditioning statistic S(x̃) in (10) defines a pairing of points via ψ,
with one point from the acceptance region and the other from the rejection
region, with equal evidential strength; thus, when S(x̃) = s, the points ψ(s)
and s have equal strength of evidence with ψ(s) favoring H0 and s favoring
H1. Exact pairing is obtained for points x̃ ≥ xr with a point x̃ ≤ xa. The
remaining points x̃ ∈ (xa, xr) fall into the no-decision region; evidence for or
against H0 is weak for these points. The test T ∗ given in (9) is defined in
terms of the acceptance, rejection and the no-decision regions.
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Proof of Theorem 1. Due to the randomization, F0 and F1 have
densities, say, f0 and f1, respectively, with respect to Lebesgue measure, λ,
under H0 and H1. From the definition of ψ, we have F0(ψ(x̃)) = 1− F1(x̃),
or equivalently,

f0(ψ(x̃))|ψ′
(x̃)| = f1(x̃), (40)

by diffferentiating both sides with respect to x̃ where ψ
′
(·) denotes the deriv-

ative of ψ(·). Note that the equality in (40) is satisfied almost everywhere
(with respect to the Lebesgue measure on the real line).

Part (a): We have that

PH0(Reject H0 |S(x̃) = s) = PH0(X̃ = s | X̃ = s or X̃ = ψ(s))

=
f0(s)

f0(s) + f0(ψ(s))|ψ′(s)|
=

f0(s)
f0(s) + f1(s)

(by (40))

=
B(s)

1 + B(s)
,

where the last equality is obtain by dividing by f0(s) on both the numerator
and denominator.

Part (b): In a similar way,

PH1(Accept H0 |S(x̃) = s) = PH0(X̃ = ψ(s) | X̃ = s or X̃ = ψ(s))

=
f0(ψ(s))|ψ′

(s)|
f0(s) + f0(ψ(s))|ψ′(s)|

=
f1(s)

f0(s) + f1(s)
(by (40))

=
1

1 + B(s)
,

where the last equality is obtain by dividing by f1(s) on both the numerator
and denominator. The proofs of (a) and (b) are essentially the same as in
Berger, Brown and Wolpert (1994). The proofs presented here are based
on the randomized observation space, X̃, and not on the space of possible
Bayes factors values as was done in Berger, Brown and Wolpert (1994).
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To see that the reported error probabilities of T ∗ do not depend on the
randomized outcome, note that

α∗(B(x̃)) =
B(x̃)

1 + B(x̃)
=

B(x)
1 + B(x)

and

β∗(B(x̃)) =
1

1 + B(x̃)
=

1
1 + B(x)

since B(x) = B(x̃) for x = [x̃]. Thus, α∗ and β∗ depend only on the observed
discrete x and not on the randomized outcome, x̃. The decision made is also
independent of the randomized outcome for all values of x except for x = [xa]
if (7) holds, or for x = [xr] if (8) holds.

For the composite hypothesis testing in Section 3, define the condition-
ing statistic, S(·), and ψ(·) similarly as before for the random variable Ỹ .
Following Berger, Boukai and Wang (1997), we have

Eπ0(θ |S=s ) ( Pθ{Reject H0 |S(ỹ) = s }) =
BY (s)

1 + BY (s)
(41)

and
Eπ1(θ |S=s ) ( Pθ{Accept H0 |S(ỹ) = s }) =

1
1 + BY (ψ(s))

(42)

where π0(·|S = s ) and π1(·|S = s ) are the distributions of θ in Θ0 and
Θ1 respectively, given that S = s. Equation (41) states that the Bayesian
posterior probability of H0 is the weighted average of conditional Type I
error probabilities with weights equal to π0(·|S = s ). Equation (42) relates
the Bayesian posterior probability of H1 and the conditional Type II error
probabilities in a similar way. See Berger, Boukai and Wang (1997) for
details.
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