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Abstract

The quality of biometric samples has a significant im-
pact on the accuracy of a matcher. Poor quality biometric
samples often lead to incorrect matching results because
the features extracted from these samples are not reliable.
Therefore, dynamically assigning weights to the outputs of
individual matchers based on the quality of the samples pre-
sented at the input of the matchers can improve the overall
recognition performance of a multibiometric system. We
propose a likelihood ratio-based fusion scheme that takes
into account the quality of the biometric samples while com-
bining the match scores provided by the matchers. Instead
of estimating the quality of the template and query images
individually, we estimate a single quality metric for each
template-query pair based on the local image quality mea-
sures. Experiments on a database of 320 users with iris and
fingerprint modalities demonstrate the advantages of utiliz-
ing the quality information in multibiometric systems.

1. Introduction

Several studies have shown that the poor quality of bio-
metric samples leads to a significant reduction in the accu-
racy of a unimodal biometric system [13, 3, 4]. Multibio-
metric systems integrate the evidence presented by multiple
biometric sources. Such systems are more robust to varia-
tions in the sample quality than unimodal systems due to
presence of multiple (and usually independent) pieces of
evidence. However, the accuracy of a multibiometric sys-
tem can be further improved by estimating the quality of the
biometric samples and adaptively weighting the individual
matchers based on the quality values.

Several schemes have been proposed to exploit the signal
quality in fusion at the match score level. Bigun et al. [2]
developed a model based on Bayes theory to normalize and
combine the match scores provided by multiple matchers.
In their model, the quality of the match score is used to es-
timate the variance of the score distribution. Toh et al. [12]
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use multivariate polynomials that take into account the qual-
ity information for fusing fingerprint and voice. Fierrez-
Aguilar et al. [8] employ a SVM classifier to classify a 2-D
score vector (with fingerprint and signature match scores)
into genuine and impostor classes. Samples with good qual-
ity are assigned higher cost of misclassification during the
training of the SVM classifier. Quality-weighted sum rule
has been used for fusion of multiple fingerprint matchers in
[7] and for fusion of face and voice matchers in [11]. Baker
et al. [1] combine match scores corresponding to all ten
fingers of a person using a Bayesian belief network.

We present a likelihood ratio based approach to perform
quality-based fusion of match scores in a multibiometric
system (see Figure 1). We employ the generalized like-
lihood ratio-based (GLRF) scheme for fusion [5] since it
circumvents the need for score normalization and selection
of optimal weights for fusion on a case-by-case basis. We
extend the GLRF scheme to account for the quality of the
samples presented to each matcher. The effectiveness of the
proposed fusion scheme is demonstrated on a multimodal
database with fingerprint and iris modalities. Rather than
estimating the quality of the template and query images
individually, we compute a single quality metric for each
template-query pair based on the local quality measures.
Our quality metric represents the quality of the matching
process, given the template-query pair.

2. Automatic quality assessment

We determine the quality of local regions in fingerprint
and iris images and utilize the local quality to derive an
overall quality of the match between each pair of template
and query images.

2.1. Fingerprint quality

We estimate the local quality in a fingerprint image us-
ing the coherence measure described in [3]. Let Tf and
Qf represent the template and the query fingerprint images,
respectively. We partition Tf and Qf into blocks of size
12× 12 pixels and estimate the coherence γ and γ′ for each
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Figure 1. Framework for quality-based fusion. Here, Tf and Qf (Ti and Qi) represent the template
and query fingerprint (iris) images, sf and qf (si and qi) represent the fingerprint (iris) match score
and quality, M (M ′) represents the template (query) fingerprint minutiae, ∆ represents the rigid
transformation between Tf and Qf and QPFS represents the quality-based product fusion score.

block in Tf and Qf , respectively. Let M1, . . . ,Mm be the
m minutiae in Tf , where M i = {xi, yi, θi}, i = 1, . . . ,m.
Let M ′

1, . . . ,M
′
n be the n minutiae in Qf , where M ′

j =
{x′

j , y
′
j , θ

′
j}, j = 1, . . . , n. Let γ(x, y) and γ′(x, y) be the

quality (coherence) of the block which contains the location
(x, y) in Tf and Qf , respectively. Let t(x, y,∆) be the rigid
transformation function that transforms a point (x, y) in Tf

to a point (x′, y′) in Qf . Here, ∆ = [∆x,∆y,∆θ] repre-
sents the translation and rotation parameters which are esti-
mated using the 2-D dynamic programming based minutiae
matcher described in [9]. Let A and A′ be the area of the
fingerprint regions in the template and the query. The area
of overlap, Ao, between the fingerprint regions of Tf and
Qf can be computed using ∆. The overall quality of the
matching between the template and query fingerprint im-
ages, qf (Tf , Qf ), is then defined as follows.

qf (Tf , Qf ) =
(

r1 + r2

m + n

) (
2Ao

A + A′

)
, where (1)

r1 =
m∑

i=1

γ(xi, yi)γ′(t(xi, yi,∆)) and

r2 =
n∑

j=1

γ(t(x′
j , y

′
j ,−∆))γ′(x′

j , y
′
j).

Here, 0 ≤ qf (Tf , Qf ) ≤ 1. Note that if a minutia point in
the template (query) falls outside the fingerprint region of

the query (template) image, then the quality of that minu-
tia is set to zero. Given good quality template and query
fingerprint images with large overlap, qf (Tf , Qf ) ≈ 1.

2.2. Iris quality

We estimate the quality of match between the template
and query iris images using a modified version of the
wavelet-based iris quality assessment scheme proposed in
[4]. The template (Ti) and query (Qi) iris images are seg-
mented into iris and non-iris regions [4]. A 2-D isotropic
Mexican hat wavelet filter is applied to the iris regions of Ti

and Qi at three different scales (0.5, 1.0, 2.0) and the prod-
uct of the responses at the three scales is obtained. In order
to account for the variations in the pupil dilation, iris size
and rotation, the rubber sheet model proposed by Daugman
[6] is used to normalize the wavelet responses. Let wr,s

be the product of the wavelet responses at the rth radius
(r = 1, . . . , R) and sth angle (s = 1, . . . , S) in Ti and let
w′

r,s be the corresponding wavelet response in Qi. The av-
erage wavelet response at each radius r is computed as wr

(= 1
S

∑S
s=1 wr,s) and w′

r (= 1
S

∑S
s=1 w′

r,s) in Ti and Qi,
respectively. The quality of match between the template
and query iris images, qi(Ti, Qi), is defined as the correla-
tion coefficient between the vectors w = [w1, . . . , wR] and
w′ = [w′

1, . . . , w
′
R]. Here, −1 ≤ qi(Ti, Qi) ≤ 1.
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3. Quality-based likelihood ratio fusion

Let Sgen (Simp) denote a genuine (impostor) match
score with distribution function Lgen(s) (Limp(s)) and den-
sity lgen(s) (limp(s)). The Neyman-Pearson theorem [10]
states that the optimal test for deciding between the genuine
and impostor class is the likelihood ratio (LR) test. Dass
et al. [5] model the genuine and impostor score densities
as generalized densities (mixture of discrete and continu-
ous components). Given a generic set of match scores, the
generalized density can be estimated as follows. For a fixed
threshold T , the discrete match scores are identified as those
scores s0 with P (S = s0) > T , where 0 ≤ T ≤ 1. In our
experiments, the value of T is set to 0.02. The probability
P (S = s0) is estimated as N(s0)/N , where N(s0) is the
number of observations in the given score set that equals s0

and N is the total number of observations. After removing
the discrete components, the continuous component of the
density is estimated using a non-parametric kernel density
estimation technique with a Gaussian kernel. In a multibio-
metric system with R matchers, let lj,gen(sj) ((lj,imp(sj))
be the generalized density estimated from the genuine (im-
postor) scores of the jth matcher, for j = 1, . . . , R. If the
R biometric matchers are independent, the joint density of
the R match scores, s = [s1, . . . , sR] is the product of the
R marginal densities. Hence, the combined likelihood ratio
(also known as the product fusion score), PFS(s), is

PFS(s) =
R∏

j=1

lj,gen(sj)
lj,imp(sj)

. (2)

An observed set of match scores s is assigned to the genuine
class if PFS(s) is greater than a fixed threshold η, η > 0.

The proposed quality-based fusion technique is based on
the following observation. When the samples presented to
a matcher are of poor quality, it cannot reliably distinguish
between genuine and impostor users and the likelihood ratio
will be closer to 1. On the other hand, for good quality sam-
ples, the likelihood ratio will be greater than 1 for genuine
users and less than 1 for impostors. Hence, if we estimate
the joint density of the match score and the quality of the
match for each matcher, the resulting likelihood ratios of
the individual matchers will be implicity weighted. Since
the match score and the quality metric are correlated, we use
the copula-based multivariate density estimation technique
[5] for the joint density estimation. Let qj be the quality of
the match provided by the jth matcher, for j = 1, . . . , R.
Let lj,gen(sj , qj) ((lj,imp(sj , qj)) be the joint density of the
match score and the quality estimated from the genuine
(impostor) template-query pairs of the jth matcher. The
quality-based product fusion score, QPFS(s), is given by

QPFS(s) =
R∏

j=1

lj,gen(sj , qj)
lj,imp(sj , qj)

. (3)

4. Experimental results

We have used the multimodal database collected at West
Virginia University consisting of fingerprint and iris modal-
ities for 320 users with 5 samples per modality. The finger-
print match scores (sf ) are obtained using the 2-D dynamic
programming-based minutiae matcher [9]. The iris match
score (si) is the Hamming distance between the template
and query Iriscodes [6]. The quality of the fingerprint (qf )
and iris (qi) matches are estimated using the procedure de-
scribed in Section 2. 50% of the genuine matches (match
scores and the corresponding quality measures) and 25% of
the impostor matches are used for density estimation, while
the remaining data is used for evaluating the performance.
This training-test partitioning is repeated 20 times and we
report the average performance over the 20 trials.

Figure 2 shows the performance of the product and the
quality-based product fusion rules. Fusion of fingerprint
and iris using the product rule gives a large improvement in
the GAR compared to the best single modality (here, iris).
The quality-based product fusion rule further improves the
GAR. For example, at a FAR of 0.01%, the GAR of the
iris modality is 75.2%, while the GAR of the product and
quality-based product fusion rules are 89.5% and 94.8%,
respectively. From figure 2, we also observe that the perfor-
mance of the quality-based product fusion rule is compara-
ble to the quality-weighted sum of scores fusion method1

proposed in [11]. However, it must be emphasized that the
weighted sum rule requires normalization of match scores
and tuning of matcher and quality weights to achieve higher
accuracy. On the other hand, the proposed likelihood ratio-
based fusion scheme is a principled approach that does not
involve any ad-hoc normalization and weighting.

Figure 3 shows the biometric samples of a user whose
iris images are of good quality (qi = 0.7), but fingerprint
images are of poor quality (qf = 0.4). The product fusion
score (PFS) is low (log (PFS) = 1.4), resulting in a false
reject. However, the quality-based fusion rule implicitly as-
signs a higher weight to the modality with better quality
(iris). Hence, the QPFS is high (log (QPFS) = 10.6) and
the user is accepted by the multibiometric system.

5. Summary

We have proposed a likelihood ratio-based approach to
achieve quality-dependent match score fusion. The pro-
posed method does not use any ad-hoc weighting scheme to

1In quality-weighted sum of scores fusion method, the fused score is

obtained as QSS(s) =
∑R

j=1
αjsj , where αj = wj + βjqj . Here,

wj and βj are known as matcher and quality weights, respectively. In our
experiments, weights of 0.4 and 0.6 are assigned to the iris and fingerprint
matchers, respectively. The quality weight βj is set to 0.1.
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Figure 3. Illustration of quality-based fusion. This user’s iris images ((a) template and (b) query) are
of good quality and the fingerprints ((c) template and (d) query) are of poor quality. Quality-based
fusion rule implicitly assigns a higher weight to the iris modality, resulting in a correct acceptance
of a genuine user who was falsely rejected by the simple product fusion rule.

Figure 2. ROC curves for product fusion and
quality-based product fusion rules.

combine the match scores. Instead, by estimating the joint
densities of the match score and the quality of the genuine
and impostor classes, the likelihood ratios of the individ-
ual matchers are implicity weighted. We have also modi-
fied existing quality assessment algorithms for fingerprint
and iris images to determine the joint quality of a template-
query pair. The proposed quality-based fusion scheme pro-
vides significant improvement in the performance of a mul-
timodal (iris + fingerprint) biometric system.
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