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Summary

We propose a new approach to small area estimation based on joint modelling of means and

variances. The proposed model and methodology not only improve small area estimators

but also yield “smoothed” estimators of the true sampling variances. Maximum likelihood

estimation of model parameters is carried out using EM algorithm due to the non-standard

form of the likelihood function. Confidence intervals of small area parameters are derived

using a more general decision theory approach, unlike the traditional way based on minimiz-

ing the squared error loss. Numerical properties of the proposed method are investigated via

simulation studies and compared with other competitive methods in the literature. Theo-

retical justification for the effective performance of the resulting estimators and confidence

intervals is also provided.

Keyword: EM algorithm; Empirical Bayes; Hierarchical models; Rejection sampling;

Sampling variance; Small area estimation;

1 Introduction

Small area estimation and related statistical techniques have become a topic of growing im-

portance in recent years. The need for reliable small area estimates is felt by many agencies,

both public and private, for making useful policy decisions. An example where small area

techniques are used in practice is in the monitoring of socio-economic and health conditions
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of different age-sex-race groups where the patterns are observed over small geographical

areas.

It is now widely recognized that direct survey estimates for small areas are usually un-

reliable due to their typically large standard errors and coefficients of variation. Hence, it

becomes necessary to obtain improved estimates with higher precision. Model-based ap-

proaches, either explicit or implicit, are elicited to connect the small areas and improved

precision is achieved by “borrowing strength” from similar areas. The estimation technique

is also known as shrinkage estimation since the direct survey estimates are shrunk towards

the overall mean. The survey based direct estimates and sample variances are the main

ingredients for building aggregate level small area models. The typical modeling strategy

assumes that the sampling variances are known while a suitable linear regression model is

assumed for the means. For details of these developments, we refer to reader to Ghosh and

Rao (1994), Pfeffermann (2002) and Rao (2003). The typical area level models are subject

to two main criticisms. First, in practice, the sampling variances are estimated quantities,

and hence, are subject to substantial errors. This is because they are often based on equiva-

lent sample sizes from which the direct estimates are calculated. Second, the assumption of

known and fixed sampling variances of typical small area models does not take into account

the uncertainty in the variance estimation into the overall inference strategy.

Previous attempts have been made to model only the sampling variances; see, for ex-

ample, Maples et al. (2009); Gershunskaya and Lahiri (2005); Huff et al. (2002); Cho et al.

(2002); Valliant (1987) and Otto and Bell (1995). The articles Wang and Fuller (2003) and

Rivest and Vandal (2003) extended the asymptotic mean square error (MSE) estimation of

small area estimators when the sampling variances are estimated as opposed to the stan-

dard assumption of known variances. Additionally, You and Chapman (2006) considered the

modelling of the sampling variances with inference using full Bayesian estimation techniques.

The necessity of variance modelling has been felt by many practitioners. The latest

developments in this area are nicely summarized in a recent article by William Bell of the

United States Census Bureau 2008. He carefully examined the consequences of issues (i)

and (ii) in the context of MSE estimation of model based small area estimators. He also

provided numerical evidence of MSE estimation for Fay-Herriot models (given in Equation

(1)) when sampling variances are assumed to be known. The developments in the small area

literature so far can be “loosely” viewed as (i) smoothing the direct sampling error variances

to obtain more stable variance estimates with low bias and (ii) (partial) accounting of the

uncertainty in sampling variances by extending the Fay-Herriot model.

As evident, lesser or no attention has been given to account for the sampling variances

effectively while modeling the mean compared to the volume of research that has been done

for modeling and inferring the means. There is a lack of systematic development in the
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small area literature that includes “shrinking” both means and variances. In other words,

we like to exploit the technique of “borrowing strength” from other small areas to “improve”

variance estimates as we do to “improve” the small area mean estimates. We propose a

hierarchical model which uses both the direct survey and sampling variance estimates to

infer all model parameters that determine the stochastic system. Our methodological goal

is to develop the dual “shrinkage” estimation for both the small area means and variances,

exploiting the structure of the mean-variance joint modelling so that the final estimators are

more precise. Numerical evidence shows the effectiveness of dual shrinkage on small area

estimates of the mean in terms of the MSE criteria.

Another major contribution of this article is to obtain confidence intervals of small area

means. The small area literature is dominated by point estimates and their associated

standard errors; it is well known that the standard practice of [ point estimate ± q ×
standard error ], where q is the Z (standard normal) or t cut-off point, does not produce

accurate coverage probabilities of the intervals; see Hall and Maiti (2006) and Chatterjee

et al. (2008) for more details. Previous work is based on the bootstrap procedure and has

limited use due to the repeated estimation of model parameters. We produce confidence

intervals for the means from a decision theory perspective. The construction of confidence

intervals is easy to implement in practice.

The rest of the article is organized as follows. The proposed hierarchical model for the

sample means and variances is developed in Section 2. The estimation of model parameters

via the EM algorithm is developed in Section 3. Theoretical justification for the proposed

confidence interval and coverage properties are presented in Section 4. Sections 5 and 6

present a simulation study and a real data example, respectively. Some discussion and

concluding remarks are presented in Section 7. An alternative model formulation for small

area as well as mathematical details are provided in the Appendix.

2 Proposed model

Suppose n small areas are in consideration. For the i-th small area, let (Xi, S
2
i ) be the pair of

direct survey estimate and sampling variance, for i = 1, 2, · · · , n. Let Zi = (Zi1, · · · , Zip)T

be the vector of p covariates available at the estimation stage for the i-th small area. We

propose the following hierarchical model:

Xi | θi, σ2
i ∼ Normal(θi, σ

2
i )

θi ∼ Normal(ZT
i β, τ

2)

}
(1)

(ni−1)S2
i

σ2
i
|σ2

i ∼ χ2
ni−1

σ−2
i ∼ Gamma(a, b),

}
(2)
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independently for i = 1, 2, · · · , n. In the model elicitation, ni is the sample size for a simple

random sample (SRS) from the i-th area, β = (β1, · · · , βp)T is the p× 1 vector of regression

coefficients, and B ≡ (a, b,β, τ 2)T is the collection of all unknown parameters in the model.

Also, Gamma(a, b) is the Gamma density function with positive shape and scale parameters

a and b, respectively, defined as f(x) = {baΓ(a)}−1 e−x/b xa−1 for x > 0, and 0 otherwise.

The unknown σ2
i is the true variance of Xi and is usually estimated by the sample variance

S2
i . Although S2

i s are assumed to follow a chi-square distribution with (ni − 1) degrees

of freedom (as a result of normality and SRS), we note that for complex survey designs,

the degree of freedom needs to be determined carefully (e.g., Maples et al., 2009). More

importantly, the role of the sample sizes in shrinkage estimation of σ2
i is as follows: For low

values of ni, the estimate of σ−2
i is shrunk more towards the overall mean (ab) compared

to higher ni values. Thus, for variances, sample sizes play the same role as precision in

shrinkage estimation of the small area mean estimates. We note that You and Chapman

(2006) also considered the second level of the sampling variance modelling. However, the

hyperparameters related to prior of σ2
i are not data driven, they are rather chosen in such a

way that the prior will be vague. Thus, their model can be viewed as the Bayesian version of

the models considered in Rivest and Vandal (2003) and Wang and Fuller (2003). The second

level modelling of σ−2
i in (2) can be further extended to σ−2

i ∼ Gamma( b, exp(ZT
i β2)/b ) (so

that E(σ−2
i ) = exp(ZT

i β2)) for another set of p regression coefficients β2 to accommodate

covariate information in the variance modeling.

Although our model is motivated by Hwang et al. (2009), we like to mention that Hwang

et al. (2009) considered shrinking means and variances in the context of microarray data

where they prescribed an important solution by plugging in a shrinkage estimator of variance

into the mean estimator. The shrinkage estimator of the variance in Hwang et al (2009) is

a function of S2
i only, and not of both Xi and S2

i ; see Remarks 2 and 3 in Section 2.

Thus, inference of the mean does not take into account the full uncertainty in the variance

estimation. Further, their model does not include any covariate information. The simulation

study described subsequently indicate that our method of estimation performed better than

Hwang et al. (2009).

In the above model formulation, inference for the small area mean parameter θi can be

made based on the conditional distribution of θi given all of the data { (Xi, S
2
i ,Zi), i =

1, · · · , n }. Under our model set up, the conditional distribution of θi is a non-standard

distribution and does not have a closed form, thus requiring numerical methods, such as

Monte Carlo and the EM algorithm, for inference, and the details are provided in the next

section.
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3 Inference Methodology

3.1 Estimation of unknown parameters via EM algorithm

In practice,B ≡ (a, b,β, τ 2)T is unknown and has to be estimated from the data { (Xi, S
2
i ,Zi),

i = 1, 2, · · · , n }. Our proposal is to estimateB by the marginal maximum likelihood method:

Estimate B by B̂ where B̂ maximizes the marginal likelihood LM(B) =
∏n

i=1 LM, i(B),

where

LM, i ∝
Γ(ni/2 + a)

τΓ(a)ba

∫
exp

{
−(θi −ZT

i β)2

2τ 2

}
ψ
−(ni/2+a)
i dθi, (3)

and

ψi ≡
{

0.5(Xi − θi)2 + 0.5(ni − 1)S2
i +

1

b

}
. (4)

The marginal likelihood LM involves integrals that cannot be evaluated in closed-form, and

hence, one has to resort to numerical methods for its maximization. One such algorithm is

the EM (Expectation-Maximization) iterative procedure which is used when such integrals

are present. The EM algorithm involves augmenting the observed likelihood LM(B) with

missing data; in our case, the variables of the integration, θi, i = 1, 2, · · · , n, constitute this

missing information. Given θ ≡ { θ1, θ2, · · · , θn }, the complete data log likelihood (`c) can

be written as

`c(B,θ) =
n∑
i=1

[
log{Γ(ni/2 + a)} − log{Γ(a)} − a log(b)− 0.5 log(τ 2)

−(θi −ZT
i β)2

2τ 2
− (ni/2 + a) log(ψi)

]
,

where the expression of ψi is given in Equation (4). Starting from an initial value of B, B(0)

say, the EM algorithm iteratively performs a maximization with respect to B. At the t-th

step the objective function maximized is

Q(B|B(t−1)) = E(`c(B,θ))

=
n∑
i=1

[
log{Γ(ni/2 + a)} − log{Γ(a)} − a log(b)− 0.5 log(τ 2)

−E(θi −ZT
i β)2

2τ 2
− (ni/2 + a)E{log(ψi)}

]
,

The expectation in Q(B|B(t−1)) is taken with respect to the conditional distribution of each

θi given the data, π(θi|Xi, S
2
i ,Zi,B

(t−1)), which is

π(θi|Xi, S
2
i ,Zi,B) ∝ exp{−0.5(θi −ZT

i β)2/τ 2}ψ−(ni/2+a)
i . (5)

5



One challenge here is that the expectations are not available in closed form. Thus, we

resort to a Monte carlo method for evaluating the expressions. Suppose that R iid samples

of θi are available, say θi,1, θi,2, · · · , θi,R. Then, each expectation of the form E{h(θi)} can

be approximated by the Monte Carlo mean

E{h(θi)} ≈
1

R

R∑
r=1

h(θi, k). (6)

However, drawing random numbers from the conditional distribution π(θi|Xi, S
2
i ,Zi,B

(t−1))

is also not straightforward since this is not a standard density. Samples are drawn using

the accept-reject procedure (Robert and Casella, 2004): For a sample from the target den-

sity f , sample x from the proposal density g, and accept the sample as a sample from f

with probability (f(x)/(M∗ g(x)) where M∗ = supx {(f(x)/g(x))}. One advantage of the

accept-reject method is that the target density f only needs to be known upto a constant of

proportionality which is the case for π(θi|Xi, S
2
i ,Zi,B

(t−1)) in (5); due to the non-standard

form of the density, the normalizing constant cannot be found in a closed form. For the

accept-reject algorithm, we used the normal density ∝ exp{−0.5(θi−ZT
i β)2/τ 2} as the pro-

posal density. The acceptance probability is calculated to be [{1/b+ 0.5(ni − 1)S2
i }/{1/b+

0.5(ni − 1)S2
i + 0.5(θi − Xi)

2}]ni/2+a. One can choose a better proposal distribution to in-

crease acceptance probability or different algorithm (such as the adaptive rejection sampling

or envelope accept-reject algorithms) but our chosen proposal worked satisfactorily in the

studies we conducted.

The maximizer of Q(B|B(t−1)) at the t-th step can be described explicitly. The solutions

for β and τ 2 are available in closed form as

β(t) =

(
n∑
i=1

ZiZ
T
i

)−1( n∑
i=1

ZiE(θi)

)
and

(
τ (t)
)2

=
1

n

n∑
i=1

E(θi −ZT
i β)2,

respectively. Also, a(t) and b(t) are obtained by solving Sa = ∂Q(B|B(t−1))/∂a = 0 and

Sb = ∂Q(B|B(t−1))/∂b = 0 using the Newton-Raphson method where

Sa =
n∑
i=1

∂

∂a
log{Γ(ni/2 + a)} − n{ ∂

∂a
log{Γ(a)} − n log(b)−

n∑
i=1

E{log(ψi)}

and

Sb = −na
b

+
n∑
i=1

(ni/2 + a)

b2
E(ψ−1

i ).

We set B(t) = (a(t), b(t),β(t),
(
τ (t)
)2

) and proceed to the (t + 1)-st step. This maximization

procedure is repeated until the estimate B(t) converges. The MLE of B, B̂ = B(∞), once

convergence is established.
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3.2 Point Estimate and Confidence Interval for θi

Following the standard technique, the small area estimator of θi is taken to be

θ̂i = E(θi|Xi, S
2
i ,Zi,B)

∣∣∣
B=

ˆB
, (7)

the expectation of θi with respect to the conditional density π(θi|Xi, S
2
i ,Zi,B) with the

maximum likelihood estimate B̂ plugged in for B. The estimate θ̂i is calculated numerically

using the Monte Carlo procedure (6) described in the previous section. Subsequently, all

quantities involving the unknown B will be plugged in by B̂ although we still keep using

the notation B for simplicity.

Further, we develop a confidence interval for θi based on a decision theory approach.

Following Joshi (1969), Casella and Hwang (1991), Hwang et al. (2009), consider the loss

function associated with the confidence interval C given by (k/σ)L(C)− IC(θ) where k is a

tuning parameter independent of the model parameters, L(C) is the length of C and IC(θ)

is the indicator function taking values 1 or 0 depending on whether θ ∈ C or not. Note that

this loss function takes into account both the coverage probability as well as the length of the

interval; the positive quantity (k/σ) serves as the relative weight of the length compared to

the coverage probability of the confidence interval. If k = 0, the length of the interval is not

under consideration, which leads to the optimal C to be (−∞,∞) with coverage probability

1. On the other hand, if k = ∞, then the coverage probability is 0, leading to optimal C

to be a point set. The Bayes confidence interval for θi is obtained by minimizing the risk

function (the expected loss) E {[(k/σ)L(C)− IC(θ)]|Xi, S
2
i ,Zi, B )}. The optimal choice of

C is given by

Ci(B) = {θi : kE(σ−1
i |Xi, S

2
i ,Zi, B) < π(θi |Xi, S

2
i ,Zi, B)}. (8)

Since Ci(B) is obtained by minimizing the posterior risk, one may like to interpret this

as a Bayesian credible set. However, following Casella and Berger (1990, pp470), we will

continue naming Ci(B) as a confidence interval. From an empirical Bayes perspective also,

this terminology is more appropriate. How the tuning parameter k determines the confidence

level of Ci(B) will be shown explicitly in Section 3.3.

Assuming k is known for the moment, we follow the steps below to calculate Ci(B). The

conditional densities of σ2
i and θi are given by

π(σ2
i |Xi, S

2
i ,Zi,B) ∝ exp[−0.5(Xi −ZT

i β)2/(σ2
i + τ 2)− {0.5(ni − 1)S2

i + 1/b}(1/σ2
i )]

(σ2
i )

(ni−1)/2+a+1(σ2
i + τ 2)1/2

(9)

and (5), respectively, which as mentioned before, are not available in closed form. Thus,

similar to the case of θi, E(σ−1
i |Xi, S

2
i ,Zi,B) is computed numerically using the Monte
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Carlo method by approximating the expected value with the mean 1
N

∑N
k=1

1
σi,k

where σ2
i,r,

r = 1, 2, · · · , R are R samples from the conditional density π(σ2
i |Xi, S

2
i ,Zi,B). The accept

reject procedure is used to draw random numbers from π(σ2
i |Xi, S

2
i ,Zi,B) with a proposal

density given by the inverse Gamma

exp[−{0.5(ni − 1)S2
i + 1/b}(1/σ2

i )]

(σ2
i )

(ni−1)/2+a+1
,

and the acceptance probability

exp{−0.5(Xi −ZT
i β)2/(σ2

i + τ 2)}
(σ2

i + τ 2)1/2
× exp(0.5)× |Xi −ZT

i β |.

The next step is to determine the boundary values of Ci(B) by finding two θi values

that satisfy the equation k E(σ−1
i |Xi, S

2
i ,Zi,B)− π(θi|Xi, S

2
i ,Zi,B) = 0. This requires the

normalizing constant in (5)

Di =

∫ ∞
−∞

exp{−0.5(θi −ZT
i β)2/τ 2}ψ−(ni/2+a)

i dθi

to be evaluated numerically. This is obtained using the Gauss-Hermite integration with 20

nodes.

3.3 Choice of k

The choice of the tuning parameter k in (8) is taken to be

k = k(B) = ui, 0 φ

(
tα/2

√
ni + 2a+ 2

ni − 1

)
(10)

where φ is the standard normal distribution, tα/2 is (1− α/2)-th percentile of t distribution

with (ni − 1) degrees of freedom, and ui, 0 =

√
1 +

σ2
i

τ2
. Since ui, 0 involves σ2

i which is

unknown, an estimated version ûi,0 is obtained by plugging in the maximum a posteriori

estimate

σ̂2
i = σ̂2

i (B̂) = arg maxσ2
i
π(σ2

i |Xi, S
2
i ,Zi,B)

∣∣∣
B=

ˆB
(11)

in place of σ2
i . Also, B is replaced by B̂ in (11). We demonstrate that the coverage

probability of Ci(B̂) with this choice of k is close to 1 − α. Theoretical justifications are

provided in Section 4.

3.4 Other Related Methods for Comparison

Our method will be denoted as Method I. Three other methods to be compared are briefly

described below.
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Method II: Wang and Fuller (2003) considered the Fay-Herriot small area estimation

model given by (1). Their primary contribution is the construction of the mean squared

error estimation formulae for small area estimators with estimated sampling variances. In

the process, they had constructed two formulae denoted by M̂SE1 and M̂SE2. We use

M̂SE1 for our comparisons, which was derived following the bias correction approach of

Prasad and Rao (1990). The basic difference with our approach is that they did not smooth

the sampling variances, only taking the uncertainty into account while making inference on

the small area parameters. The method of parameter estimation, which is moment based

for all the model parameters, is also different from ours.

Method III: Hwang et al. (2009) considered the log-normal and inverse Gamma mod-

els for σ−2
i in (2) for micro array data analysis. Their simulation study showed improved

performance of confidence intervals for small area estimators under the log-normal model

compared to the inverse gamma. We thus modified their log-normal model to add covariates

and for unequal sample sizes ni as follows:

Xi | θi, σ2
i ∼ Normal(θi, σ

2
i )

θi ∼ Normal(ZT
i β, τ

2);

}
(12)

logS2
i = log(σ2

i ) + δi; δi ∼ N(mi, σ
2
ch,i)

log(σ−2
i ) ∼ N(µv, τ

2
v ),

}
(13)

independently for i = 1, 2, · · · , n. Note that the model for the means in (12) is identical

to (1). The quantities τ 2, mi and σ2
ch,i are assumed to be known and are given by mi =

E
[
log
(
χ2
ni−1

(ni−1)

)]
and σ2

ch,i = V ar
[
log
(
χ2
ni−1

(ni−1)

)]
. Thus, the sample size nis determine the

shape of the χ2 distribution via its degrees of freedom parameter. More importantly, as

mentioned earlier, the different sample sizes account for different degrees of shrinkage for the

corresponding true variance parameter. Similar to their estimation approach, the unknown

model parameters µv and τ 2
v are estimated using a moment based approach in an empirical

Bayes framework giving µ̂v and τ̂ 2
v , respectively. Note that in Hwang et al. (2009), these

estimates are obtained based on the hierarchical model for σ2
i of (13) only without regard

to the modelling (1) of the mean. We refer to the Section 5 of their paper for details of

the estimation of the hyper-parameters. We follow the same procedure using only (13) to

estimate µv and τ 2
v in the case of unequal sample sizes.

The Bayes estimate of σ2
i is derived to be

σ̂2
i, B = exp

[
E{ln(σ2

i )| ln(S2
i )}
]

=

{
S2
i

exp(mi)

}Mv,i

exp{µv(1−Mv,i)}
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where Mv,i = τ 2
v /(τ

2
v + σ2

ch,i) and with estimates plugged in for the unknown quantities. The

conditional distribution of θi given (Xi, S
2
i ), which is given by

π(θi|Xi, S
2
i ) =

∫ ∞
0

π(θi |Xi, S
2
i , σ

2
i ) π(σ2

i |Xi, S
2
i ) dσ

2
i ,

is approximated as π(θi|Xi, S
2
i ) ≈

∫∞
0

π(θi |Xi, S
2
i , σ̂

2
i, B)π(σ2

i |Xi, S
2
i ) dσ

2
i = π(θi |Xi, S

2
i , σ̂

2
i, B).

This suggests the approximate Bayes estimator of the small area parameters given by

θ̂i = E(θi |Xi, σ̂
2
i, B) = M̂iXi + (1− M̂i)Z

T
i β̂, (14)

where M̂i = τ̂ 2
v /(τ̂

2
v + σ̂2

i,B). The confidence interval for θi is obtained as

CH
i =

{
θi :
|θi − θ̂i|
M̂i σ̂2

i,B

< −2ln{k
√

2π} − ln(M̂i)

}
. (15)

In Section 3 of Hwang et al. (2009) pp. 269-271, the interval CH
i is matched with

the 100(1 − α)% t-interval [ | θi − Xi| < tSi ] to obtain the expression of k as k ≡ ki =

exp{−t2/2} exp{mi/2}/(
√

2π).

Method IV: This method comprises of a special case of the Fay-Herriot model in (1)

but with the estimation of model parameters adopted from Qiu and Hwang (2007). Qiu and

Hwang (2007) considered the model

Xi | θi, σ2 ∼ Normal(θi, σ
2)

θi ∼ Normal(0, τ 2),

}
(16)

independently for i = 1, 2, · · · , n, for analyzing microarray experimental data. When model

parameters are known, they proposed the point estimator θ̂i = M̂Xi, M̂ =
(

1− (n−2)σ2

|X|2

)
+

where a+ denotes max(0, a) for any number a and |X| = (
∑n

i=1 X
2
i )1/2. The confidence

interval for θi is θ̂i± v1(M̂), where v2
1(M̂) = σ2M̂(q1− ln(M̂)) with q1 denoting the standard

normal cut-off point corresponding to desired level of confidence coefficient and v1(0) ≡ 0.

Here For the purpose of comparisons with our method, the first level of the hierarchical

model in (16) is modified as follows:

Xi = ZT
i β + vi + ei

where vi ∼ Normal(0, τ 2) and ei ∼ Normal(0, S2
i ) independently for i = 1, 2, · · · , n, and S2

i

is treated as known. Following Qiu and Hwang (2007), τ 2 is estimated by

τ̃ 2 =
1

n− p

∑
i

û2
i −

∑
i

S2
i

1−ZT
i

(
n∑
i=1

ZiZ
T
i

)−1

ZT
i



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and τ̂ 2 = max(τ̃ 2, 1/n) where ûi = Xi −ZT
i β̂ and β̂ =

(∑n
i=1ZiZ

T
i

)−1
(
∑n

i=1ZiXi). Next,

define M̂0i = τ̂2

τ̂2+S2
i

and M̂i = max(M̂0i,M1) where in the latter expression, M̂0i is truncated

by M1i = 1 − Qα/(ni − 2), and Qα is the α-th quantile of a chi-squared distribution with

ni degrees of freedom. This M̂i is used in the formula of the confidence interval for θi given

earlier. When applying this method in our simulation study and real data analysis, we

modified the model to accommodate such unequal sample sizes and covariate information

mentioned earlier.

Remark 1. Hwang et al. (2009) choose k by equating (15) to the t interval based on only Xi

for the small area parameters θi. Note that Xi is the direct survey estimator. Consequently,

this choice of k does not have any direct control over the coverage probability of the interval

constructed under shrinkage estimation. On the other hand, our proposed choice of k has

been derived to maintain nominal coverage under, specifically, shrinkage estimation.

Remark 2. Note that without any hierarchical modelling assumption, Si and Xi are inde-

pendent as S2
i and Xi are, respectively, ancillary and the complete sufficient statistics for θi.

However, under models (1) and (2) the conditional distribution of σ2
i and θi involve both Xi

and S2
i which is seen from (5) and (9).

Remark 3. In Hwang et al. (2009), the shrinkage estimator for σ2
i is based only on the

information on S2
i , and not of both Xi and S2

i . The Bayes estimator of σ2
i is plugged into

the expression for the Bayes estimator of small area parameters. Thus, Hwang et al.’s small

area estimator is written as E(θi |Xi, σ̂
2
i, B) in (14) where σ̂2

i, B is the Bayes estimator of σ2
i .

Due to equation (9), the shrinkage estimator of σ2
i depends on (Xi − ZT

i β)2 in addition to

S2
i in contrast to Hwang et al. (2009). We believe this could be the reason for improved

performance of our method compared to Hwang et al. (2009).

Remark 4. As mentioned previously, the degree of freedom associated with the χ2 distribution

for the sampling variance need not to be simply ni − 1, ni being the sample size for i-th

area. There is no sound theoretical result for determining the degree of freedom when the

survey design is complex. The article Wang and Fuller (2003) approximated the χ2 with a

normal based on the Wilson-Hilferty approximation. If one knows the exact sampling design

then the simulation based guideline of Maples et al. (2009) could be useful. For county

level estimation using the American Community Survey, Maples et al. (2009) suggested the

estimated degrees of freedom of 0.36×√ni.
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4 Theoretical justification

Theoretical justification for the choice of k according to equation (10) is presented in this

section. As in Hwang et al. (2009), the conditional distribution of θi given Xi and S2
i can

be approximated as π(θi|Xi, S
2
i ,B) ≈ π(θi |Xi, S

2
i ,B, σ̂

2
i ), where σ̂2

i as defined in (11). In

a similar way, approximate E(σ−1
i |Xi, S

2
i ,B) by E(σ−1

i |Xi, S
2
i ,B) ≈ σ̂−1

i . Based on these

approximations, we have Ci(B) ≈ C̃i(B) where C̃i(B) is the confidence interval for θi given

by C̃i(B) =
{
θi : π(θi |Xi, S

2
i ,B, σ̂

2
i ) ≥ k σ̂−1

i

}
. From (1), it follows that the conditional

density π(θi |Xi, S
2
i ,B, σ

2
i ) is a normal with mean µi and variance vi, where µi and vi are

given by the expressions

µi = wiXi + (1− wi)ZT
i β, vi =

(
1

σ2
i

+
1

τ 2

)−1

= σ2
i

(
1 +

σ2
i

τ 2

)−1

, (17)

and wi =
1/σ2

i

(1/σ2
i+1/τ2)

. Now, choosing k = û0 φ
(
tα/2

√
ni+2a+2
ni−1

)
as discussed, the confidence

interval C̃i(B) becomes

C̃i(B) =

{
θi : û0i

|θi − µ̂i|
σ̂i

≤ tα/2

√
ni + 2a+ 2

ni − 1

}
, (18)

where µ̂i is the expression for µi in (17) with σ2
i replaced by σ̂2

i . Now consider the behavior

of σ̂2
i ≡ σ̂2

i (B) as τ 2 ranges between 0 and ∞. When τ 2 →∞, σ̂2
i converges to

σ̂2
i (∞) ≡ σ̂2

i (a, b,β,∞) =
(ni−1)

2
S2
i + 1

b
ni−1

2
+ a+ 1

=
(ni − 1)S2

i + 2
b

ni + 2a+ 1
.

Similarly, when τ 2 → 0, σ̂2
i converges to

σ̂2
i (0) ≡ σ̂2

i (a, b,β, 0) =
(Xi −ZT

i β)2 + (ni − 1)S2
i + 2

b

ni + 2a+ 2
.

For all intermediate values of τ 2, we have min{σ̂2
i (0), σ̂2

i (∞)} ≤ σ̂2
i ≤ max{σ̂2

i (0), σ̂2
i (∞)}.

Therefore, it is sufficient to consider the following two cases: (i) σ̂2
i ≥ σ̂2

i (∞), where it follows

that (ni + 2a + 2)σ̂2
i = (ni + 2a + 1)σ̂2

i + σ̂2
i ≥ (ni − 1)S2

i + 2
b

+ σ̂2
i ≥ (ni − 1)S2

i , and (ii)

σ̂2
i ≥ σ̂2(0), where it follows that (ni+2a+2)σ̂2

i = (Xi−ZT
i β)2 +(ni−1)S2

i + 2
b
≥ (ni−1)S2

i .

So, in both cases (i) and (ii),

(ni + 2a+ 2) σ̂2
i ≥ (ni − 1)S2

i . (19)

Since θi − µi ∼ N (0, σ2
i τ

2/(σ2
i + τ 2)) and (ni − 1)S2

i /σ
2
i ∼ χ2

ni−1, the confidence interval

Di =

{
θi : u0i

|θi − µi|
Si

≤ tα/2

}
(20)
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has coverage probability 1− α. Thus, if u0 and µi are replaced by û0 and µ̂i, it is expected

that the resulting confidence interval D̃i, say, will have coverage probability of approximately

1− α. From (19), we have

P{C̃i(B)} ≥ P (D̃i) ≈ 1− α, (21)

establishing an approximate lower bound of 1− α for the confidence level of C̃i(B).

In (21), B was assumed to be fixed and known. When B is unknown, we replace B by

its marginal maximum likelihood estimate B̂. Since (21) holds regardless of the true value of

B, substituting B̂ for B in (21) will involve an order O(1/
√
N) of error where N =

∑n
i=1 ni.

Compared to each single ni, this pooling of nis is expected to reduce the error significantly

so that C̃i(B̂) is sufficiently close to C̃i(B) to satisfy the lower bound of 1− α in (21).

5 A simulation study

5.1 Simulation setup

We considered a simulation setting using a subset of parameter configurations from Wang

and Fuller (2003). Each sample in the simulation study was generated from the following

steps: First, generate observations using the model

Xij = β + ui + eij,

where ui ∼ N(0, τ 2) and eij ∼ N(0, niσ
2
i ), independently for j = 1, . . . , ni and i = 1, . . . , n.

Then, the random effects model for the small area mean, Xi, is

Xi = β + ui + ei, independently for i = 1, . . . , n,

where Xi ≡ X̄i· ≡ n−1
i

∑ni
j=1Xij and ei ≡ ēi· ≡ n−1

i

∑ni
j=1 eij. Therefore, Xi ∼ N(θi, σ

2
i )

where θi = β + ui, θi ∼ N(β, τ 2) and ei ∼ N(0, σ2
i ). We estimated σ2

i with the unbiased

estimator

S2
i = (ni − 1)−1ni

−1

ni∑
j=1

(Xij − X̄i·)
2,

and it follows that (ni − 1)S2
i /σ

2
i ∼ χ2

ni−1, independently for i = 1, 2, · · · , n. Note that the

simulation layout has ignored the second level modeling of sampling variances in (2). Thus,

our result will indicate robustness with respect to the variance model misspecification.

The above steps produced the data (Xi, S
2
i ), i = 1, . . . , n. To simplify the simulation, we

do not choose any covariate information Zi. Similar to Wang and Fuller (2003), we set all

nis equal to m to ease programming efforts. However, the true sampling variances are still

chosen to be unequal: One-third of the σ2
i are set to 1, another one-third are set to 4, and the

13



remaining one-third are set to 16. We take β = 10 and three different choices of τ 2 = 0.25,

1 and 4. These parameter values are chosen from Qiu and Hwang (2007). For each of τ 2, we

generated 200 samples for the two combinations (m,n) = (9, 36) and (18, 180).

In the simulation study, we compare the proposed method with the methods of Wang

and Fuller (2003), Hwang et al. (2009) and Qiu and Hwang (2007) which are referred to as

Methods I, II, III, and IV, respectively, based on bias, mean squared error (MSE), cover-

age probability (CP) of the confidence intervals and the length of the confidence intervals

(ALCI). Table 1 contains the parameter estimates for a, b, β and τ 2. The numerical results

indicate good performance of the maximum likelihood estimates for the model parameters;

the estimated values of β and τ 2 are close to the true values indicating good robustness

properties with respect to distributional misspecification in the second level of (2). Statis-

tically significant estimates for both a and b indicate that “shrunk” sampling variances are

incorporated in the proposed method. Tables 2, 3 and 4 provide numerical results averaged

over areas within each group having the same true sampling variances. The results in the

Tables are based on 200 replications.

Bias Comparisons: In most cases, the bias of the four methods are comparable. There

is no clear evidence of significant differences between them in terms of the bias. High

sampling variance gives more weight to the population mean by construction that makes

the estimator closer to the mean at the second level. On the other hand, Methods I-III use

shrinkage estimators of the sampling variances which would be less than the maximum of

all sampling variances. Thus, Methods I-III tend to have little more bias. However, due to

shrinkage in sampling variances, one may expect a gain in the variance of the estimators

which, in turn, makes the MSE smaller. Among Methods I-III, Method I performed better

compared to Methods II and III, which were quite similar to each other. The maximum gain

using Method I compared to Method II is 99%.

MSE Comparisons: In terms of the MSE, Method I performed consistently better

than the other three in all cases except when the ratio of σ2
i to τ 2 is the lowest: (σ2

i =

1)/(τ 2 = 4) = 0.25. In this case, the variance between small areas (model variance) is much

higher than the variance within the areas (sampling variance). When using our method to

estimate θi, the information “borrowed” from other areas may misdirect the estimation: The

estimated mean of the Gamma distribution for σ−2
i from the second level in (2) is âb̂ which

equals 0.44 approximately for both the (m,n) combinations of (9, 36) and (18, 180) (the true

value is ab = 0.4). Thus, E(σ−2
i |Xi, S

2
i , B̂) is significantly smaller than 1 due to shrinkage

towards the mean for the group which has the true value of σ2
i = 1. Also, since σ2

i is smaller

than τ 2, the weight of Xi should be much more compared to β, the overall mean. However,

due to underestimation of σ−2
i in this case, the resulting estimator puts less weight on Xi

which leads to higher MSE. However, this underestimation will decrease for large sample
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sizes due to the consistency of Bayes estimators. This fact is actually observed when the

sample size increases from n = 36 to n = 180 for the case σ2
i = 1 and τ 2 = 4. Compared

to Method II, Method I shows gains in most of the simulation cases; the maximum gain is

30% while the only loss is 9% for the combination σ2
i = 1 and τ 2 = 4 for n = 36 and m = 9.

Similarly, for Method III, the maximum gain of Method I is 77% and the only loss of 11% is

for the same parameter and sample size specifications.

ACP Comparisons: We obtained confidence intervals with confidence level 95%. Method

I and III do not indicate any under-coverage. This is expected from their optimal confidence

interval construction. Method I meets the nominal coverage rate more frequently than any

other methods. Method II has some under coverage and can go as low as 82%.

ALCI Comparisons: Method I produced considerably shorter confidence intervals in

general. Method IV produced comparable lengths as the other methods in all cases except

when σ2
i was high, in which case, the lengths were considerably higher. The confidence

interval proposed in Qiu and Hwang (2007) does not have good finite sample properties,

particularly for small τ 2. To avoid low coverage, they proposed to truncate M0 = τ 2/(τ 2+σ2
i )

with a positive number M1 = 1−Qα/(ν − 2) for known σ2
i where Qα is the αth-quantile of

a chi-squared distribution with ν degrees of freedom. When the ratio of sampling variance

to model variance, σ2
i /τ

2, is high, M1 tends to be higher than M0. This results in a nominal

coverage but with larger interval lengths. For example, in case of (σ2
i , τ

2) = (16, 0.25), the

ALCI is 11.13 for Method IV whereas ALCI is only 2.78 and 4.56 for Methods I and II.

5.2 Robustness study.

In order to study the robustness of the proposed method with respect to departures from the

normality assumption in the errors, we conducted the following simulation study. Data was

generated as before but with eijs drawn from a double-exponential (Laplace) and an uniform

distribution. The estimators from Method II and III had little effect. This is perhaps due to

the fact that these methods used moment based estimation for model parameter estimation.

Method IV resulted in larger relative bias, MSE and ALCI, and lower coverage probability.

The MSE from Method I is always lower than that from Method II. For τ 2 = 0.25 and 1,

ALCI is smaller for Method I compared to Method II for (n = 36,m = 9) but the results

are opposite when (n = 180,m = 18). In terms of CP, Method II has some under coverage

(lowest is 80%). However, Method I did not have any under-coverage. In order to save space

we only provide the results for parameters a, b, β and τ 2 under the Laplace errors (see Table

5).
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6 Real data analysis.

We illustrate our methodology based on a widely studied example. The data set is from the

U.S. Department of Agriculture and was first analyzed by ?. The data set is on corn and

soybeans productions in 12 Iowa counties. The sample sizes for these areas are small, ranging

from 1 to 5. We shall consider corn only to save space. For the proposed model, the sample

sizes ni > 1 necessarily. Therefore, modified data from You and Chapman (2006) with ni ≥ 2

are used. The mean reported crop hectares for corn (Xi) are the direct survey estimates and

are given in Table 6. Table 6 also gives the sample variances which are calculated based on

the original data assuming simple random sampling. The sample standard deviation varies

widely, ranging from 5.704 to 53.999 (the coefficient of variation varies from 0.036 to 0.423).

Two covariates are considered in Table 6: Zi1, the mean of pixels of corn, and Zi2, the mean

of pixels of soybean, from the LANDSAT satelite data.

The estimates of B are as follows: a = 1.707, b = 0.00135, τ 2 = 90.58 and β =

(−186.0, 0.7505, 0.4100). The estimated prior mean of 1/σ2
i which is the mean of the Gamma

distribution with parameters a and b is ab = 0.002295 with a square root of 0.048 (note that

1/0.048 = 20.85 consistent with the range of the sample standard deviations between 5.704

and 53.999). The small area estimates and their confidence intervals are summarized in

Table 7 and Figure 1. Point estimates of all 4 methods are comparable: the summary

measures comprising of the mean, median, and range of the small area parameter estimates

for Methods I,II,III, and IV are (121.9, 124.1, 122.2, 122.6), (125.2, 120.4, 115.0, 114.5) and

(23.1, 53.0, 58.4, 56.6), respectively. The distribution of θ̂i (plotted based on considering all

the is) are summarized in Figure 2 which shows that there is a significant difference in

their variability. Method I has the lowest variability and is superior in this sense. Further,

smoothing sampling variances has strong implication in measuring uncertainty and hence

in the interval estimation. The proposed method has the shortest confidence interval on an

average compared to all other methods. Methods II and III provide intervals with negative

lower limits. This seems unrealistic because the direct average of area under corn is positive

and large for all the 12 counties (the crude confidence intervals (xi± t0.025Si) do not contain

zero for any of the areas either). Note that Method II does not have any theoretical support

on its confidence intervals. Methods II and III produce wider confidence intervals when

the sampling variance is high. For example, the sample size for both Franklin county and

Pocahontas county is three, but sampling standard deviations are 5.704 and 43.406. Although

the confidence interval under Method I is comparable, they are wide apart for Methods II and

III. This is because although these methods consider the uncertainty in sampling variance

estimates, the smoothing did not use the information from direct survey estimates, resulted

the underlying sampling variance estimates remain highly variable (due to small sample size).
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In effect, the variance of the variance estimator (of the point estimates) is bigger compared to

that in method I. This is further confirmed by the fact that the intuitive standard deviations

of the ”smoothed” small area estimates (one fourth of the interval) are smaller and less

variable under method I compared to the others. Another noticeable aspect of our method

is that the interval widths are similar for counties with same sample size. This could be an

indication of obtaining equ-efficient estimators for equivalent sample sizes.

Model selection: For choosing the best fitting model, we used the Bayesian Information

Criteria (BIC) which takes into account both the likelihood as well as the complexity of the

fitted models. We calculated BICs for the models used in Methods I and III (Hwang et al.,

2009). These two models have the same numbers of parameters with a difference in only

the way the parameters are estimated. The model BIC for Method I is 210.025 and that for

Method III is 227.372. This indicates superiority of our model. We could not compute the

BIC for Wang and Fuller (2003) since they did not use any explicit likelihood.

7 Conclusion

In this paper, joint area level modeling of means and variances is developed for small area

estimation. The resulting small area estimators are shown to be more efficient than the tradi-

tional estimators obtained using Fay-Herriot models which only shrink the means. Although

our model is same as one considered in Hwang et al. (2009), our method of estimation

is different in two ways: In the determination of the tuning parameter k and the use of

π(σ2
i |Xi, S

2
i ,Zi) (which depends additionally on Xi), instead of π(σ2

i |S2
i ,Zi), for construct-

ing the conditional distribution of the small area parameters θi. We demonstrated robustness

properties of the model when the assumption that σ2
i arise from a inverse Gamma distribution

is violated. The borrowing of Xi information when estimating σ2
i as well as the robustness

with respect to prior elicitation demonstrate the superiority of our proposed method. The

parameter values chosen in the simulation study are different than in the real data analysis.

The real data analysis given here is merely for illustration purposes. Our main aim was to

develop the methodology of mean-variance modeling and contrast with some closely related

methods to show its effectiveness. For this reason, we chose parameter settings in the sim-

ulation to be the same as in the well-known small area estimation article Wang and Fuller

(2003).

Obtaining improved sampling variance estimators is a byproduct of the proposed ap-

proach. We have provided an innovative estimation technique which is theoretically justified

and user friendly. Computationally, the method is much simpler compared to other compet-

itive methods such as Bayesian MCMC procedures or bootstrap resampling methods. We

need sampling from posterior distribution only once during the model parameter estimation,
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and the sampled values can be used subsequently for all other purposes. The software is

available from the authors upon request.

ACKNOWLEDGEMENT

The authors like to thank two referees and the Associate Editor for their constructive

comments that lead to a significantly improved version of this article. The research is

partially supported by NSF grants SES 0961649, 0961618 and DMS 1106450.

Appendix

A Derivation of the conditional distributions

From Equation (1) and (2), the conditional joint distribution of {Xi, S
2
i , θi, σ

2
i },

π(Xi, S
2
i , θi, σ

2
i |a, b,β, τ 2), is

π(Xi, S
2
i , θi, σ

2
i |Zi,B) = 1√

2πσ2
i

exp{− (Xi−θi)2
2σ2
i
} 1

Γ(
ni−1

2
)2
ni−1

2

{
(ni − 1)

S2
i

σ2
i

}ni−1

2
−1

exp
{
− (ni−1)S2

i

2σ2
i

}
×
(
ni−1
σ2
i

)
1√

2πτ2
exp{− (θi−Z

T

i β)2

2τ2
} 1

Γ(a)ba

(
1
σ2
i

)a+1

exp
(
− 1
bσ2
i

)
∝ exp

[
− (θi−Z

T

i β)2

2τ2
−
{

(Xi−θi)2
2

+
(ni−1)S2

i

2
+ 1

b

}
1
σ2
i

]
×
(

1
σ2
i

)ni
2

+a+1 (
1
τ2

) 1
2 1

Γ(a)ba
.

Therefore the conditional distribution of σ2
i and θi given the data and B are

π(σ2
i |Xi, S

2
i ,Zi,B ) =

∫
π(Xi, S

2
i , θi, σ

2
i |Zi,B)dθi

∝ 1

(σ2
i )

(ni−1)/2+a+1
(σ2

i + τ 2)1/2
exp

[
−(Xi −ZT

i β)2

2(σ2
i + τ 2)

−
{

1

2
(ni − 1)S2

i +
1

b

} (
1

σ2
i

)]
,

π(θi|Xi, S
2
i ,Zi,B) =

∫
π(Xi, S

2
i , θi, σ

2
i |Zi,B)dσ2

i

∝ exp

{
−(θi −ZT

i β)2

2τ 2

}
ψ
−(

ni
2

+a)

i

where ψi is defined in Equation (4).
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B Details of the EM algorithm

The maximization of Q(B |B(t−1)) is done by setting the partial derivatives with respect to

B to be zero, that is,
∂Q(B |B(t−1))

∂B
= 0. (B.1)

From the expression of Q(B |B(t−1)) in the text, we give explicit expressions for the

partial derivates with respect to each component of B. The partial derivative corresponding

to β is

∂Q(B |B(t−1))

∂β
=

n∑
i=1

∫
Zi

(
θi−ZTi β

τ2

)
exp

{
− (θi−Z

T

i β)2

2τ2

}
ψ
−(ni2 +a)
i dθi∫

exp

{
− (θi−Z

T

i β)2

2τ2

}
ψ
−(ni2 +a)
i dθi

=
n∑
i=1

E

{
Zi

(
θi −ZT

i β

τ 2

)}
where the expectation is with respect to the conditional distribution of θi, π(θi |Xi, S

2
i ,B).

The expression of the partial derivative corresponding to τ 2 is:

∂Q(B |B(t−1))

∂τ 2
= − n

2τ 2
+

n∑
i=1

∫ (θi−Z
T

i β)2

2(τ2)2
exp

{
− (θi−Z

T

i β)2

2τ2

}
ψ
−(ni2 +a)
i dθi∫

exp

{
− (θi−Z

T

i β)2

2τ2

}
ψ
−(ni2 +a)
i dθi

= − n

2τ 2
+

n∑
i=1

E

{
(θi −ZT

i β)2

2(τ 2)2

}
Similarly for a and b, we get the solutions by setting Sa = 0 and Sb = 0 where Sa and

Sb are, respectively, the partial derivatives of Q(B |B(t−1)) with respect to a and b with

expressions given in the main text. These equations are solved using the Newton-Raphson

method which requires the matrix of second derivatives with respect to a and b. These are

given by the following expressions:

Saa =
∑n

i=1

[
log′′{Γ(ni

2
+ a)} − log′′{Γ(a)}+ V ar{log(ψi)}

]
Sab =

∑n
i=1

[
−1
b

+ 1
b2
E
(

1
ψi

)
− (ni

2
+ a) 1

b2
Cov

{
1
ψi
, log(ψi)

}]
, and

Sbb =
∑n

i=1

{
a
b2
− (ni + 2a) 1

b3
E
(

1
ψi

)
+ (ni

2
+ a) 1

b4
E
(

1
ψ2
i

)
+ (ni

2
+ a)2 1

b4
V ar

(
1
ψi

)} (B.2)

with Sba = Sab. At the u-th step, the update of a and b are given by[
a(u)

b(u)

]
=

[
a(u−1)

b(u−1)

]
−

[
S

(u−1)
aa S

(u−1)
ab

S
(u−1)
ba S

(u−1)
bb

]−1 [
S

(u−1)
a

S
(u−1)
b

]
, (B.3)
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where the superscript (u−1) on Saa, Sab, Sba, Sbb, Sa and Sb denote these quantities evaluated

at the values of a and b at the (u − 1)-th iteration. Once the Newton Raphson procedure

converges, the value of a and b at the t-th step of the EM algorithm is set as a(t) = a(∞) and

b(t) = b(∞).

C An Alternative Small Area Model Formulation

It is possible to reduce the width of the confidence interval C̃(B) based on an alternative

hierarchical model for small area estimation which has some mathematical elegance. The

constant term ni+ 2a+ 2 in (19) becomes ni+ 2a in this alternative model formulation. The

model is given by

Xi | θi, σ2
i ∼ N(θi, σ

2
i ), (C.1)

θi |σ2
i ∼ N(Ziβ, λ σ

2
i ), (C.2)

(ni − 1)S2
i

σ2
i

|σ2
i ∼ χ2

ni−1, (C.3)

σ2
i ∼ Inverse-Gamma(a, b), (C.4)

independently for i = 1, 2, · · · , n. Note that in the above formulation, it is assumed that the

conditional variance of θi is proportional to σ2
i whereas the marginal variance is constant

(by integrating out σ2
i using (C.4). In (1) and (2), the variance of θi is a constant, τ 2,

independent of σ2
i , and there is no conditional structure for θi depending on σ2

i . The set of

all unknown parameters in the current hierarchical model is B = (a, b,β, λ). The inference

procedure for this model is given subsequently. The model essentially assumes that the true

small area effects are not identically distributed even after eliminating the known variations.

C.1 Inference Methodology

By re-parameterizing the variance as in (C.2), some analytical simplifications are obtained

in the derivation of the posteriors of θi and σi given Xi, S
2
i and B. We have

π(σ2
i |Xi, S

2
i ,B) = IG

(
ni
2

+ a,

[
(ni − 1)S2

i

2
+

(Xi −Ziβ)2

2(1 + λ)
+

1

b

]−1
)

where IG(a, b) stands for the inverse Gamma distribution with shape and scale parameters

a and b, respectively. Given B and σ2
i , the conditional distribution of θi is π(θi|Xi, σ

2
i ,B) =

Normal(ZT
i β,

λσ2
i

1+λ
). Integrating out σ2

i , one obtains the conditional distribution of θi given
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Xi, S
2
i and B,

π(θi|Xi, S
2
i ,B) =

∫ ∞
0

π(θi|Xi, σ
2
i , B)π(σ2

i |Xi, S
2
i ,B)dσ2

i

∝
{

(1 + λ)

2λ
(θi −ZT

i β)2 +
δ2

2

}−(ni+2a+1)/2

, (C.5)

where δ2 = (ni − 1)S2
i + (Xi −Ziβ)2/(1 + λ) + 2/b. We can rewrite (C.5) as

π(θi|Xi, S
2
i ,B) =

Γ((ni + 1)/2 + a)
√

1 + λ

δ∗ Γ(ni/2 + a)
√

(ni + 2a)λπ

{
1 +

(θi − µi)2

(ni + 2a)δ∗2 λ/(1 + λ)

}−(ni+2a+1)/2

which can be seen to be a scaled t-distribution with ni + 2a degrees of freedom and scale

parameter δ∗
√

λ
1+λ

with δ∗2 = δ2

(ni+2a)
. Hence,

E(σ−1
i |Xi, Si,B) =

Γ((ni + 1)/2 + a)(δ2/2)−{(ni+1)/2+a}

Γ(ni/2 + a)(δ2/2)−(ni/2+a)
=

Γ((ni + 1)/2 + a)

Γ(ni/2 + a)

√
2

δ∗
√
ni + 2a

.

In this context, choosing k = k(B) =

{
1 +

t2
α/2

ni−1

}−(ni+2a+1)/2√
1+λ
λ

1√
2π

, the confidence

interval in (8) simplifies to

Ci(B) ≡

θi :
| θi − µi |√
λ

1+λ
(ni+2a)δ∗2

ni−1

≤ tα/2

 . (C.6)

Using the similar arguments as before and noting that (ni + 2a)δ∗2 ≥ (ni − 1)S2
i , we have

P{Ci(B)} ≥ P (Di) = 1−α where Di is the confidence interval in (20). WhenB is unknown,

we replaceB by its marginal maximum likelihood estimate B̂. It is expected that the pooling

technique will result in an error small enough so that P{Ci(B̂)} ≈ P{Ci(B)} ≥ 1− α.
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Table 1: Simulation results for the model parameters, a (top left panel), b (top right panel), β

(bottom left panel) and τ 2 (bottom right panel). Here SD represents the standard deviation

over 200 replicates. We took β = 10 and τ 2 = 0.25, 1 and 4.

n = 36, m = 9 n = 180, m = 18 n = 36, m = 9 n = 180, m = 18

τ 2 Mean SD Mean SD τ 2 Mean SD Mean SD

a b

0.25 1.0959 0.1540 1.0328 0.0442 0.25 0.3992 0.0983 0.4249 0.0323

1 1.0937 0.1555 1.0325 0.0445 1 0.4030 0.1012 0.4253 0.0326

4 1.0996 0.1577 1.0339 0.0450 4 0.3999 0.1017 0.4245 0.0328

β τ 2

0.25 10.0071 0.3618 9.9951 0.1853 0.25 0.2558 0.0605 0.2575 0.0097

1 10.0142 0.3311 9.9970 0.1743 1 0.9418 0.3333 1.0426 0.1264

4 10.0282 0.4639 10.0048 0.2254 4 3.5592 1.3316 4.0817 0.5551
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Table 2: Simulation results for prediction when τ 2 = 0.25. Here MSE, ALCI, CP repre-

sent the mean squared error, average confidence interval width, and coverage probability,

respectively.

n = 36, m = 9 n = 180, m = 18

Method Method

σ2
i I II III IV I II III IV

Relative 1 0.0048 0.0198 0.0272 0.0018 -0.0051 -0.0086 -0.0112 -0.0111

bias 4 -0.0033 -0.0061 -0.0145 -0.0158 -0.0130 -0.0109 -0.0065 -0.0116

16 0.0126 0.0370 0.0369 0.0096 -0.0046 -0.0045 -0.0080 -0.0061

MSE 1 0.3066 0.3890 0.6861 0.3805 0.2258 0.2680 0.4470 0.2922

4 0.3281 0.5430 1.3778 0.7285 0.2595 0.3000 0.5805 0.3748

16 0.3715 0.5240 1.6749 1.9316 0.2815 0.2850 0.4856 0.6383

ALCI 1 2.1393 2.5485 4.4906 3.0528 1.9220 1.6006 3.6466 2.4811

4 2.2632 3.9574 6.8887 5.6842 2.0557 2.1524 5.2472 4.2160

16 2.3221 4.5619 9.3335 11.1363 2.1046 2.3308 6.5273 7.8492

CP 1 0.9468 0.9770 0.9771 0.9708 0.9564 0.9710 0.9851 0.9631

4 0.9468 0.9710 0.9829 0.9917 0.9555 0.9660 0.9967 0.9967

16 0.9365 0.9660 0.9933 0.9975 0.9529 0.9610 0.9998 0.9999
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Table 3: Simulation results for prediction when τ 2 = 1. Here MSE, ALCI, CP represent the

mean squared error, average confidence interval width and coverage probability, respectively.

n = 36, m = 9 n = 180, m = 18

Method Method

σ2
i I II III IV I II III IV

Relative 1 -0.0152 0.0205 0.0255 0.0051 -0.0064 -0.0085 -0.0111 -0.0101

bias 4 -0.0167 -0.0164 -0.0151 -0.0219 -0.0151 -0.0121 -0.0133 -0.0164

16 -0.0323 0.0508 0.0515 0.0216 -0.0028 -0.0017 -0.0073 -0.0039

MSE 1 0.5645 0.6330 0.7238 0.6260 0.5288 0.5430 0.5673 0.6336

4 0.8566 1.1100 1.5396 1.0992 0.8159 0.8770 0.9415 0.8948

16 1.0482 1.3100 2.1059 2.3156 0.9786 1.0000 1.1024 1.1878

ALCI 1 3.4550 3.1822 4.4938 3.2117 3.1088 2.5094 3.6763 2.8676

4 4.0321 5.8733 6.8984 5.7909 3.7844 4.2908 5.3323 4.5543

16 4.4082 7.4286 9.3555 11.1555 4.1187 5.1590 6.6785 7.8937

CP 1 0.9704 0.9640 0.9762 0.9275 0.9660 0.9650 0.9786 0.8879

4 0.9633 0.9560 0.9812 0.9808 0.9627 0.9680 0.9918 0.9740

16 0.9533 0.9490 0.9912 0.9938 0.9613 0.9680 0.9974 0.9979
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Table 4: Simulation results for prediction when τ 2 = 4. Here MSE, ALCI, CP represent

the mean squared error, average confidence interval length and the coverage probability,

respectively.

n = 36, m = 9 n = 180, m = 18

Method Method

σ2
i I II III IV I II III IV

Relative 1 -0.0024 0.0248 0.0229 0.0180 -0.0084 -0.0098 -0.0122 -0.0106

bias 4 -0.0343 -0.0310 -0.0210 -0.0340 -0.0110 -0.0092 -0.0174 -0.0132

16 -0.0147 0.0702 0.0767 0.0467 0.0016 0.0024 -0.0059 0.0012

MSE 1 0.8822 0.8590 0.8579 1.0559 0.8359 0.8180 0.8541 0.8605

4 2.0577 2.2900 2.1818 2.2422 2.0424 2.1000 2.0935 2.1130

16 3.4516 3.7600 3.9267 3.8981 3.3153 3.3500 3.3939 3.3631

ALCI 1 4.6318 4.1936 4.5369 3.7677 4.0256 3.5346 3.9626 3.7499

4 6.2015 10.9093 7.0376 6.4314 5.9000 9.0913 6.2217 6.1540

16 7.7221 18.0039 9.6718 11.3341 7.4430 14.6665 8.3908 8.7537

CP 1 0.9791 0.9670 0.9733 0.9029 0.9674 0.9570 0.9600 0.9468

4 0.9556 0.9670 0.9725 0.9496 0.9592 0.9610 0.9633 0.9573

16 0.9510 0.9670 0.9796 0.9858 0.9573 0.9650 0.9718 0.9776

Table 5: Simulation results for the model parameters, a (top left panel), b (top right panel), β

(bottom left panel) and τ 2 (bottom right panel) when the errors follow a laplace distribution.

Here SD represents the standard deviation over 200 replicates. We took β = 10 and τ 2 =

0.25, 1 and 4.

n = 36, m = 9 n = 180, m = 18 n = 36, m = 9 n = 180, m = 18

τ 2 Mean SD Mean SD τ 2 Mean SD Mean SD

a b

0.25 0.9624 0.1632 0.9471 0.0498 0.25 0.5793 0.1733 0.5279 0.0501

1 0.9628 0.1657 0.9476 0.0497 1 0.5816 0.1777 0.5275 0.0503

4 0.9689 0.1694 0.9487 0.0499 4 0.5758 0.1796 0.5263 0.0503

β τ 2

0.25 9.9736 0.3775 9.9800 0.1773 0.25 0.2696 0.0882 0.2565 0.0074

1 9.9753 0.3709 9.9836 0.1662 1 1.0508 0.2501 1.0403 0.0668

4 9.9736 0.4835 9.9855 0.2161 4 3.9624 1.1719 4.1256 0.4201
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Table 6: Corn data from You and Chapman (2006).

County ni Xi Z1i Z2i

√
S2
i

Franklin 3 158.623 318.21 188.06 5.704

Pocahontas 3 102.523 257.17 247.13 43.406

Winnebago 3 112.773 291.77 185.37 30.547

Wright 3 144.297 301.26 221.36 53.999

Webster 4 117.595 262.17 247.09 21.298

Hancock 5 109.382 314.28 198.66 15.661

Kossuth 5 110.252 298.65 204.61 12.112

Hardin 5 120.054 325.99 177.05 36.807

Table 7: Results of the corn data analysis. Here CI and LCI represent the confidence interval

and the length of the confidence interval, respectively.

County θ̂i CI LCI θ̂i CI LCI

I: Proposed method II: Wang and Fuller (2003)

Franklin 131.8106 104.085, 159.372 55.287 155.4338 124.151, 193.094 68.943

Pocahontas 108.7305 80.900, 136.436 55.536 102.3682 -38.973, 244.019 282.993

Winnebago 109.0559 81.430, 136.646 55.216 115.9093 -53.768, 279.314 333.083

Wright 131.6113 103.736, 159.564 55.828 131.0674 8.330, 280.263 271.932

Webster 113.1484 92.805, 133.348 40.543 109.4795 32.514, 202.675 170.161

Hancock 129.4279 111.781, 147.193 35.412 124.1028 56.750, 162.013 105.262

Kossuth 121.0071 103.451, 138.626 35.175 116.7147 68.049, 152.454 84.405

Hardin 130.2520 112.373, 148.114 35.741 137.7983 51.734, 188.373 136.638

III: Hwang et al. (2009) IV: Qiu and Hwang (2007)

Franklin 158.4677 128.564, 188.370 59.805 157.7383 146.999, 168.477 21.478

Pocahontas 100.1276 -44.039, 244.295 288.334 101.1661 19.444, 182.887 163.442

Winnebago 114.1473 0.065, 228.228 228.163 113.7746 56.263, 171.286 115.022

Wright 140.3717 -24.119, 304.862 328.982 143.2244 41.559, 244.889 203.330

Webster 115.7865 50.297, 181.275 130.978 115.2224 75.124, 155.320 80.196

Hancock 111.3087 66.213, 156.403 90.189 113.1766 83.691, 142.661 58.970

Kossuth 110.9585 74.366, 147.550 73.184 112.3239 89.520, 135.127 45.607

Hardin 126.6093 40.040, 213.178 173.137 123.9049 54.607, 193.202 138.594
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Figure 1: Corn hectares estimation. The vertical line for each county displays the confidence

interval of θ̂i, with θ̂i marked by the circle, for (I) Proposed method, (II)Wang and Fuller

(2003), (III)Hwang et al. (2009) and (IV)Qiu and Hwang (2007).
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Figure 2: Boxplot of estimates of corn hectares for each county. (I) to (IV) are the 4 methods

corresponding to Figure 1.
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