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Fingerprint individuality refers to the extent of uniqueness of finger-

prints and is governed by the distribution of fingerprint features, termed

minutiae, in a population. This paper develops a flexible class of marked

point processes for minutiae and associated methodology for assessing fin-

gerprint individuality. Inference is carried out in a Bayesian MCMC frame-

work. The flexibility of the model fit to different kinds of minutiae patterns

is demonstrated using real fingerprints. Evidence of a Paired Impostor Cor-

respondence (EPIC) is developed as a measure of fingerprint individuality

and its value is obtained using a simulation procedure based on the fitted

models.

1. Introduction. The fingertip pattern of an individual is unique to that person. This is

the central premise of fingerprint based authentication systems used for identifying individuals.

In practice, however, various sources of variability can confound this uniqueness information and

cause erroneous decisions to be made. A central problem in fingerprint analysis, therefore, is

to determine the amount of information in a fingerprint and assess the extent of uniqueness.

These problems can be addressed by eliciting statistical models that adequately capture the

different sources of variability. This paper develops statistical models for fingerprint features,

called minutiae, that exhibit certain distributional characteristics, such as clustering tendencies

and spatial dependence. Inference methodology is developed for these models and is utilized for

quantifying the extent of uniqueness in a pair of fingerprints.

1.1. The Application. A salient characteristic of fingerprint images is the smooth flow-like

patterns with alternating dark and light lines, termed as ridges and valleys, over the entire

fingerprint domain. Figure 1 illustrates this salient pattern for two fingerprint images in a publicly

available collection called the NIST database. Occasionally, the ridges abruptly end or bifurcate,

and these anomalous terminations and bifurcations are termed as minutiae. Minutiae information

consists of the location of the ridge anomaly and the orientation, which is the direction of the

ridge flow measured as an angle with respect to the horizontal axis at the minutiae location.

Minutiae locations take values in the fingerprint spatial domain of S ≡ [0, 512]× [0, 512]. Opposite
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(a) (b)

Fig 1. Two fingerprints exhibiting different ridge flow patterns and minutiae clustering characteristics. The
white squares and lines denote minutiae locations and orientations, respectively. Panels (a) and (b), respectively,
correspond to Data 1 and 2 in Section 7.

ridge flows are equivalent, and therefore, the domain of minutiae orientations is Ω ≡ (0, π]. The

information of a minutiae is thus s = (x,w) where x and w are respectively, the location and

orientation information.

The fingerprint matching process entails determining the degree of similarity between a pair of

fingerprint images. One such similarity measure is to determine the number of minutiae matches

between the image pair. A minutiae match is defined by a pair of minutiae, sj = (xj , wj), j = 1, 2,

one from the first image and the other from the second, which satisfies

|x1 − x2|d ≤ r0 and |w1 − w2|a ≤ w0 (1)

for some fixed thresholds r0 and w0, where | · |d is the Euclidean distance in R2 and | · |a is the

angular distance |w|a = min{|w|, π − |w|}.

The goal here is to determine whether the fingerprint images (or, in short, prints) are from

the same finger or different fingers, called as a genuine and impostor match, respectively. The

differences in a true match pair will be largely removed once rotation and translation corrections

are made (which are caused by possibly different placements of the finger onto the sensor or any

acquisition platform for obtaining the print). Fingerprint based authentication proceeds by first

extracting all minutiae information to generate a minutiae set for each print. One minutiae set is

then affinely transformed (i.e., by rotation and translation) to best match the minutiae set of the

other, in the sense that the highest number of minutiae matches is produced. A high (respectively,

low) number of minutiae matches provides support for a genuine (respectively, impostor) match.

Additionally, if different fingers correspond to different individuals, the matching process decides

between a genuine and an impostor identity. This is the case when we know that the two prints

are prints of the right index finger, for example.

The two prints in Figure 1 are used to demonstrate this procedure. A matching between them
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yields the number of minutiae matches to be τ0 = 13 when r0 = 5 and w0 = 18 degrees (see (1)).

The central question now is “can we decide that the prints are from the same finger or are they

an impostor pair?” Is τ0 = 13 matches large enough to convince us that the prints come from

the same finger? For any such decision rule, what are the associated error rates? This is precisely

the problem of fingerprint individuality.

There have been numerous court cases that have highlighted the need for an assessment of in-

dividuality in forensic testimony. In the case of Daubert v. Merrell Dow Pharmaceuticals (1993),

the U.S. Supreme Court ruled that in order for expert forensic testimony to be allowed in courts,

it had to be subject to principles of scientific validation. Following Daubert, forensic evidence

based on fingerprints was first challenged in the 1999 case of U.S. v. Byron C. Mitchell, stating

that the fundamental premise for asserting the uniqueness of fingerprints had not been objectively

tested and its potential matching error rates were unknown. Subsequently, fingerprint based iden-

tification has been challenged in more than 20 court cases in the United States. To address these

concerns, several research investigations have proposed measures that characterize the extent of

uniqueness of fingerprints (i.e., fingerprint individuality); see Pankanti et al. (2002), Zhu et al.

(2007) and the references therein. The primary aim of these measures is to capture the inherent

variability and uncertainty when an individual is identified based on fingerprint evidence.

There are a couple of salient characteristics that are typical of minutiae in fingerprint im-

ages. First, the number of minutiae in a fingerprint image is random since the feature extraction

process depends on the effectiveness of the algorithm as well as the quality of the input image.

Second, minutiae locations tend to show clustering tendencies (Scolve 1979; Stoney and Thorn-

ton 1986; Zhu et al. 2007), and third, the orientations of spatially neighboring minutiae show

high correlation. Previous approaches have either not modeled the clustering tendencies or have

assumed that the minutiae information is independent and identically distributed. These models

for fingerprint individuality, therefore, do not capture the observed spatial dependence between

neighboring minutiae orientations. By viewing the minutiae information as a marked point pro-

cess in R2 (with orientations as the marks), our aim is to develop novel point process models

in R2 with spatially dependent distributions for the marks, and subsequently, utilize them for

assessing individuality. The inference for the spatially varying marked processes is carried out in

a Bayesian MCMC framework. One particular aspect of our MCMC methodology is the incor-

poration of a dimension-changing Reversible Jump step to update the number of clusters of the

spatial point pattern. A key point of our models is that they are flexible; Section 7 demonstrates

that the proposed models fit well to fingerprint images with different minutiae characteristics,

which in turn, give reliable estimates of fingerprint individuality.

We denote the minutiae sets extracted from two prints (such as in Figure 1) during the finger-

print authentication process by M1 and M2 in that order, and the number of minutiae matches

between M1 and M2 by the random variable S. We model the minutiae set Mj as a realization

from a spatially dependent marked point process, fj for j = 1, 2. To address the question of finger-
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print individuality, our approach is to develop a model for the distribution of S = S(M1,M2) for

all pairs of impostor prints (that is, prints from different fingers) that have minutiae distributions

f1 and f2. Further, M1 and M2 are assumed to be generated independently of each other.

Our model is designed to reflect the spatial dependence in a minutiae set. However, a truly

genuine pair of prints will have much stronger dependence than is captured by the model. Two

prints from the same finger will have f1 = f2, but will behave like dependent (and not inde-

pendent) realizations from this model. Therefore, the number of matches from two independent

realizations will behave like a result from an impostor pair, even if f1 = f2. We can use our model

to investigate the distribution of S when faced with an impostor pair. In general, we expect that

it will be concentrated on small values, so sufficiently large values are an indication that we have

a true match.

The extent of fingerprint individuality is determined in terms of EPIC (Evidence of a Paired

Impostor Correspondence) under the assumption that the prints are an impostor pair from the

aforementioned population. Mathematically, EPIC is expressed as

EPIC( τ0 ) = P (S ≥ τ0 ) (2)

with τ0 denoting the observed number of matches. EPIC is a measure of fingerprint individuality

wherein large values of EPIC indicate strong evidence for an impostor match and vice versa. For a

truly impostor pair, τ0 is typically small (but not exactly 0 due to some degree of random match-

ing), usually falling within the variability bounds of S. As a result, EPIC will be large, reflecting

strong evidence for the impostor case. To illustrate this numerically, consider the fingerprints in

Figure 1 which have a total of 76 and 59 minutiae for panels (a) and (b), respectively; these

are prints f0001 and f0002 from the NIST database reported in Table 7. Figure 2 (a) gives the

distribution of S based on 5, 000 realizations; the methodological details on how this is obtained

are given in Section 5. Note that S takes on small values ranging mostly around 10 matches. The

value of τ0 = 13 is within the variability bounds of S, thus giving high evidence for an impostor

pair based on EPIC.

Next, we derive the EPIC value for a truly genuine pair. Figure 2 (b) gives the histogram

based on 5, 000 realizations of S for a genuine pair of fingerprints, f0002 and s0002, from the

NIST database in Table 7. Note that although f0002 and s0002 are a genuine pair, values of S

are typically small, ranging between 6 to 16 matches. The histogram in Figure 2 (b) reflects the

variability of S when a pair of impostor prints is randomly selected from the population with

f1 = f2 = f . However, the observed number of matches τ0 = 22 in this case (see Table 7) is far

from the variability bounds of S. Thus, EPIC for a truly genuine pair will be small since most of

the probability mass in (2) is concentrated on small S values and τ0 is usually a relatively larger

number.

Compared to the probability of a random correspondence (PRC), an alternative fingerprint

individuality measure (Zhu et al. 2007; Dass and Li 2009) which compares two arbitrary prints
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Fig 2. The distribution S for impostor pairs when independent minutiae sets Mj ∼ fj for j = 1, 2; panel (a)
(respectively, (b)) corresponds to a truly impostor (respectively, genuine) pair with f1 6= f2 (respectively, f1 = f2).

randomly selected from a super-population, EPIC performs a conditional analysis by restricting

the population to only fingerprints having the same minutiae distributions as the two prints in

question.

The rest of the paper is organized as follows: Section 2 discusses the general theory of marked

processes and develops models that incorporate clustering and spatial dependence in these pro-

cesses. Sections 3 and 4 describe specific marked spatial point process models for the analysis of

fingerprints. Although our discussion is based on processes in R2, the discussion can be general-

ized to Rq, q > 2 in a straightforward manner. A fully Bayesian inferential framework is developed

for fitting the models to the observed data in Section 5. Section 6 gives the simulation results

for two special cases of our models. The two fingerprint images in Figure 1 are analyzed as an

illustration of the proposed methodology in Section 7 together with other examples. Details of the

computational procedure as well as other tables and plots are available online as supplementary

material.

2. Spatial Point Processes. We consider only finite point processes subsequently. A finite

spatial point process X is a (finite) random subset of a bounded region S ⊆ R2, with realizations

given by the set of observations xn ≡ { x1, x2, · · · , xn } of n ≥ 0 points contained in S. It follows

that the realizations xn belong to the space ∪∞

n=0 S
n where Sn is the n-fold product space of S.

The distribution of a finite spatial point process can be characterized by the following hierarchical
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specification of distributions (Daley and Vere-Jones 1988):

(i) A distribution {pn} for n ≥ 0 determining the total number

of points in X with
∑

∞

n=0 pn = 1, and

(ii) for each integer n ≥ 1, a probability distribution Πn(·) on

Sn that determines the joint distribution of the points

given their total number, n.

(3)

The density (or, likelihood) of a spatial point process is given by the expression jn(xn) satisfying

jn(xn) dxn = P{there are exactly n points in the process, one in each of the

distinct infinitesimal balls centered at xi, Bxi
(dxi)}.

(4)

The term jn(xn) corresponds to the density of the Janossy measure for spatial point processes

(Daley and Vere-Jones 1988). If fn(x1, · · · , xn) is the symmetric density function corresponding

to Πn, the density of X is given by

jn(xn) = pn fn(x1, · · · , xn). (5)

Note that the densities defined in (4) and (5) are valid only for finite point processes as is the

case here.

A marked spatial point process is an extension of a spatial point process in which an ad-

ditional random variable wx (called a mark) is observed at each point x of xn. Typically, wx

represents some additional attribute(s) measured at the point x with a possibly different domain,

Ω ⊂ Rp (Stoyan & Stoyan 1998; Møller and Waagerpetersen 2003). Throughout this paper, a

generic marked spatial point process will be denoted by (xn, wxn
) ≡ { (x,wx) : x ∈ xn }. The

distribution of a marked spatial point process can be characterized by adding a third level to the

hierarchical specification of (3), namely,

(iii) Given n and xn, the marks wxn
have a distribution Πw

n (·)

with density gn.
(6)

It follows from the hierarchical specification of (i)-(iii) that the marked spatial point process

(xn,wxn
) has a density given by

jn(xn,wxn
) = pn fn(x1, · · · , xn) gn(wxn

), (7)

where the density in (7) is a natural extension of the density of the Janossy measure in (4) to

the marked spatial process (xn,wxn
).

An important special case of the general formulation is the Poisson point process on R2 defined

in terms of a non-negative intensity measure λ : S → (0,∞). In this case,

pn = P (N = n) = exp(−λ0)λ
n
0 /n! (8)
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where N follows a Poisson distribution with mean λ0 =
∫

S λ(s) ds, and the density x1, x2, · · · , xn

given n are iid with

fn(x1, x2, · · · , xn) =

n
∏

i=1

(λ(xi)/λ0) . (9)

A marked Poisson point process additionally involves a third level elicitation involving the dis-

tribution of marks wxn
given n and xn, gn(wxn

) say, where gn is an n-dimensional joint density

on the n-fold space of the marks. Subsequently, a marked Poisson point process will be denoted

by P(λ, gn) with parameters λ and gn as described above.

Our application to fingerprint images in Section 7 requires the development of marked spatial

point processes with dependent marks; that is, marks corresponding to realized random points

on S that are spatially close should exhibit a high degree of correlation. One way of incorporating

such spatial dependence is to consider general marked spatial point processes whose densities are

given by (7). Clustering tendencies by such processes can be ensured by requiring pn, fn(xn) and

gn(wxn
) to be functions with respect to some mixing distribution, Φ, say. The details are given

in the subsequent sections.

3. The Multivariate Normal and Wrapped Normal Distributions. Before defining

the marked processes on minutiae, we first need the following two specific classes of multivariate

distributions.

The d-variate normal density with mean µ ∈ Rd and covariance matrix
∑

∈ Rd ×Rd is given

by

φd

(

x |µ,
∑

)

=
1

(2π)d/2 det(
∑

)1/2
exp

{

−
1

2
(x− µ)

′
∑−1

(x− µ)

}

(10)

where x = (x1, x2, · · · , xd)
′

, and det(
∑

) is the determinant of the covariance matrix
∑

. In the

special case when d = 2 and
∑

is diagonal, say
∑

= diag(σ2
1 , σ

2
2), we denote the corresponding

density in (10) by

φd

(

x |µ,
∑

)

≡ φ2

(

x |µ, σ2
1 , σ

2
2

)

. (11)

The d-variate wrapped normal distribution on (0, 2π/L]d is derived from a regular multivariate

normal distribution by wrapping the latter onto the set (0, 2π/L]d. If X = (X1, X2, · · · , Xd)
′

follows (10), the vector W = (W1,W2, · · · ,Wd)
′

defined by

Wj = Xj mod

(

2π

L

)

for j = 1, 2, · · · , d, (12)

is said to have a multivariate wrapped normal distribution with parameters µ and
∑

. The density

corresponding to a d-variate wrapped normal density is given by

Vd,L

(

w |µ,
∑

)

=
∞
∑

t1=−∞

∞
∑

t2=−∞

· · ·
∞
∑

td=−∞

φd

(

w +

(

2π

L

)

t

∣

∣

∣
µ,

∑

)

(13)



8 LIM & DASS

with mean angle µ ∈ (0, 2π/L]d, w = (w1, w2, · · · , wd)
′

∈ (0, 2π/L]d and t = (t1, t2, · · · , td)
′

∈

Zd, Z is the set of integers.

Univariate wrapped distributions have been extensively used as models for angular random

variables (Fisher 1993; Fisher and Lee 1994; Mardia and Jupp 1999). Developing bivariate and

multivariate distributions for angular random variables is still an active field of research; see, for

example, Singh et al. (2002), Shieh and Johnson (2005) and Mardia et al. (2007). The multivariate

extension of wrapped distributions we propose here can easily incorporate dependence between

the Wjs via the covariance matrix
∑

and be analyzed using a Bayesian computational scheme.

Parametric inference for the wrapped distributions is generally carried out via a data aug-

mentation technique (Breckling 1989; Coles 1998; Ravindran 2002). Essentially, the “missing”

information in (13) is the wrapping numbers t. By augmenting t to w so that the complete data

becomes (w, t), the joint density of the complete data becomes

V
(

w, t |µ,
∑

)

≡ φd

(

w +

(

2π

L

)

t

∣

∣

∣
µ,

∑

)

. (14)

Note that the wrapped density Vd,L in (13) is the marginal of V in (14) after summing out t.

4. Spatial Point Processes with Dependent Marks for Fingerprint Minutiae. Let

xn ≡ { xi, i = 1, 2, · · · , n } denote the collection of n minutiae locations, and for each x ∈ xn, the

minutiae orientation wx denotes the corresponding mark, which takes values in (0, π] (i.e., L = 2).

The distribution of minutiae in a fingerprint image is best described in terms of a hierarchical

model involving all random entities. Recall that P(λ, h) denotes a marked Poisson process with

λ and h, respectively, denoting the intensity measure and joint density function of marks. The

hierarchical model for (xn,wxn
) is given by

(θ,mθ) ≡ Φ ∼ P(λ1, h1), (15)

(x(k),w
(k)

x(k)) |Φ
ind
∼ P(λ2k, gk), for k = 1, 2, · · · ,K, and (16)

(xn,wxn
) =

K
⋃

k=1

(x(k),w
(k)

x(k)), (17)

where K is the number of elements in θ; in the above formulation, the intensity measure for θ is

the constant function

λ1(s) =

{

K0/area(S0) if s ∈ S0,

0, otherwise,
(18)

with S0 and K0, respectively, denoting a bounded rectangular region of S and a fixed (and

known) positive real number. The model (15-17) entails that the observations (xn,wxn
) are the

total collection (i.e., union) of realizations from K component marked Poisson processes, and

it is not known which of the K components gave rise to each observation in the collection. An

equivalent formulation of the model, which is perhaps more straightforward to understand, is
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given in (25-30) and used to carry out the computational steps for Bayesian inference. In our

application, the fingerprint sensing domains are rectangular and this is the reason for our choice

of bounded S0. The mark corresponding to θ is mθ ≡ (γ, σ2
1 , σ

2
2 , η, ρ, δ

2) with density h1 defined

by its component densities

γ ∼ G(αγ , βγ), σ2
1 ∼ IG(α1, β1), σ2

2 ∼ IG(α2, β2), (19)

η ∼ U(0, 2π/L), ρ ∼ U(ρmin, ρmax) and δ2 ∼ IG(αδ, βδ), (20)

independently of each other; in (19) and (20), G(α, β) and IG(α, β) are, respectively, the Gamma

and inverse Gamma distributions with shape and scale parameters given by α and β, and U(a, b)

is the uniform distribution from a to b. It is clear from the above specification that the γ and

σ2
j , j = 1, 2, components of mθ should be positive: γ > 0, σ2

j > 0 for j = 1, 2. The rest of the

components are required to satisfy η ∈ (0, 2π/L], ρ ∈ (ρmin, ρmax), and δ2 > 0. The intensity

measure λ2k for x(k) in (16) is

λ2k(s) =

{

γkφ2( s | θk, σ
2
1k, σ

2
2k) if s ∈ S0,

0, otherwise,
(21)

with gk (conditional on x(k)) given by

gk(w | ηk, ρk, δ
2
k) = Vnk,L

(

w | ηk,
∑

k
(ρk, δ

2
k)
)

(22)

where nk is the number of elements in x(k), Vnk,L is the nk-variate wrapped normal distribution

given in (13), with mean ηk = (η, η, · · · , η)
′

∈ Rnk for some fixed but unknown constant η ∈

(0, 2π/L], and covariance matrix
∑

k(ρk, δ
2
k). Given x(k), the marks w

(k)

x(k) can be thought to be

observations from a geo-spatial model where spatial dependencies are modeled via a covariance

function, q; if Wx and Wy are the observable marks at locations x and y, respectively, we have

Cov(Wx,Wy) = q(x, y ; ρ, δ2) (23)

where x, y ∈ R2, and ρ and δ2 are fixed but unknown parameters that govern the spatial corre-

lation and variance of the marks, respectively. The exponential covariance function, for example,

yields the covariance matrix
∑

k ≡
∑

k(ρ, δ) = (σ∗

rs), r, s = 1, 2, · · · , nk with entries given by

σ∗

rs = δ2 exp(−ρ||xr − xs||), (24)

where xr and xs are a pair of points from x(k) and || · || is the R2-Euclidean norm. Low values

of ρ (close to 0) yield high spatial dependence between neighboring marks wxr
and wxs

, which is

the scenario we observe with fingerprint minutiae.

An alternative but equivalent formulation of the hierarchical model (15)-(17) can be described

with some additional notation. Denote the class label set cn ≡ { ci, i = 1, 2, · · · , n } with ci,
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corresponding to xi ∈ xn, taking values in the set {1, 2, · · · ,K}. Also, let Bk ≡ { xi : ci = k },

for k = 1, 2, · · · ,K denote a partition of xn which induces a partition of (xn,wxn
) into K sets,

given by (xBk
,wBk

) for k = 1, 2, · · · ,K. The equivalent formulation of (15-17) is

(θ,mθ) ≡ Φ ∼ P(λ1, h1), (25)

n |Φ ∼ pn = exp(−T )
T n

n!
, (26)

cn |n, Φ ∼

n
∏

i=1

[

γci D(θci , σ
2
1ci , σ

2
2ci)

T

]

, (27)

xn | cn, n, Φ ∼

n
∏

i=1

[

φ2(xi | θci , σ
2
1ci , σ

2
2ci)

D(θci , σ
2
1ci

, σ2
2ci

)

]

, and (28)

(wxn
|xn, cn, n, Φ ) ∼

K
∏

k=1

gk(wBk
| ηk, ρk, δ

2
k), (29)

where T is defined as

T ≡

K
∑

k=1

γkD(θk, σ
2
1k, σ

2
2k), (30)

with

D(θk, σ
2
1k, σ

2
2k) ≡

∫

S0

φ2( s |θk, σ
2
1k, σ

2
2k) ds,

and the density gk is as given in (22). The data augmentation technique in (14) gives rise to the

augmented density

(wxn
, txn

|xn, cn, n, Φ ) ∼

K
∏

k=1

φnk

(

wBk
+ πtBk

∣

∣

∣

∣

ηk,
∑

k
(ρk, δ

2
k)

)

(31)

where tBk
= { tx : x ∈ Bk }.

This hierarchical model entails that each ci is distributed independently according to the com-

mon distribution in (27), and conditional on ci, each xi in (28) is distributed independently as

a bivariate normal density φ2( · | θci , σ
2
1ci , σ

2
2ci) restricted to the domain S0. Independent normal

kernels allow for two separate one dimensional integrations when evaluating D(θk, σ
2
1k, σ

2
2k). How-

ever, one can still perform the integration on a two dimensional space with a general covariance

structure with marginal increase in computational complexity. The reason we choose diagonal

covariance matrices is because earlier studies conducted found strong evidence for this model in

the case of fingerprint images (Dass and Li 2009).

The two-Poisson process specification above seems an unnecessary and complicated way to

develop a single Poisson process for locations, with non-homogeneous mixture intensity and cor-

relation between marks governed by mixture component membership. Indeed, the model can be

recast in this way but the aim here is to make the mechanism for inducing correlation between
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marks more apparent. Note also that the resulting marginal process for the spatial locations is

a Cox process. Similar modeling approaches for the marginal point process have been reported

in the literature. Wolpert and Ickstadt (1998) and Kottas and Sanso (2007) present a flexible

class of non-homogeneous Poisson process models that make use of mixture specifications with

an unknown number of components. In another paper, Ickstadt and Wolpert (1999) develop

models with directional marks (daily commutes to work). We note that the works above utilize

nonparametric stochastic process priors as opposed to the fully parametric approach developed

here.

5. A Bayesian Framework for Statistical Inference. We develop a fully Bayesian in-

ferential framework for the model described in Section 4 based on the observed data (n,xn,wxn
).

The hierarchical model specification of (26)-(28) and (31) yields the complete (or, augmented)

likelihood

ℓ(n, cn, xn, wxn
, txn

|Φ ) = pn × ℓ0(cn |n, Φ) × ℓ0(xn | cn, n, Φ)

× ℓ0(wxn
, txn

|xn, cn, n, Φ) (32)

where ℓ0(A,B, · · · |C,D, · · · ) denotes the density of random variables A,B, · · · conditional on

C,D, · · · given in (26)-(28) and (31). In (32), Φ = { (θk, γk, σ1k, σ2k, ηk, ρk, δk), k = 1, 2, · · · ,K }

denotes the collection of all unknown parameters: K denotes the number of clusters with cluster

k having (i) spatial mean θk, (ii) spatial variances σ2
jk for j = 1, 2, (iii) mean of marks ηk,

(iv) covariances between marks governed by the correlation and variance parameters ρk and δ2k,

respectively, and (v) γk denoting the intensity of the k-th cluster which determine the expected

total number of points in cluster k. For implementing a Bayesian framework of inference, the

prior we adopt on Φ is P as given in (15). The hyper-parameters in (19) and (20) will be assumed

to be fixed and known.

5.1. Posterior Inference. Posterior inference for the likelihood of the hierarchical model in

(32) is carried out based on a Markov Chain Monte Carlo (MCMC) algorithm. The MCMC

updating steps are (1) update K, and for fixed K,

(2) update (θk, σ
2
1k, σ

2
2k, ηk, ρk, δk), k = 1, 2, · · · ,K,

(3) update cn, and

(4) update txn
.

Out of the four updating steps above, only the update of (1) involves parameter spaces of varying

dimensions (the remaining updating steps (2-4) are regular Metropolis-Hastings (MH) steps). To

obtain posterior inference for such a space of models, Green (1995) and Green and Richardson

(1997) developed the Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach for

the Bayesian inferential framework. Since its introduction, RJMCMC has been successfully used
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to obtain posterior inference in many situations. We develop a Reversible Jump Markov Chain

Monte Carlo approach to explore the posterior distribution in updating step (1). The updating

steps are explained in detail in the Appendix of the supplementary material.

5.2. Convergence Diagnostics. The assessment of convergence of the RJMCMC is carried out

based on the methodology of Brooks and Guidici (1999, 2000). A total of I ≥ 2 chains are run from

different starting values representing overdispersed states, and quantities that maintain the same

interpretation across different models are monitored. We recommend running at least I = 3 chains

to ensure correctness of the convergence diagnostics. The diagnostics for assessing convergence

utilize the following six quantities: the overall variance, V̂ , the within chain variance, Wc, within

model variance Wm, within model within chain variance WmWc, the between model variance, Bm

and the between model within chain variance,BmWc. For each monitoring parameter three figures

are obtained: (i) V̂ and Wc, (ii) Wm and WmWc, and (iii) Bm and BmWc versus the number of

iterations. The two plotted lines in each figure should be close to each other to indicate sufficient

mixing. Our choice of the monitoring parameter is the logarithm of the complete likelihood

(32), namely, log ℓ(n, cn, xn,wxn
, txn

|Φ ), based on the hierarchical model specified by (26)-

(28) and (31). Note that our choice of the monitoring parameter was motivated by the difficulty

of evaluating the likelihood corresponding to only the observed data (n,xn,wxn
) due to high

dimensional summations involved to integrate out cn and txn
from the complete likelihood.

Furthermore, the complete likelihood is a function of the parameters that maintains a consistent

interpretation across different models for varying K, as required by Brooks and Guidici (1999,

2000).

5.3. Inference based on EPIC. Since it is not known whether the pair of prints is genuine or

impostor, two marked processes are fitted separately to each print in the pair. After convergence

is established, we generate N0 independent samples from each of the fitted marked processes

(and independently of each other). Each sample, M l
j, constitutes a minutiae set from the j-th

marked process, for l = 1, 2, · · · , N0 and j = 1, 2. The M l
j , j = 1, 2, samples are then paired with

each other to yield the N0 pairs (M l
1,M

l
2), l = 1, 2, · · · , N0. The number of minutiae matches

Sl = S(M l
1,M

l
2) is obtained by applying the minutiae matcher described in the Introduction

to each pair for l = 1, 2, · · · , N0. The empirical estimate of EPIC is given by the proportion

of pairs that have τ0 or more matches out of N0, mathematically expressed as ˆEPIC(τ0) =

(1/N0)
∑N0

l=1 I{ Sl ≥ τ0 }, where I{A} is 1 if A is true, and 0 otherwise. A high value of EPIC

implies that there is weak evidence to reject the hypothesis that the prints form an impostor

pair. This form of analysis is, thus, similar to obtaining estimates of posterior predictive p-values

based on a sampling procedure.
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Fig 3. Simulated point patterns with directional marks attached as lines. Panel (a) is for L = 1. Panel (b) is for
L = 2. The labels �, ♦ and △ denote the different clusters.

6. Simulation. Two simulation experiments were carried out for the cases L = 1 and L = 2,

corresponding to the mark spaces of (0, 2π] and (0, π], respectively. We consider the spatial

domain S0 = [0, 100]× [0, 100]. Hyper-parameters in (19) and (20) are set as follows: αγ and βγ

are derived from E(γ) = 15 and V ar(γ) = 100 by solving two equations in the two unknowns.

Similarly we set αj and βj so that E(σ2
j ) = 75 and V ar(σ2

j ) = 10, 000 for j = 1, 2. We set αδ

and βδ so that E(δ2) = 0.1 and V ar(δ2) = 1. Also, we set K0 = 3, (ρmin, ρmax) = (0.01, 5),

Kmin = 2 and Kmax = 5. We took the probabilities of selecting move types to be rm = rm′ = 0.5

corresponding to the moves (m,m′) = (K−split,K−merge) for K = Kmin + 1, · · · ,Kmax − 1.

Also, when K = Kmin, rm = 1 = 1 − rm′ and rm = 0 = 1 − rm′ for K = Kmax. Given

K = 3, two sets of point patterns with angular marks were simulated with L = 1 and L = 2,

respectively. Plots of simulated data are given in Figure 3. We monitor convergence of I = 5

chains with starting values that represent over-dispersion in the chains. For both L = 1 and

L = 2, the RJMCMC converged after 40, 000 iterations. For example, see Figure 4. Tables 1 gives

the associated statistical inference for the unknown parameters for L = 1; the true values are

compared with the posterior means as well as the 99% credible intervals based on the last 1, 000

values from each of the 5 chains. The estimated probability for K = 3 (the true value for the

unknown K) is 0.918 and 0.610 for L = 1 and L = 2, respectively. For L = 2, the second highest

value of K is 4 with posterior probability 0.262. The high posterior probability of K = 4 can

be attributed to the splitting of the second cluster with true spatial mean (θ12, θ22) = (40, 80)

(i.e., topmost cluster in Figure 3 (b)). The RJMCMC favors splitting this cluster into two groups

(left and right) with different values for the average orientations given by 1.23 and 1.57 radians,

respectively. The computational time taken for every 10, 000 iterations is around 1.15 hours on a

Dell Latitude E6500 laptop with Intel Core 2 Duo processor.

From panel (a) of Figure 4, it seems possible that the predictive distribution based on param-
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Fig 4. Convergence diagnostics for L = 1. Panels (a), (b) and (c) show the plots of (V̂ ,Wc), (Wc,WmWc) and
(Bm, BmWc), respectively. A solid line represents the first entry and a dotted line represents the second entry.
The x-axis in Panel (a) is taken from 0 to 2, 500 to show the initial over-dispersion of the chains. The two lines
in Panel (a) coincide all the way up to 50, 000 iterations.

L = 1
Parameter True Mean Sd CI Parameter True Mean Sd CI

θ11 30 32.63 1.91 [27.35, 37.88] θ21 40 39.48 1.93 [34.49, 44.53]
θ12 40 41.28 1.82 [36.29, 45.92] θ22 80 80.13 1.97 [75.27, 85.47]
θ13 70 70.78 1.60 [66.60, 75.20] θ23 50 51.00 1.47 [47.14, 54.84]
σ2

11
70 58.28 21.02 [26.96, 142.75] σ2

21
70 63.09 22.12 [29.28, 153.60]

σ2

12
70 82.34 23.72 [39.14, 171.06] σ2

22
70 82.94 28.27 [36.59, 207.46]

σ2

13
70 73.48 19.23 [38.27, 146.75] σ2

23
70 61.68 16.03 [33.07, 123.39]

η1 1 1.00 0.10 [0.69, 1.32] δ1 0.16 0.08 0.03 [0.03, 0.21]
η2 2 2.01 0.08 [1.77, 2.24] δ2 0.16 0.09 0.03 [0.04, 0.23]
η3 4 3.93 0.15 [3.44, 4.38] δ3 0.16 0.17 0.05 [0.08, 0.43]
ρ1 0.15 0.60 0.76 [0.07, 4.58] γ1 21 16.98 3.88 [8.39, 28.30]
ρ2 0.15 0.91 0.93 [0.09, 4.72] γ2 21 23.84 4.49 [13.78, 36.82]
ρ3 0.15 0.23 0.13 [0.06, 0.72] γ3 28 27.14 4.86 [15.90, 41.28]

Table 1

The results of posterior inference for L = 1 based on simulated data.

eter realizations from the 5 chains has converged much faster than the methodology proposed

by Brooks and Guidici (1999, 2000). Two measures that determine the predictive characteristics

are considered here. For each iteration of the chains, one realization of the marked spatial point

process, X ∗ ≡ (n,xn,wxn
) is generated according to (27) - (29). The bounded domain S0 is sub-

divided into a grid of 4 rectangular regions, and the following two quantities (1) the proportion

of points in X
∗ falling in each subregion and (2) the average of the marks within each subregion

are obtained. Figure 5 shows 3 sample plots of V̂ versus Wc for L = 1 based on the 5 chains.

It is clear that convergence takes place more rapidly, that is, by 2, 500 iterations for L = 1.

Table 2 gives the 99% credible intervals for (1) and (2) corresponding to the 4 subregions. The

values obtained from observed data fall inside this credible interval for all the cases considered

in Table 2, indicating that the predictive capabilities of the model have already converged. The

corresponding plots and table for L = 2 are available in the supplementary material.
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Fig 5. Convergence diagnostics based on predictive characteristics for L = 1. Panels (a), (b) and (c) show the

plot of (V̂ ,Wc), for the proportion of points in region 3 and average marks for regions 3 and 4, respectively. A

solid line represents V̂ and a dotted line represents Wc. The x-axis is taken from 0 to 2, 500 to show the initial
over-dispersed state. The two lines in each figure coincide all the way up to 50, 000 iterations.

L = 1 L = 2
Prop. of points CI Obs. value Prop. of points CI Obs. Value

Region 1 [0.0814, 0.3750] 0.2113 Region 1 [0.1224, 0.4180] 0.2857
Region 2 [0.1542, 0.4928] 0.3380 Region 2 [0.1752, 0.4938] 0.3247
Region 3 [0.0506, 0.3529] 0.1972 Region 3 [0.0360, 0.3000] 0.1558
Region 4 [0.1222, 0.4667] 0.2535 Region 4 [0.1006, 0.4387] 0.2338

Average mark CI Obs. value Average mark CI Obs. Value
Region 1 [0.4446, 1.5443] 0.9769 Region 1 [0.2356, 1.2810] 0.6237
Region 2 [1.5295, 2.4014] 1.9496 Region 2 [0.3507, 2.4771] 1.4646
Region 3 [2.9807, 4.7490] 3.5653 Region 3 [1.4979, 2.8632] 2.2827
Region 4 [2.6273, 4.5219] 3.8965 Region 4 [1.1694, 2.8522] 2.0807

Table 2

Measure of predictive capabilities of the RJMCMC by comparing the 99% equal tail credible interval with the
value obtained from observed data.

7. Fingerprint Analysis. Two fingerprint images in the NIST database are chosen to

illustrate our methodology (see Figure 1 panels (a) and (b)). The NIST fingerprint database is

publicly available and consists of 2,000 8-bit gray scale fingerprint image pairs of size 512-by-512

pixels. The first image of each of the 2,000 fingers in the database is labeled by ‘f’ while the second

image is labeled by ‘s’. Thus, the label ‘f0280’, for example, is the first impression of finger 280 in

this database. Data 1 (‘f0001’) and Data 2 (‘f0002’) contain minutiae locations and orientations

of the respective fingerprints in panel (a) and panel (b) of Figure 1, respectively. The domains

for minutiae locations and orientations are S0 = [0, 512] × [0, 512] and (0, π] (corresponding to

L = 2). Hyper-parameter specifications are chosen as in the simulation experiments. A total of

I = 5 chains was run using the RJMCMC algorithm with different starting values representing

overdispersion between the chains. The five initial estimates are obtained using an agglomerative

clustering procedure with different settings for the number of clusters. The convergence of model

parameters is achieved at 80, 000 for Data 1 and nearly achieved for Data 2. Panels (a) and
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Fig 6. Convergence diagnostics for Data 2. Panels (a), (b) and (c) show the plots of (V̂ ,Wc), (Wc,WmWc) and
(Bm, BmWc), respectively. A solid line represents the first entry and a dotted line represents the second entry.
The x-axis unit is 10,000 iterations.

(a) (b)

Fig 7. Posterior location and orientation means overlaid on the fingerprint images.

(b) of Figure 6 indicate convergence of the predictive characteristics and model parameters for

L = 2 but panel (c) indicates that only an approximate inference can be made for the number

of mixture components. Note that the predictive characteristics of both chains converged much

faster, by 30, 000 and 40, 000 iterations for Data 1 and Data 2, respectively. The corresponding

plots and tables are available in the supplementary material.

For Data 1 and 2, 1, 000 posterior samples (after convergence) are obtained from each of the

5 chains. The posterior probabilities for the total number of clusters, K, are given in Table

3. There is strong evidence of the existence of multiple clusters in the point patterns of both

fingerprint images; for both Data 1 and Data 2, K = 2 is strongly supported by the posterior

(with probabilities 0.9774 and 0.9452, respectively). Although panel (c) of Figure 6 indicates

convergence has not taken place, the high posterior probability of K = 2 in the case of Data 2

is evidence enough that this is the K suggested by the data. Tables 4 and 5 give the estimates

Fingerprint/K 2 3 4 5
Data 1 0.9774 0.0224 0.0002 0.0000
Data 2 0.9452 0.0510 0.0038 0.0000

Table 3

Posterior probabilities of K for fingerprint data.
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Data 1
Parameter Mean Sd CI Parameter Mean Sd CI

θ11 186.70 40.16 [110.02, 328.16] θ21 171.01 66.51 [100.68, 324.46]
θ12 311.67 50.01 [174.56, 398.24] θ22 249.64 64.10 [107.85, 326.37]
σ2

11
11, 344 19, 881 [25, 56, 960] σ2

21
4, 922 6, 6260 [25, 18, 105]

σ2

12
15, 673 16, 059 [29, 48, 117] σ2

22
9, 232 5, 540 [28, 16, 815]

η1 2.53 0.56 [0.05, 3.11] δ1 1.94 7.86 [0.02, 55.16]
η2 1.79 0.98 [0.02, 3.12] δ2 6.50 13.08 [0.02, 66.45]
ρ1 0.54 0.95 [0.01, 4.69] γ1 30.86 33.90 [2.09, 114.98]
ρ2 0.42 0.88 [0.01, 4.62] γ2 50.51 28.59 [1.20, 104.93]

Table 4

The results of posterior inference for K = 2 based on Data 1.

Data 2
Parameter Mean Sd CI Parameter Mean Sd CI

θ11 170.22 35.16 [101.28, 258.92] θ21 263.25 29.78 [108.06, 322.97]
θ12 207.49 31.09 [127.72, 337.22] θ22 199.43 97.71 [100.89, 379.83]
σ2

11
45, 904 18, 012 [31, 61, 400] σ2

21
15, 968 6, 217 [50, 25, 857]

σ2

12
1, 701 9, 128 [13, 57, 500] σ2

22
727.80 3, 107 [16, 18, 957]

η1 0.99 0.31 [0.23, 2.56] δ1 0.39 0.33 [0.07, 1.29]
η2 2.03 0.74 [0.02, 3.12] δ2 0.73 2.61 [0.02, 15.59]
ρ1 0.04 0.18 [0.01, 1.24] γ1 67.67 15.99 [2.40, 102.07]
ρ2 0.77 1.09 [0.01, 4.75] γ2 6.64 10.76 [0.62, 79.51]

Table 5

The results of posterior inference for K = 2 based on Data 2.

of parameters based on the K with the highest posterior probabilities. For comparison purposes,

the parameter estimates of θ and η are plotted on the original fingerprint images together with

observed data in Figure 7. Both panels indicate that the proposed models provide a reasonable

fit to the observed clusters of minutiae locations and orientations.

The small mean values of ρ in Tables 4 and 5 indicate the presence of strong spatial dependence

between neighboring orientation values. As an assessment of goodness of fit in terms of capturing

the extent of spatial dependence, the DIC (Deviance Information Criteria; see Celeux et al. 2006)

is computed for the proposed model as well as for a model with no spatial dependence (i.e.,

ρk = ∞ in (24)). We call these models Model 1 and 2, respectively. The results are given in Table

6 which clearly demonstrates the superiority of Model 1 (lower DIC) for fingerprint data.

The EPIC measure of fingerprint individuality (see Section 5.3) based on N0 = 5, 000 samples

corresponding to τ0 = 13 matches is 836/5000 = 0.1672. The high value indicates weak evidence

that this is not an impostor pair, therefore, suggesting (and correctly) that the two fingerprints

in Figure 1 are possibly an impostor pair.

Model 1 Model 2
Data 1 52.2 56.4
Data 2 30.8 44.9

Table 6

Goodness of fit assessment based on DIC.
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(a) (m, q) = (72, 0.365) (b) (m, q) = (64, 0.718) (c) (m, q) = (74, 0.286)

Fig 8. Additional fingerprints from the NIST database: m and q are, respectively, the total number of minutiae
and image quality measure.

Fingerprint pairs m1,m2 q1,q2 τ0 EPIC
Impostor pairs

f0001,f0002 76,59 0.447, 0.419 13 0.1627
f0009,f0031 55,53 0.722, 0.709 13 0.0982
f0091,f0092 57,74 0.335, 0.286 17 0.2756
f0009,s0015 55, 55 0.722, 0.894 13 0.1770
s0091,s0031 48, 53 0.467, 0.560 14 0.0880
s0001,f0092 86, 74 0.331, 0.286 19 0.1516

Genuine pairs
f0002,s0002 59,72 0.419, 0.365 22 0.0000
f0009,s0009 55,64 0.722, 0.718 28 0.0000
f0092,s0092 74,68 0.286, 0.303 18 0.3128
f0031,s0031 53,53 0.709, 0.560 32 0.0000
f0091,s0091 57,48 0.335, 0.467 20 0.0056
f0015,s0015 40,55 0.810, 0.894 16 0.0002

Table 7

Reporting EPIC for additional fingerprint pairs: For j = 1, 2, mj and qj are the total number of minutiae and
quality measure for the j-th fingerprint.
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It is reasonable to expect EPIC to possess certain properties with respect to image attributes.

For example, EPIC values should be much larger in lower, compared to higher, quality images

for the same number of observed minutiae matches. Also, when the total number of minutiae

increases, one would expect EPIC to increase since it is more likely to obtain a random match. To

investigate these conjectures, we performed matching experiments with eleven additional pairs

of fingerprints from the NIST database. Image quality is obtained using the quality extractor

reported in Dass (2010), which is based on a wavelet transform that measures the clarity of the

ridge and valley structures. The quality of a fingerprint image is a number between 0 and 1

with higher values indicating better quality. Figure 8 gives some examples of the images used

with associated quality and total number of minutiae. The RJMCMC algorithm was run until

convergence for each fingerprint image and EPIC values were obtained for all pairs listed in Table

7. The first six pairs in Table 7 are impostors whereas the last six are genuine. It is clear from

the entries of Table 7 that the reported EPIC values, indeed, behave in the expected way. For

example, impostor fingerprints in the second row are of better quality compared to the first, they

have the same observed matching number, τ0, and the EPIC values in the second row are lower

than the first; we assume that the total number of minutiae are comparable although 76 is a

bit higher but not too much. The same argument can be made when comparing the first and

third rows, as well as the second and third rows, by the monotonicity of EPIC. For the truly

genuine pairs, the reported EPIC values correctly reflect strong evidence against the hypothesis

that the pairs are impostors for pairs with different quality measures; see, for example, the first

and second rows for genuine pairs. In the third row, note that the EPIC value is large, indicating

high uncertainty when the underlying quality of the images is poor.

8. Summary and Conclusion. A family of marked spatial point processes with dependent

marks is developed in this paper for fingerprint minutiae. The proposed models are flexible in

the sense that they can capture salient minutiae characteristics in different fingerprint images.

A Bayesian framework of inference is developed to estimate the unknown parameters in this

family based on an RJMCMC algorithm. Our analysis establishes the presence of clustering and

strong spatial dependence between minutiae orientations which are typical of all fingerprints.

The inferential methodology based on the RJMCMC is somewhat slow to converge. Predictive

characteristics of the chain, however, converge fairly quickly and can be utilized for the assessment

of fingerprint individuality. This is possible since the calculation of the EPIC is based on the

number of matches between minutiae configurations in both the fingerprint images, which is a

function of the predictive distribution of the proposed model.

One of the referees has pointed out that it may be worthwhile to formulate the hierarchical

model by eliciting the distribution in (15) in terms of Dirichlet processes (DP). Further, such

a scheme would not require the use of RJMCMC trans-dimensional sampling. Our future goal

will be to investigate this issue further. Another important area for research will be to adapt the
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distributions in this paper so that they reflect uncertainty due to other image attributes, such as

image quality, in the model elicitation. This investigation has been carried out for a simpler model

than the one proposed here; see, for example, Dass (2010). While EPIC provides a quantitative

measure for assessing the extent of individuality, determining sensitivity and specificity (in terms

of thresholds based on EPIC) has yet to be investigated and remains an area where more work

is needed.

Our model for S is not able to capture any strong dependence between minutiae sets, for

example, minutiae sets that are extracted for a truly genuine pair of prints in the authentication

process. To capture this strong dependence, such a model should be able to represent the second

minutiae set as a small perturbation of the first. Although this is the general idea, developing

a model for S in the genuine case that adequately describes the number of matches in real

databases is far more complicated; we have to incorporate other extraneous noise variability for

real fingerprint images such as the rates of missed and false minutiae correspondences. Our future

research will address this problem. Such a model will be useful in the development of Bayes factors

and posterior probabilities (corresponding to an impostor as well as a genuine match) as measures

of fingerprint individuality.
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