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Sequential Bayesian Prediction and Adaptive

Sampling Algorithms for Mobile Sensor Networks

Yunfei Xu, Jongeun Choi, Sarat Dass, and Taps Maiti

Abstract

In this paper, we formulate a fully Bayesian approach for spatio-temporal Gaussian process regres-

sion such that multifactorial effects of observations, measurement noise and prior distributions are all

correctly incorporated in the predictive distribution. Using discrete prior probabilities and compactly

supported kernels, we provide a way to design sequential Bayesian prediction algorithms in which

exact predictive distributions can be computed in constant time as the number of observations increases.

For a special case, a distributed implementation of sequential Bayesian prediction algorithms has been

proposed for mobile sensor networks. An adaptive sampling strategy for mobile sensors, using the

maximum a posteriori (MAP) estimation, has been proposed to minimize the prediction error variances.

Simulation results illustrate the practical usefulness of the proposed theoretically-correct algorithms.

I. INTRODUCTION

Recently, there has been an increasing exploitation of mobile sensor networks in environmental

monitoring [1]–[4]. Gaussian process regression (or kriging in geostatistics) has been widely used

to draw statistical inference from geostatistical and environmental data [5], [6]. For example,

near-optimal static sensor placements with a mutual information criterion in Gaussian processes

were proposed in [7]. A distributed kriged Kalman filter for spatial estimation based on mobile

sensor networks was developed in [4]. Multi-agent systems that are versatile for various tasks

by exploiting predictive posterior statistics of Gaussian processes were developed in [8], [9].
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The significant computational complexity in Gaussian process regression due to the growing

number of observations (and hence the size of covariance matrix) has been tackled in different

ways. In [10], the authors analyzed the conditions under which near-optimal prediction can be

achieved using only truncated observations. This motivates the usage of sparse Gaussian process

proposed in [11]. However, they both assumed the covariance function is known a priori, which

is unrealistic in practice. On the other hand, unknown parameters in the covariance function can

be estimated by the maximum likelihood (ML) estimator. Such ML estimates may be regarded as

the true parameters and then used in the prediction [12]. However, the point estimate itself needs

to be identified using sufficient amount of measurements. Instead, a maximum a posterior (MAP)

estimate can use the prior to provide the point estimate with a small number of measurements.

However, it fails to incorporate the uncertainty in the estimate into the prediction.

The advantage of a fully Bayesian approach, which will be adopted in this work, is that the

uncertainty in the model parameters are incorporated in the prediction [13]. In [14], Gaudard

et al. presented a Bayesian method that uses importance sampling for analyzing spatial data

sampled from a Gaussian random field whose covariance function was unknown. However, the

assumptions made in [14], such as noiseless observations and time-invariance of the field, limit

the applicability of the approach on mobile sensors in practice. The computational complexity

of a fully Bayesian prediction algorithm has been the main hurdle for applications in resource-

constrained robots. In [15], an iterative prediction algorithm without resorting to Markov Chain

Monte Carlo (MCMC) methods has been developed based on analytical closed-form solutions

from results in [14], by assuming that the covariance function of the spatio-temporal Gaussian

random field is known up to a constant. Our work builds on such Bayesian approaches used in

[14], [15] and explores new ways to synthesize practical algorithms for mobile sensor networks

under more relaxed conditions.

The contributions of this paper are as follows. First, we provide a fully Bayesian approach for

spatio-temporal Gaussian process regression under more practical conditions such as measure-

ment noise and the unknown covariance function (Section III). In this way, multifactorial effects

of observations, measurement noise, the noninformative prior on regression coefficients, and

prior distributions of parameters are all correctly incorporated in the prediction. Using discrete

prior probabilities and compactly supported kernels [16], we provide a way to design sequential

Bayesian prediction algorithms in which the exact predictive distributions can be computed in
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constant time as the number of observations increases. In particular, a centralized sequential

Bayesian prediction algorithm is developed (Section IV-A) and its distributed implementation

among sensor groups is provided for a special case (Section IV-B). To the best of our knowl-

edge, no such exact sequential Bayesian prediction algorithms under our practical and relaxed

conditions have been found to date. An adaptive sampling strategy for mobile sensors, utilizing

the maximum a posteriori (MAP) estimation of the parameters, is proposed to minimize the

prediction error variances (Section IV-C). Finally, the proposed sequential Bayesian prediction

algorithms and the adaptive sampling strategy are tested under practical conditions for spatio-

temporal Gaussian processes (Section V).

Standard notation is used throughout the paper. Let R, R≥0, R>0, Z, Z≥0, Z>0 denote,

respectively, the sets of real, non-negative real, positive real, integer, non-negative integer, and

positive integer numbers. Let E, Var and Corr denote, respectively, the operators of expectation,

variance and correlation. Let N (µ,Σ) denote a multivariate Gaussian distribution with mean

µ and covariance matrix Σ. I and 0 denote, respectively, the identity and zero matrices with

appropriate dimensions. Other notation will be explained in due course.

II. PRELIMINARIES

Let z(s, τ) be the spatio-temporal field of interest (e.g., water temperature of a lake) at location

s ∈ Q ⊂ RD and time τ ∈ R≥0 modeled by a spatio-temporal Gaussian process denoted by

z(x) ∼ GP
(
µ(x), σ2

fK(x,x′;θ)
)
, (1)

where we have defined x := (sT , τ)T for notational simplicity. The mean function is assumed

to be µ(x) = f(x)Tβ, where f(x) := (f1(x), · · · , fp(x))T ∈ Rp is a known (multivariate)

regression function of x, and β ∈ Rp is an unknown vector of regression coefficients. The term

σ2
f denotes the signal variance which gives the overall vertical scale relative to the mean of the

Gaussian process in the output space [6]. The correlation between z(x) and z(x′) is given by

K(x,x′;θ) in (1). In this paper, we model the correlation function K(·, ·) as

K(x,x′;θ) = φs

(‖s− s′‖
σs

)
φt

( |τ − τ ′|
σt

)
, (2)

where θ := (σs, σt)
T ∈ R2, governed by the product of spatial and temporal distance functions

φs(·) and φt(·) which are decreasing kernel functions over space and time, respectively. The rate
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of decrease depends on the spatial and time bandwidth σs, and σt, respectively. The tensor product

form used in (2) is suggested in [6] and the references therein. In this paper, we consider the class

of spatio-temporal Gaussian processes generated by φt(·) that is compactly supported; hence,

temporal correlations vanish when the time difference |τ − τ ′| is larger than σt (i.e., φt(h) =

0,∀h > 1). Subsequently we show that compactly supported φt(·) is crucial for developing exact

sequential Bayesian approaches justifying its choice here.

Let N mobile sensing agents be distributed over the surveillance region Q with labels in the

set I := {1, 2, · · · , N}. Assume that mobile sensing agents are equipped with identical sensors.

At time t ∈ Z>0, agent i makes a point observation of the spatio-temporal field of interest

z(qi(t), t) at it’s position qi(t) ∈ Q. The noise corrupted observation of z(qi(t), t) is

yi(t) := z(qi(t), t) + εi, (3)

where εi is the random sensor noise considered to be independent and identically distributed

according to N (0, σ2
w) with unknown variance σ2

w > 0. We assume that the signal-to-noise ratio

γ = σ2
f/σ

2
w is known and fixed, which is necessary for identifiability of the model that gives

rise to the noise corrupted observations in (3).

III. A FULLY BAYESIAN PREDICTION APPROACH

Given the collection of noise corrupted observations from mobile sensing agents up to time

t, we want to predict z(s∗, t∗) at a prespecified location s∗ ∈ S ⊂ Q and current (or future)

time t∗. To do this, suppose we have a collection of n observations D = {(x(i), y(i)) | i =

1, . . . , n} from N mobile sensing agents up to time t. Here x(i) denotes the i-th input vector of

dimension D + 1 (i.e., the sampling position and time of the i-th observation) and y(i) denotes

the i-th noise corrupted measurement. If all observations are considered, we have n = tN .

Notice that the number of observations n grows with the time t. For notational simplicity, let

y := (y(1), · · · , y(n))T ∈ Rn denote the collection of noise corrupted observations. Based on the

spatio-temporal Gaussian process, the distribution of the observations given the parameters β,

σ2
f , and θ is Gaussian, i.e., y|β, σ2

f ,θ ∼ N (Fβ, σ2
fC) with F and C defined as

F := [ f(x(1)) · · · f(x(n)) ]T ∈ Rn×p, C := Corr(y,y|θ) =

[
K(x(i),x(j);θ) +

1

γ
δij

]
∈ Rn×n,

(4)

where δij is the Kronecker delta which equals to one when i = j, and zero, otherwise.

November 22, 2011 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, XXX 2011 5

A. Prior selection

To infer the unknown parameters β, σ2
f , and θ in a Bayesian framework, the collection of

them is considered to be a random vector with a prior distribution reflecting the a priori belief

of uncertainty for them. In this paper, we use the prior distribution given by

π(β, σ2
f ,θ) = π(β|σ2

f )π(σ2
f )π(θ), (5)

where β|σ2
f ∼ N (β0, σ

2
fT). The prior for π(σ2

f ) is taken to be the inverse gamma distribution,

chosen to guarantee positiveness of σ2
f and a closed-form expression for the posterior distribution

of σ2
f for computational ease of the proposed algorithms. To cope with the case where no

prior knowledge on β is available, which is often the case in practice, we propose to use a

noninformative prior. In particular, we take β0 = 0, T = αI, and subsequently, let α→∞. Any

proper prior π(θ) that correctly reflects the prior knowledge of θ can be used.

B. Posterior predictive distribution

The posterior predictive distribution of z∗ := z(s∗, t∗) can be written as

p(z∗|y) =

∫
p(z∗|y,θ)π(θ|y)dθ, (6)

where π(θ|y) = p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

, is the posterior distribution of θ, by integrating out analytically

the parameters β and σ2
f . We have the following proposition.

Proposition 3.1: For a prior distribution given in (5) with the noninformative prior on β, we

have

i) π(θ|y) ∝ w(θ|y)π(θ) with

logw(θ|y) = −1

2
log det(C)− 1

2
log det(FTC−1F)− ã log b̃, (7)

where ã = a+ n
2
, and b̃ = b+ 1

2
yTC−1y − 1

2
(FTC−1y)T (FTC−1F)−1(FTC−1y).

ii) p(z∗|y,θ) is a shifted student’s t-distribution with location parameter µ, scale parameter λ,

and ν degrees of freedom, i.e.,

p(z∗|y,θ) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) ( λ

πν

) 1
2
(

1 +
λ(z∗ − µ)2

ν

)− ν+1
2

, (8)
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where ν = 2ã, and

µ = kTC−1y + (f(x∗)− FTC−1k)T (FTC−1F)−1(FTC−1y),

λ =
b̃

ã

(
(1− kTC−1k) + (f(x∗)− FTC−1k)T (FTC−1F)−1(f(x∗)− FTC−1k)

)
.

Proof: See Appendix A.

The results in Proposition 3.1 are different from those obtained in [14] by using a noninfor-

mative prior on β. For a special case where β and σ2
f are known a priori, we have the following

corollary which will be exploited to derive a distributed implementation among sensor groups

in Section IV-B.

Corollary 3.2: In the case where β and σ2
f are known a priori, (7) and (8) can be simplified

as

logw(θ|y) = −1

2
log det(C)− 1

2
(y − Fβ)TC−1(y − Fβ),

z∗|y,θ ∼ N
(
f(x∗)

Tβ + kTC−1(y − Fβ), σ2
f (1− kTC−1k)

)
.

If we draw m samples {θ(i)}mi=1 from the prior distribution π(θ), the posterior predictive

distribution in (6) can then be approximated by

p(z∗|y) ≈
∑
w(θ(i)|y)p(z∗|y,θ(i))∑

w(θ(i)|y)
.

It follows that the predictive mean and variance can be obtained by

E(z∗|y) ≈
∑
w(θ(i)|y)E(z∗|y,θ(i))∑

w(θ(i)|y)
,

Var(z∗|y) ≈
∑
w(θ(i)|y)Var(z∗|y,θ(i))∑

w(θ(i)|y)
+

∑
w(θ(i)|y)

(
E(z∗|y,θ(i))− E(z∗|y)

)2∑
w(θ(i)|y)

,

where the mean and variance of the student’s t-distribution p(z∗|y,θ) are given by E(z∗|y,θ) =

µ, and Var(z∗|y,θ) = ã
ã−1

λ, respectively.

C. Further simplification

To further reduce the computational demands from the Monte Carlo approach, we assign

discrete uniform probability distributions to σs and σt as priors instead of continuous probability

distributions. Assume that we know the range of parameters in θ, i.e., σs ∈ [σs, σs] and σt ∈
[σt, σt], where σ and σ denote the known lower-bound and upper-bound of the random variable

σ, respectively. We constrain the possible choices of θ on a finite set of grid points denoted
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by Θ. Hence, π(θ) is now a probability mass function (i.e.,
∑
θ∈Θ π(θ) = 1) as opposed to a

probability density. The integration in (6) is reduced to the following summation

p(z∗|y) =
∑
θ∈Θ

p(z∗|y,θ)π(θ|y), (9)

where the posterior distribution of θ is evaluated on the grid points in Θ by

π(θ|y) =
w(θ|y)π(θ)∑
θ∈Θw(θ|y)π(θ)

. (10)

In order to obtain the posterior predictive distribution in (9), the computation of p(z∗|y,θ) and

w(θ|y) for all θ ∈ Θ using the results from Proposition 3.1 (or Corollary 3.2 for a special

case) are necessary. Note that these quantities are available in closed-form which reduces the

computational burden significantly.

IV. SEQUENTIAL BAYESIAN PREDICTION ALGORITHMS FOR MOBILE SENSOR NETWORKS

Although the aforementioned efforts in Sections III-B and III-C reduce the computational cost

significantly, the number of observations (that mobile sensing agents collect) n increases with

the time t. For each θ ∈ Θ, an n × n positive definite matrix C needs to be inverted which

requires time O(n3) using standard methods. This motivates us to design scalable sequential

Bayesian prediction algorithms by using subsets of observations.

A. A scalable Bayesian prediction algorithm

Let yt ∈ RN be the collection of noise corrupted observations by all agents at time t, i.e.,

yt := (y1(t), · · · , yN(t))T , and let y1:t ∈ RtN be the cumulative observations, i.e., y1:t :=

(yT1 , · · · ,yTt )T . The computation of p(z∗|y1:t) soon becomes infeasible as t increases. To over-

come this drawback while maintaining the Bayesian framework, we propose to use subsets of all

observations y1:t. However, instead of using truncated local observations only as in [10], Bayesian

inference will be drawn based on two sets of observations: First, a set of local observations near

target points ỹ which will improve the quality of the prediction, and a second cumulative set of

observations ȳ which will minimize the uncertainty in the estimated parameters. Taken together,

they improve the quality of prediction as the number of observations increases. We formulate

this idea in detail in the following paragraph. For notational simplicity, we define y as a subset

of all observations y1:t which will be used for Bayesian prediction. We partition y into two
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subsets, namely ȳ and ỹ. Let F̄ and F̃ be the counterparts of F defined in (4) for ȳ and ỹ,

respectively. The following lemma provides the conditions under which any required function

of y in Proposition 3.1 can be decoupled.

Lemma 4.1: For a given θ ∈ Θ, let C = Corr(y,y|θ), C̄ = Corr(ȳ, ȳ|θ), C̃ = Corr(ỹ, ỹ|θ),

k = Corr(y, z∗|θ), k̄ = Corr(ȳ, z∗|θ), and k̃ = Corr(ỹ, z∗|θ). If the following conditions are

satisfied

C1: Corr(ỹ, ȳ|θ) = 0, i.e., ỹ and ȳ are uncorrelated, and

C2: Corr(ȳ, z∗|θ) = 0, i.e., ȳ and z∗ are uncorrelated,

then we have the following results:

FTC−1F = F̄T C̄−1F̄ + F̃T C̃−1F̃ ∈ Rp×p, FTC−1y = F̄T C̄−1ȳ + F̃T C̃−1ỹ ∈ Rp,

yTC−1y = ȳT C̄−1ȳ + ỹT C̃−1ỹ ∈ R, log det C = log det C̄ + log det C̃ ∈ R,

FTC−1k = F̃T C̃−1k̃ ∈ Rp, kTC−1k = k̃T C̃−1k̃ ∈ R.

Proof: The results follow by noting the correlation matrix C can be decoupled such that

C = diag(C̄, C̃) and k̄ = 0.

Remark 4.2: In order to compute the posterior predictive distribution p(z∗|y) (or the predictive

mean and variance) in (9), p(z∗|y,θ) and π(θ|y) for all θ ∈ Θ need to be calculated. Notice that

the posterior distribution of θ can be obtained by computing w(θ|y) in (7). Suppose F̄T C̄−1F̄ ∈
Rp×p, F̄T C̄−1ȳ ∈ Rp, ȳT C̄−1ȳ ∈ R, and log det C̄ ∈ R are known for all θ ∈ Θ. If F̃T C̃−1F̃ ∈
Rp×p, F̃T C̃−1ỹ ∈ Rp, ỹT C̃−1ỹ ∈ R, and log det C̃ ∈ R for all θ ∈ Θ have fixed computation

times, then (7) and (8) can be computed in constant time due to decoupling results of Lemma 4.1.

The following theorem provides a way to design scalable sequential Bayesian prediction

algorithms.

Theorem 4.3: Consider the discrete prior probability π(θ) and the compactly supported kernel

function φt(·). If we select η ≥ bσt/tsc ∈ Z>0, ∆ ∈ Z>0 and define

ct := max

(⌊
t−∆

∆ + η

⌋
, 0

)
∈ R, ξj := y(j−1)(∆+η)+1:(j−1)(∆+η)+∆ ∈ R∆N ,

ȳ := (ξT1 , · · · , ξTct)T ∈ R∆Nct , ỹ := yt−∆+1:t ∈ R∆N ,

(11)

where b·c is the floor function defined by bxc := max{m ∈ Z |m ≤ x}, then the posterior

predictive distribution in (9) can be computed in constant time (i.e., does not grow with the time

t).
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Fig. 1. An example with three agents sampling the spatio-temporal Gaussian process in 1-D space and performing Bayesian

inference. In this example, σt = 2.5, η = 2, ∆ = 3, t = 15, ct = 2, ȳ = (yT1:3,y
T
6:8)T and ỹ = y13:15.

Proof: By construction, conditions C1-2 in Lemma 4.1 are satisfied. Hence, it follows from

Remark 4.2 that the posterior predictive distribution can be computed in constant time.

Remark 4.4: In Theorem 4.3, η ≥ bσt/tsc guarantees the time distance between ξi and ξi+1

is large enough such that the conditions in Lemma 4.1 are satisfied. Notice that ∆ is a tuning

parameter for users to control the trade-off between the prediction quality and the computation

efficiency. A large value for ∆ yields a small predictive variance but long computation time,

and vice versa. An illustrative example with three agents sampling the spatio-temporal Gaussian

process in 1-D space is shown in Fig. 1.

Based on Theorem 4.3, we provide the centralized sequential Bayesian prediction algorithm

as shown in Table I.

B. A distributed implementation for a special case

In this subsection, we will show a distributed way (among agent groups) to implement the

proposed algorithm for a special case in which β and σ2
f are assumed to be known a priori.

The assumption for this special case is the exact opposite of the one made in [15] where β and

σ2
f are unknown and θ is known a priori.

To develop a distributed scheme among agent groups for data fusion in Bayesian statistics, we

exploit the compactly supported kernel for space. Let φs(h) in (2) also be a compactly supported

kernel function as φt(h) so that the correlation vanishes when the spatial distance between two

inputs is larger than σs, i.e., φs(h) = 0, ∀h > 1.

Consider a case in which M groups of spatially distributed agents sample a spatio-temporal
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TABLE I

A CENTRALIZED BAYESIAN PREDICTION ALGORITHM.

Input:
(1) prior distribution on σ2

f , i.e., π(σ2
f ) = IG(a, b); (2) prior distribution on θ ∈ Θ, i.e., π(θ); (3) tuning variables

∆ and η; (4) number of agents N ; (5) M(θ).A = 0 ∈ Rp×p, M(θ).B = 0 ∈ R, M(θ).C = 0 ∈ Rp,

M(θ).D = 0 ∈ R, M0(θ) =M(θ), ∀θ ∈ Θ

Output:
(1) The predictive mean at location s∗ ∈ S and time t∗ = t, i.e., E(z∗|y); (2) The predictive variance at location

s∗ ∈ S and time t∗ = t, i.e., Var(z∗|y)

At time t, the central station does:

1: receive observations yt from agents, set ỹ = yt−∆+1:t and n = N∆

2: compute F̃ = (f(x̃(1)), · · · , f(x̃(n)))T ∈ Rn×p where x̃(i) is the input of the i-th element in ỹ

3: for each θ ∈ Θ do

4: compute C̃ = Corr(ỹ, ỹ) ∈ Rn×n

5: compute the key values

FTC−1F =M(θ).A+ F̃T C̃−1F̃ ∈ Rp×p, yTC−1y =M(θ).B + ỹT C̃−1ỹ ∈ R

FTC−1y =M(θ).C + F̃T C̃−1ỹ ∈ Rp, log detC =M(θ).D + log det C̃ ∈ R

6: compute ã = a+ n
2

and b̃ = b+ 1
2
yTC−1y − 1

2
(FTC−1y)T (FTC−1F)−1(FTC−1y)

7: update weights via

logw(θ|y) = −
1

2
log detC−

1

2
log det(FTC−1F)− ã log b̃

8: for each s∗ ∈ S do

9: compute f(x∗) ∈ Rp, k̃ = Corr(ỹ, z∗) ∈ Rn

10: compute predictive mean and variance for given θ

E(z∗|y,θ) = k̃C̃−1ỹ + (f(x∗)− F̃T C̃−1k̃)T (FTC−1F)−1(FTC−1y),

Var(z∗|y,θ) = b̃
ã−1

(
(1− k̃T C̃−1k̃) + (f(x∗)− F̃T C̃−1k̃)T (FTC−1F)−1(f(x∗)− F̃T C̃−1k̃)

)
11: end for

12: if mod(t,∆ + η) = ∆ then

13: set M(θ) =M0(θ), then M0(θ).A = FTC−1F, M0(θ).B = yTC−1y, M0(θ).C = FTC−1y, and

M0(θ).D = log detC

14: end if

15: end for

16: compute the posterior distribution

π(θ|y) =
w(θ|y)π(θ)∑
θ w(θ|y)π(θ)

17: compute the predictive mean and variance

E(z∗|y) =
∑

θ E(z∗|y,θ)π(θ|y),

Var(z∗|y) =
∑

θ Var(z∗|y,θ)π(θ|y) +
∑

θ (E(z∗|y,θ)− E(z∗|y))2 π(θ|y).

Gaussian process over a large region Q. Each group is in charge of its sub-region of Q. The

identity of each group is indexed by V := {1, · · · ,M}. Each agent in group i is indexed
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by I [i] := {1, · · · , N}. The leader of group i is referred to as leader i, which implements the

centralized scheme to make prediction on its sub-region using local observations and the globally

updated posterior distribution of θ. Therefore, the posterior distribution of θ shall be updated

correctly using all observations from all groups (or agents) in a distributed fashion.

Let G(t) := (V , E(t)) be an undirected communication graph such that an edge (i, j) ∈ E(t)

if and only if leader i can communicate with leader j at time t. We define the neighborhood of

leader i at time t by Ni(t) := {j ∈ V | (i, j) ∈ E(t), j 6= i}. Let a[i] denote the quantity as a in

the centralized scheme for group i. We then have the following theorem.

Theorem 4.5: Assume that ȳ[i] and ỹ[i] for leader i are selected accordingly to Theorem 4.3 in

time-wise. Let ỹ defined by ỹ := ((ỹ[1])T , · · · , (ỹ[M ])T )T . If the following condition is satisfied

C3: ‖q[i]
` (t)− q

[j]
ν (t′)‖ ≥ σs,∀i 6= j, ∀` ∈ I [i],∀ν ∈ I [j],

in the spatial domain, then the weights w(θ|y), based on all observations from all agents, can

be obtained from

logw(θ|y) = logw(θ|ȳ) +
M∑
i=1

logw(θ|ỹ[i]). (12)

Proof: The result follows by noting Corr(ỹ[i], ỹ[j]|θ) = 0,∀i 6= j, when the condition C3

is satisfied.

Suppose that the communication graph G(t) is connected for all time t. Then 1
M

∑M
i=1 logw(θ|ỹ[i])

can be achieved asymptotically via discrete-time average-consensus algorithm [17]:

logw(θ|ỹ[i])← logw(θ|ỹ[i]) + ε
∑
j∈Ni

(
logw(θ|ỹ[j])− logw(θ|ỹ[i])

)
,

with 0 < ε < 1/∆(G) that depends on the maximum node degree of the network ∆(G) =

maxi |Ni|.

C. Adaptive sampling strategies

At time t, the goal of the navigation of agents is to improve the quality of prediction of the

field Q at the next sampling time t + 1. Therefore, mobile agents should move to the most

informative sampling locations {q1(t+ 1), · · · ,qN(t+ 1)} at time t+ 1 in order to reduce the

prediction error [7].
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Suppose at time t+1, agents move to a new set of positions {q̃1, · · · , q̃N}. The mean squared

prediction error is defined as

J({q̃}Ni=1) =

∫
s∈S

E
[
(z(s, t+ 1)− ẑ(s, t+ 1))2

]
ds, (13)

where ẑ(s, t+ 1) is obtained as in (9). Due to the fact that θ has a distribution, the evaluation of

(13) becomes computationally prohibitive. To simplify the optimization, we propose to utilize

a maximum a posteriori (MAP) estimate of θ at time t, denoted by θ̂MAP(t), i.e., θ̂MAP(t) =

arg maxθ∈Θ π(θ|y), where y is the subset of all observations used up to time t. The next sampling

positions can be obtained by solving the following optimization problem

{qi(t+ 1)}Ni=1 = arg min
{q̃i}Ni=1⊂Q

∫
s∈S

Var(z(s, t+ 1)|y, θ̂MAP(t))ds. (14)

This problem can be solved using standard constrained nonlinear optimization techniques (e.g.,

the conjugate gradient algorithm), possibly taking into account mobility constraints of mobile

sensors.

Remark 4.6: The proposed control algorithm in (14) is truly adaptive in the sense that the

new sampling positions are functions of all collected observations. On the other hand, if all

parameters are known, the optimization in (14) can be performed offline without taking any

measurements.

V. SIMULATION RESULTS

In this section, we apply the proposed sequential Bayesian prediction algorithms to spatio-

temporal Gaussian processes with a correlation function in (2). The Gaussian process was

numerically generated through circulant embedding of the covariance matrix for the simulation

study [18].

We consider a scenario in which N = 5 agents sample the spatio-temporal Gaussian process

in 1-D space and the central station performs Bayesian prediction. The surveillance region Q
is given by Q = [0, 10]. We consider the squared exponential function φs(h) = exp(−1

2
h2) for

space correlation and a compactly supported correlation function [16] for time as

φt(h) =


(1−h) sin(2πh)

2πh
+ 1−cos(2πh)

π×2πh
, 0 ≤ h ≤ 1,

0, otherwise,
(15)
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The signal-to-noise ratio γ is set to be 26dB which corresponds to σw = 0.158. The true

values for the parameters used in simulating the Gaussian process are given by (β, σ2
f , σs, σt) =

(20, 10, 2, 8). Notice that the mean function is assumed to be an unknown random variable, i.e.,

the dimension of the regression coefficient β is 1. We assume that β|σ2
f has the noninformative

prior and σ2
f ∼ IG(3, 20). We also assume the bounds of θ, viz. σs ∈ [1.6, 2.4] and σt ∈ [4, 12]

are known. ∆ = 12 is used and η = 11 is selected satisfying the condition in Theorem 4.3.

We use a discrete uniform probability distribution for π(θ) as shown in Fig. 3-(a). The adaptive

sampling strategy was used in which agents make observations at each time t ∈ Z>0. The

prediction was evaluated at each time step for 51 uniform grid points within Q.

Fig. 2 shows the comparison between predictions at time t = 1 using (a) the maximum

likelihood (ML) based approach, and (b) the proposed fully Bayesian approach. The ML based

approach first generates a point estimate of the hyperparameters and then uses them as true ones

for computing the prediction and the prediction error variance. In this simulation, a poor point

estimate on θ was achieved by maximizing the likelihood function. As a result, the prediction and

the associated prediction error variance are incorrect and are far from being accurate for a small

number of observations. On the other hand, the fully Bayesian approach which incorporates the

prior knowledge of θ and uncertainties in θ provides a more accurate prediction and an exact

confidence interval.

Using the proposed sequential Bayesian prediction algorithm along with the adaptive sampling

strategy, the prior distribution was updated in a sequential manner. At time t = 100, the posterior

distribution of θ is shown in Fig. 3-(b). With a larger number of observations, the support for the

posterior distribution of θ becomes smaller and the peak gets closer to the true value. As shown

in Fig. 4-(a), the quality of the prediction at time t = 100 is significantly improved. At time

t = 300, the prior distribution was further updated which is shown in Fig. 3-(c). At this time,

θ = (2, 8)T , which is the true value, has the highest probability. The prediction is also shown

in Fig. 4-(b). This demonstrates the usefulness and correctness of our algorithm. The running

time at each time step is fixed, which is around 12s using Matlab, R2008a (MathWorks) in a PC

(2.4GHz Dual-Core Processor). The distributed algorithm was implemented under a compactly

supported correlation function for space. These promising 2-D simulation results can be found

in the preliminary version of this paper [19].
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Fig. 2. The prediction at t = 1 using (a) the maximum likelihood based approach, and (b) the proposed fully Bayesian approach.

The true fields are plotted in blue solid lines. The predicted fields are plotted in red dash-dotted lines. The area between red

dotted lines indicates the 95% confidence interval.
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Fig. 3. (a) The prior distribution θ, (b) the posterior distribution of θ at time t = 100, (c) the posterior distribution of θ at

time t = 300.

VI. CONCLUSION

In this paper, we formulated a fully Bayesian approach for spatio-temporal Gaussian process

regression under practical conditions. We designed sequential Bayesian prediction algorithms to

compute exact predictive distributions in constant time as the number of observations increases.

An adaptive sampling strategy was also provided to improve the quality of prediction. Simulation

results showed the practical usefulness of the proposed theoretically-correct algorithms in the

context of environmental monitoring by mobile sensor networks.
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Fig. 4. The prediction at (a) t = 100, and (b) t = 300 using the centralized sequential Bayesian approach. The true fields are

plotted in blue solid lines. The predicted fields are plotted in red dash-dotted lines. The area between red dotted lines indicates

the 95% confidence interval.
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APPENDIX

A. Proof of Proposition 3.1

Proof: i) For given θ, we have

p(y|θ) =

∫∫
p(y|β, σ2

f ,θ)π(β, σ2
f )dβdσ

2
f

=

∫∫
p(y|β, σ2

f ,θ)π(β|σ2
f )π(σ2

f )dβdσ
2
f

=
ba

Γ(a)(2π)n/2 det(C)1/2 det(T)1/2 det(FTC−1F + T−1)1/2

∫ exp
{
− b+RSS

2

σ2
f

}
(σ2

f )
n/2+a+1

dσ2
f

=
Γ(n+2a

2
)ba

Γ(a)(2π)n/2 det(C)1/2 det(T)1/2 det(FTC−1F + T−1)1/2

(
b+

RSS

2

)−n+2a
2

where

RSS = yT
(
C−1 −C−1F(FTC−1F + T−1)−1FTC−1

)
y.

As α→∞, we have

π(θ|y) = lim
α→∞

p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

∝ det(C)−1/2 det(FTC−1F)−1/2

(
b+

1

2
yTΣy

)−n+2a
2

,

where Σ = C−1 −C−1F(FTC−1F)−1FTC−1.

ii) For given θ and y, we have

p(z∗|y,θ) =

∫∫
p(z∗|y,β, σ2

f ,θ)π(β, σ2
f |θ,y)dβdσ2

f

=

∫∫
p(z∗|y,β, σ2

f ,θ)π(β|σ2
f ,θ,y)π(σ2

f |θ,y)dβdσ2
f ,

where

z∗|y,β, σ2
f ,θ ∼ N

(
f(x∗)

Tβ + kTC−1(y − Fβ), σ2
f (1− kTC−1k)

)
,

β|σ2
f ,θ,y ∼ N (β̂, σ2

fΣβ̂),

σ2
f |θ,y ∼ IG

(
a+

n

2
, b+

RSS

2

)
.

Then, it can be shown that

p(z∗|y,θ) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) ( λ

πν

) 1
2
(

1 +
λ(z∗ − µ)2

ν

)− ν+1
2

,

when α→∞.
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