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Abstract— In this paper, we formulate a full Bayesian ap-
proach for spatio-temporal Gaussian process regression under
practical conditions such as measurement noise and unknown
hyperparmeters (particularly, the bandwidths). Thus, multi-
factorial effects of observations, measurement noise and prior
distributions of hyperparameters are all correctly incorporated
in the computed predictive distribution. Using discrete prior
probabilities and compactly supported kernels, we provide
a way to design sequential Bayesian prediction algorithms
that can be computed (without using the Gibbs sampler)
in constant time as the number of observations increases.
Both centralized and distributed sequential Bayesian prediction
algorithms have been proposed for mobile sensor networks.
An adaptive sampling strategy for mobile sensors, using the
maximum a posteriori (MAP) estimation, has been proposed
to minimize the prediction error variances. Simulation results
illustrate the effectiveness of the proposed algorithms.

I. INTRODUCTION

Recently, there has been increasing exploitation of the

mobile sensor networks in environmental monitoring [1],

[2], [3], [4]. Gaussian process regression (or Kriging in

geostatistics) has been widely used to draw statistical in-

ferences from geostatistical and environmental data [5], [6],

[7]. Gaussian process modeling enables us to predict physical

values, such as temperature or harmful algae bloom biomass,

at any point and time with a predicted uncertainty level.

For example, near-optimal static sensor placements with a

mutual information criterion in Gaussian processes were

proposed in [8]. A distributed Kriged Kalman filter for spatial

estimation based on mobile sensor networks was developed

in [4]. Multi-agent systems that are versatile for various

tasks by exploiting predictive posterior statistics of Gaussian

processes were developed in [9], [10].

The unknown hyperparameters in the covariance function

of a Gaussian process can be estimated by the maximum

likelihood (ML) estimator and used in the prediction as the

true hyperparameters by mobile sensor networks [11]. In

a full Bayesian approach, however, the uncertainty in the

hyperparameters shall be incorporated in the prediction [12].

In [13], Gaudard et al. presented a Bayesian method that

uses importance sampling for analyzing spatial data sampled

from a Gaussian random field whose covariance function was
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not known. However, the complexity and the assumptions

made in [13] such as noiseless observations and the time-

invariance of the field limit the applicability of the approach

on mobile sensors in practice. A distributed adaptive sam-

pling approach was proposed by [14] for sensor networks

to find locations that maximize the information contents for

prediction purpose. In [14], an iterative prediction algorithm

without a Markov chain Monte Carlo (MCMC) method

has been developed based on the analytical closed-form

solutions from the result in [13] by assuming that the

covariance function of the spatio-temporal random field is

known up to a constant. Regression analysis for Gaussian

processes requires growing computational complexity since

the size of the covariance matrix increases as the number

of observations increases. This problem in the context of

the mobile sensor networks has been tackled in different

directions [15], [16]. Computational complexity of a full

Bayesian prediction algorithm for spatio-temporal Gaussian

processes with unknown covariance functions grows in a

prohibitively fast rate as the observation number increases

due to the MCMC method. These have been the main

hurdles for resource-constrained robots to efficiently use full

Bayesian approaches for Gaussian process regression.

The contribution of this paper is as follows. First, we

provide a full Bayesian approach for spatio-temporal Gaus-

sian process regression under more practical conditions such

as measurement noise and unknown hyperparmeters (par-

ticularly, the bandwidths). We also present an approach to

compute the predictive distribution using the Gibbs sampler

[17] (Section II). Thus, multifactorial effects of observations,

measurement noise and prior distributions of hyperparame-

ters are all correctly incorporated in the prediction of the

Gaussian process by this full Bayesian approach. Using

discrete prior probabilities and compactly supported kernels

[18], we then provide a way to design sequential Bayesian

prediction algorithms that can be computed in constant time

as the number of observations increases. In particular, the

sequential Bayesian prediction is developed in the forms

of centralized and distributed algorithms (Section IV). An

adaptive sampling strategy for mobile sensors, utilizing the

maximum a posteriori (MAP) estimation of the hyperparam-

eters, is proposed to minimize the prediction error variances

(Section V). Finally, the proposed Bayesian prediction algo-

rithms and the adaptive sampling strategy are tested under

spatio-temporal Gaussian processes.

Standard notation is used throughout the paper. Let R,

R≥0, R>0, Z, Z≥0, Z>0 denote, respectively, the sets of

real, non-negative real, positive real, integer, non-negative
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integer, and positive integer numbers. Let E, Var and Corr

denote, respectively, the operators of expectation, variance

and correlation. Other notation will be explained in due

course.

II. A FULL BAYESIAN APPROACH FOR GAUSSIAN

PROCESS REGRESSION

In this section, we present a model of a spatio-temporal

Gaussian process and its observations, (which will be

used throughout the paper,) by expanding the model used

in [13] to include the temporal process and measure-

ment noise. We then show how to perform Bayesian

inference using a MCMC technique for our formula-

tion. Let us consider a spatio-temporal Gaussian process

z(x) ∼ GP
(

µ(x), σ2
fK(x,x

′)
)

, where z ∈ R and x :=
[

sT t
]T
∈ Q × R≥0 contains the sampling location

s ∈ Q ⊂ R
D and the sampling time t ∈ R≥0. The mean

function is assumed to be µ(x) = f(x)Tβ, where f(x) :=
[ f1(x) · · · fp(x) ]T ∈ R

p is a known regression func-

tion, β ∈ R
p is an unknown vector of regression coefficients.

The covariance between z(x) and z(x′) is assumed to have

the form of σ2
fK(x,x

′). The correlation function K(x,x′) is

defined by

K(x,x′) = φs

(

‖s− s′‖

σs

)

φt

(

|t− t′|

σt

)

, (1)

where we assume that φs(·) and φt(·) are decreasing ker-

nel functions for space and time, respectively. The signal

variance σ2
f gives the overall vertical scale relative to the

mean of the Gaussian process in the output space. These

parameters together with the unknown mean β play the role

of hyperparameters. We defined the hyperparameter vector

as θ := [ βT σ2
f σs σt ]T ∈ R

p × R
3
>0.

Suppose we have a collection of observations D =
{

(x(i), y(i))|i = 1, . . . , n
}

where x(i) denotes an input vec-

tor of dimension D + 1 and y(i) denotes a scalar value

of the noise corrupted measurement, i.e., y(i) = z(x(i)) +

ǫ(i), ǫ(i)
i.i.d.
∼ N (0, σ2

w). We assume that the signal-to-

noise ratio γ = σ2
f/σ

2
w is known, which is necessary for

identifiability. Let y ∈ R
n denote the collection of the

measurements.

The spatio-temporal Gaussian process regression provides

the prediction (or predictive distribution) of z∗ := z(x∗)
at location s∗ ∈ Q and time t∗ ∈ R≥0 for given noisy

measurements y. For the known hyperparameter vector θ,

the prediction of z∗ at location s∗ and time t∗ can be obtained

by z∗|y ∼ N
(

ẑ∗, σ
2
ẑ∗

)

, where ẑ∗ = E(z∗|y) = f(x∗)
Tβ +

kTC−1(y−Fβ), and σ2
ẑ∗

= Var(z∗|y) = σ2
f (1−k

TC−1k).
We have defined

F := [ f(x(1)) · · · f(x(n)) ]T ∈ R
n×p,

k := Corr(y, z∗) = [K(x(i),x∗)] ∈ R
n,

C := Corr(y,y) = [K(x(i),x(j)) +
1

γ
δij ] ∈ R

n×n,

(2)

where δij is the Dirac delta function which equals one when

i = j and zero otherwise.

TABLE I

THE GIBBS SAMPLER.

1: Initialize β(1), σ2
f

(1)
σ
(1)
s , σ

(1)
t

2: for i = 1 to m do

3: sample β(i+1) from π(β|σ2
f

(i)
, σ

(i)
s , σ

(i)
t ,y)

4: sample σ2
f

(i+1)
from π(σ2

f
|β(i+1), σ

(i)
s , σ

(i)
t ,y)

5: sample σ
(i+1)
s , σ

(i+1)
t from π(σs, σt|β(i+1), σ2

f

(i+1)
,y)

6: end for

In Bayesian statistics, the unknown hyperparameter vector

θ is considered to be a random vector and hence its prior

has to be defined. In this paper, we use the prior distribution

of the hyperparameter vector that satisfies

π(θ) = π(β, σ2
f , σs, σt) = π(β|σ2

f )π(σ
2
f )π(σs)π(σt),

along with π(β|σ2
f ) ∝ 1, and π(σ2

f ) = IG(af , bf ), where

IG(af , bf) denotes the inverse gamma distribution with mean

bf/(af − 1). We may choose default priors for π(σs) and

π(σt) that ensures posterior property, which would mimic

the properties of the ML estimate in absence of meaningful

prior information.

The posterior distribution of θ is proportional to the

likelihood times the prior, i.e., π(θ|y) ∝ p(y|θ)π(θ). The

inference on θ can be carried out by sampling from the

posterior distribution via the Gibbs sampler which is shown

in Table I.

To implement the Gibbs sampler in Table I to generate

samples from the posterior distribution, we exploit the fol-

lowing proposition.

Proposition 1: (i) For given σ2
f , σs, σt, and y, we

have β|σ2
f , σs, σt,y ∼ N

(

β̂,Σ2
β̂

)

, where β̂ =

(FTC−1F)−1FTC−1y, and Σ
β̂
= σ2

f (F
TC−1F)−1. F and

C are defined in (2).

(ii) For given β, σs, σt, and y, we have σ2
f |β, σs, σt,y ∼

IG
(

ãf , b̃f

)

, where ãf = af + n
2 , and b̃f = bf + 1

2 (y −

Fβ)TC−1(y − Fβ).
(iii) For given β, σ2

f , and y, we have π(σs, σt|β, σ
2
f ,y)

∝ 1
|C|1/2

exp
(

− (y−Fβ)TC−1(y−Fβ)
2σ2

f

)

π(σs)π(σt).

Proof: The proof is omitted due to the page limit.

Remark 2: The hyperparameters β and σ2
f in p(y|θ)

can be marginalized [13] such that π(σs, σt|y) ∝
p(y|σs, σt)π(σs, σt). Notice that p(y|σs, σt) has an analyt-

ical form which is no longer Gaussian. By this way, the

dimensionality of the Gibbs sampler can be reduced to 2.

The predictive distribution of z∗ at location s∗ and time

t∗ can be obtained by

p(z∗|y) =

∫

p(z∗|y, θ)π(θ|y)dθ. (3)

If we draw m samples
{

θ(i)
}m

i=1
according to the posterior

distribution π(θ|y) using the Gibbs sampler, the predictive

distribution in (3) can then be approximated by

p(z∗|y) ≈
1

m

m
∑

i=1

p(z∗|y, θ
(i)). (4)
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The predictive mean and variance can be now obtained by

ẑ∗ = E(z∗|y) ≈
1

m

m
∑

i=1

E(z∗|y, θ
(i)),

σ2
ẑ∗ = Var(z∗|y) ≈

1

m

m
∑

i=1

Var(z∗|y, θ
(i))

+
1

m

m
∑

i=1

[

E(z∗|y, θ
(i))− E(z∗|y)

]2

.

(5)

In the next section, we will formulate a problem that seeks

a sequential Bayesian prediction algorithm to deal with the

complexity issue in the Gibbs sampler.

III. PROBLEM FORMULATION

From here on, we focus on the spatio-temporal Gaussian

process which has zero mean and known signal variance

σ2
f , i.e., the unknown hyperparameter vector is now θ =

[ σs σt ]T . As discussed in Remark 2, the unknown hy-

perparameters β and σ2
f can be treated efficiently exploiting

the analytical closed-form solutions [13].

Consider the problem of Bayesian prediction with sam-

pling by a mobile sensor network, which consists of N mo-

bile agents distributed over the surveillance region Q ⊂ R
D.

The identity of each agent is indexed by J := {1, 2, · · · , N}.
Let qi(t) ∈ Q be the position of agent i at time t ∈ R≥0.

At time t, agent i makes a noise corrupted observation

y(qi(t), t) := z(qi(t), t) + w(qi(t), t), where the sensor

noise w(qi(t), t) is Gaussian, i.e., w(qi(t), t) ∼ N (0, σ2
w).

Suppose agents start making observations every ts
from time t1 = 0. Let yk denote the collection of

observations by all agents at time tk, i.e., yk :=
[ y(q1(tk), tk) · · · y(qN (tk), tk) ]T . Suppose at time tk,

we have a set of observations {ξj}
ck
j=1, where M is a

constant, ck := c(k) is a non-negative integer and c(·) is a

non-decreasing function. For notational simplicity, we define

ξ1:ck := [ ξT1 · · · ξTck ]T , where ξ1:0 := ∅ is an empty

array. Given extra observations ψk, our objective is to make

prediction of z∗ := z(s∗, t∗) at location s∗ and time t∗ = tk.

The predictive posterior distribution can be obtained by

p(z∗|ξ1:ck ,ψk) =

∫

p(z∗|ξ1:ck ,ψk, θ)π(θ|ξ1:ck ,ψk)dθ.

(6)

In (6), the posterior probability distribution of the hyperpa-

rameters θ can be obtained by using the prior probability

distribution π(θ|ξ1:ck) as follows.

π(θ|ξ1:ck ,ψk) ∝ p(ψk|ξ1:ck , θ)π(θ|ξ1:ck). (7)

To utilize all observations up to tk, the standard choices

are c(k) = k − 1, ξj = yj , and ψk = yk . However,

as pointed out in Remark ??, when k is large, finding the

predictive distribution in (6) is computationally prohibited

in this Bayesian framework. Therefore, our objective is to

design sequential Bayesian prediction algorithms which can

be implemented in constant time (i.e., does not grow with the

time index k) by choosing an appropriate set of ck, ξ1:ck , and

ψk, without compromising our Bayesian framework. This

problem is formally stated as follows.

Problem 3: Design sequential Bayesian prediction algo-

rithms which can be computed in constant time as k in-

creases, i.e., find ck, {ξj}
ck
j=1, and ψk such that the predic-

tive distribution p(z∗|ξ1:ck ,ψk) in (6) can be computed in

constant time as k increases.

IV. SEQUENTIAL BAYESIAN PREDICTION ALGORITHMS

The following proposition provides a way to tackle Prob-

lem 3 by carefully choosing a set of sequential observations.

Proposition 4: For a given prior distribution π(θ|ξ1:ck) in

(7), if the following conditions are satisfied

C1: ψk and ξ1:ck are uncorrelated, and

C2: z∗ and ξ1:ck are uncorrelated,

then p(z∗|ξ1:ck ,ψk, θ) in (6) and p(ψk|ξ1:ck , θ) in (7) used

for Problem 3 can be computed in constant time, i.e., the

computational power required will not grow with k.

Proof: The proof is straightforward and is omitted.

In what follows, using the result from Proposition 4, we

present sequential Bayesian prediction for Problem 3 in the

forms of centralized and distributed algorithms.

A. A centralized algorithm

Consider a case in which all agents transmit their obser-

vations to a central station, which has high computation and

memory power.

Assume that we know the range of hyperparameters, i.e.,

σs ∈ [ σs σs ] and σt ∈ [ σt σt ], where a and

a denote the known lower-bound and upper-bound of the

random variable a, respectively. To avoid the computationally

demanding MCMC as outlined, we assign discrete uniform

probability distributions to σs and σt as priors instead of

continuous probability distributions. Hence, π(θ) is now

a probability. By this way, the possible choices of θ are

constrained on a finite set of grid points denoted by Θ.

To satisfy conditions C1-2 in Proposition 4, we consider

a class of spatio-temporal Gaussian processes generated by a

compactly supported kernel function for time (φt(h) in (1))

such that the correlation vanishes when the time difference

between two inputs is larger than σt, i.e., φt(h) = 0, ∀h > 1.

The following theorem shows how to select ξj , ck and ψk

to satisfy conditions C1-2 in Proposition 4.

Theorem 5: Consider the aforementioned prior probability

π(θ) and the compactly supported kernel. If we choose η ∈
Z>0 such that ts ≥ σt/η, and

ck := max (⌊(k/η − 1)/2⌋, 0) ,

ξj := y2(j−1)η+1:(2j−1)η ,

ψk := yk−η+1:k,

where ⌊·⌋ is the floor function defined by ⌊x⌋ :=
max {n ∈ Z|n ≤ x}, then the predictive distribution in Prob-

lem 3 can be computed in constant time, i.e., the computa-

tional power required does not grow with the time index k.

Proof: By construction, conditions C1-2 in Proposi-

tion 4 are satisfied. Hence, by the result of Proposition 4,
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TABLE II

THE CENTRALIZED BAYESIAN PREDICTION ALGORITHM.

Input:

The number of agents N , initial positions of agents

{qi(t1)}
N
i=1, the discrete prior distributions π(θ)

for θ ∈ Θ, the sampling period η, the sampling rate
ts, an empty array ψ = ∅, ck = 0

Output: The prediction at location s∗ and time t∗ = tk

At time tk , agent i does:

1: make an observation y(qi(tk), tk)
2: send the observation to the central station

At time tk , the central station does:

1: collect observations from all agents, i.e., yk

2: set ψ = [ ψT
y
T
k

]T

3: if mod(k, 2η) = η and k > η then

4: set ck = ck + 1
5: end if

6: for each θ ∈ Θ do

7: compute p(ψ|θ)
8: compute p(z∗|ψ,θ)
9: end for

10: compute the π(θ|ξ1:ck ,ψ)
11: if mod(k, 2η) = η then
12: store π(θ|ξ1:ck ,ψ) as π(θ|ξ1:ck+1)
13: end if

14: compute p(z∗|ξ1:ck ,ψ) at location s∗ and time t∗ = tk
15: if k ≥ η then

16: discard the first N elements in ψ, i.e., yk−η+1

17: end if

18: compute the next sampling positions for agents {qi(tk+1)}
N
i=1

(e.g., using the adaptive sampling strategy proposed in Section V)
19: send position commands to agents

At time tk , agent i does:

1: receive the position command from the central station
2: move to the new positions qi(tk+1)

the predictive distribution can be computed in constant time

as the time index k increases.

By choosing the discrete prior probability distribution on

θ, the integration in the predictive distribution in (6) can be

reduced to the following summation

p(z∗|ξ1:ck ,ψk) =
∑

p(z∗|ψk, θ)π(θ|ξ1:ck ,ψk),

where π(θ|ξ1:ck ,ψk) ∝ p(ψk|θ)π(θ|ξ1:ck).
Using Theorem 5, we provide a centralized sequential

Bayesian prediction algorithm as summarized in Table II.

B. A distributed algorithm

Consider a case in which spatially distributed M groups

of agents sample a spatio-temporal Gaussian process over

a large region Q. Each group is in charge of its sub-

region of Q. The identify of each group is indexed by

I := {1, · · · ,M}. Each agent in group i is indexed by

J [i] := {1, · · · , N}. The leader of group i is referred to as

leader i, which implements the centralized scheme to make

prediction on its sub-region using local observations and the

globally updated posterior distribution of θ. Therefore, in this

sensor network structure, the posterior distribution of θ shall

be updated correctly using all observations from all groups

(or agents) in a distributed fashion.

Let G(t) := (I, E(t)) be an undirected communication

graph such that an edge (i, j) ∈ E(t) if and only if

leader i can communicate with leader j at time t. We

define the neighborhood of leader i at time t by Ni(t) :=
{j ∈ I|(i, j) ∈ E(t), j 6= i}. Let a[i] denote the quantity as

a in the centralized scheme for group i. To develop a

distributed scheme for data fusion in Bayesian statistics, we

exploit the compactly supported kernel for space. Let φs(h)
also be a compactly supported kernel function as φt(h). We

then have the following Theorem.

Theorem 6: Assume that ψ
[i]
k and ξ

[i]
ck for leader i are

selected accordingly to Theorem 5 in time-wise. Let ψk be

defined by ψk := [(ψ
[1]
k )T , · · · , (ψ

[M ]
k )T ]T . If the following

condition is satisfied

C3: ‖q
[i]
ℓ (t)− q

[j]
ν (t′)‖ ≥ σs, ∀i 6= j, ∀ℓ ∈ J [i], ∀ν ∈ J [j],

in space-wise, then the global posterior probability distribu-

tion of the hyperparameter vector θ, based on all observa-

tions from all agents, can be obtained via

π(θ|ξ1:ck ,ψk) ∝ π(θ|ξ1:ck)
M
∏

i=1

p(ψ
[i]
k |θ). (8)

Proof: If the condition C3 is satisfied, then we have

Corr(ψ
[i]
k ,ψ

[j]
k ) = 0, ∀i 6= j, for all possible θ. We then have

p(ψk|θ) =
∏M

i=1 p(ψ
[i]
k |θ), which concludes the proof.

Suppose that the communication graph G(t) is connected

for all time t. Then
∏M

i=1 p(ψ
[i]
k |θ) in (8) can be achieved

asymptotically via belief consensus algorithm [19].

Theorem 7 ([19]): Consider a connected (undirected) net-

work of leaders that exchange the likelihood p(ψ
[i]
k |θ), then

a group product-consensus value
(

∏M
i=1 p(ψ

[i]
k |θ)

)1/M

can

be achieved asymptotically via the updating rule

p(ψ
[i]
k |θ)← p(ψ

[i]
k |θ)

βi

∏

j∈Ni

p(ψ
[i]
k |θ)

γ ,

where βi = 1 − γdi > 0 for all i and 0 < γ < 1/∆ (di is

the degree of node i and ∆ = maxi di).

V. ADAPTIVE SAMPLING

In the previous section, we designed sequential Bayesian

prediction algorithms for mobile sensor networks. In this

section, we consider how to adaptively deploy mobile sensors

at each time step such that the quality of the prediction

is improved. At time tk, the goal of the navigation of

agents is to improve the quality of prediction of the field

Q at the next sampling time tk+1. Therefore, mobile agents

should move to the most informative sampling locations

{q1(tk+1), · · · ,qN (tk+1)} at time tk+1 in order to reduce

the prediction error [8].

Suppose at time tk+1, agents move to a new set of

positions {q̃1, · · · , q̃N}. The mean squared prediction error

is defined as

J({q̃}
N
i=1) =

∫

s∈Q

E
[

(z(s, tk+1)− ẑ(s, tk+1))
2
]

ds, (9)

where ẑ(s, tk+1) is obtained as in (5). Due to the fact

that θ has a distribution, the evaluation of (9) becomes

computationally prohibited. To simplify the optimization, we

propose to utilize a maximum a posteriori (MAP) estimate
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of θ at time k, denoted by θ̂MAP(k) (i.e., θ in Θ which has

the highest posterior probabilty at time tk). Hence, (9) can

be simplified as

J({q̃}
N
i=1) =

∫

s∈Q

Var(z(s, tk+1)|ξ1:ck ,ψk, θ̂MAP(k))ds.

Therefore, the next sampling positions can be obtained by

solving the following optimization problem

{qi(t+ 1)}Ni=1 = arg min
{q̃i}

N
i=1

⊂Q
J({q̃i}

N
i=1). (10)

This problem can be solved using standard constrained non-

linear optimization techniques (e.g., the conjugate gradient

algorithm).

Remark 8: The proposed control algorithm in (10) is truly

adaptive in the sense that the new sampling positions in (10)

are functions of all collected observations. On the other hand,

if all hyperparameters are known, the optimization in (10)

can be performed offline without taking any measurements.

VI. SIMULATION RESULTS

In this section, we apply our approach to a spatio-temporal

Gaussian process with a correlation function in (1). The

Gaussian process was numerically generated through circu-

lant embedding of the covariance matrix for the simulation.

Assume we know β = 0 and σ2
f = 1. The signal to

noise ratio γ is chosen to be 26dB which corresponds to

σw = 0.05.

A. 1-D scenario using the centralized scheme

We consider a scenario in which 5 agents sample the

spatio-temporal Gaussian process in 1-D space and the cen-

tral station performs Bayesian prediction. The surveillance

region Q is given by Q = [ 0 10 ]. The hyperparameters

used in the simulation was chosen to be θ = [ σs σt ]T =
[ 2 8 ]T .

Here, we can afford a general case where the correlation

function for space (i.e., φs(·)) is not compactly supported.

In particular, we choose the squared exponential function

φs(h) = −
1
2h

2. However, the correlation function for time

(i.e., φt(·)) has to be compactly supported to satisfy the

condition in Theorem 5. In particular, we choose [18]

φt(h) =

{

(1−h) sin(2πh)
2πh + 1−cos(2πh)

π×2πh , 0 ≤ h ≤ 1,

0, otherwise.
(11)

Assume we know the bounds of θ, viz. σs ∈ [ 1.6 2.4 ]
and σt ∈ [ 4 12 ]. Agents make observations at a fixed

sampling rate ts = 1. η is chosen to be 12 such that ts ≥
σt/η. We choose a discrete uniform probability distribution

for π(θ) as shown in Fig. 2-(a). The prediction is evaluated

at each time step for 51 uniform grid points within Q.

The prediction result at time t1 is shown in Fig. 1-(a).

The predictive variances are large due to the uniform prior

distribution (Fig. 2-(a)) for θ and the small number of

observations.

At time t100, the prior distribution was updated in a

recursive manner based on the observations ξ1:c100 and it is
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Fig. 1. The prediction at time (a) t1, and (b) t100 . In each subfigure, the
true field is plotted in a blue solid line; the predicted field is plotted in a
red dashed line; the area between two red dotted lines indicates the 95%
confidence interval.

shown in Fig. 2-(b). With more number of observations, the

support for the posterior distribution of θ becomes smaller

and the peak gets closer to the true value. As shown in

Fig 1-(b), the quality of the prediction at time t100 is

significantly improved by a combination of our Bayesian

prediction algorithm and the adaptive sampling strategy. At

time t300, the prior distribution was further updated which is

shown in Fig. 2-(c). At this time, θ = [ 2 8 ]T , which is

the true value, has the highest possibility. This demonstrates

the correctness of our algorithm. The running time at each

time step is fixed, which is around 12s using Matlab, R2008a

(MathWorks) in a PC (2.4GHz Dual-Core Processor).

B. 2-D scenario using the distributed scheme

We consider a scenario in which there are 4 groups, each

of which contain 10 agents sampling the spatio-temporal

Gaussian process in 2-D space. The surveillance region Q is

given by Q = [ 0 10 ]× [ 0 10 ]. The hyperparameters

used in the simulation were chosen to be θ = [ σs σt ]T =
[ 2 8 ]T . To use the distributed scheme, we have to choose

compactly supported kernel functions for both space and

time. In particular, we choose φs(h) = φt(h) as in (11).

Assume we know that σs ∈ [ 1.6 2.4 ] and σt ∈
[ 4 12 ]. Agents make observations at a fixed sampling

rate ts = 1. η is chosen to be 12 such that ts ≥ σt/η. The

region Q is divided into 4 square sub-regions with equal

size as shown in Fig. 4-(a). Distance between any two sub-

regions is enforced to be greater than 2.4, which enables

the distributed Bayesian prediction. The same uniform prior

distribution for θ as in the centralized version (see Fig. 2-(a))

is chosen.

The globally updated prior distribution of θ at time t100
based on observations {ξ

[i]
1:c100

}4i=1 is shown in Fig. 3. It

has a peak near the true θ which show the correctness

of the distributed algorithm. The predicted field compared

with the true field at time t100 is shown in Fig.4. Due to

the construction of sub-regions, the interface areas between

any of two sub-regions are not predicted. Notice that the

prediction is not as good as in the 1-D scenario due to

the effect of curse of dimensionality when we move from

1-D to 2-D spaces. The running time of the distributed

algorithm in this scenario is about several minutes due to the

complexity of the 2-D problem under the same computational

environment as the one used for the 1-D scenario. Thanks to
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Fig. 2. (a) The updated prior distribution of θ at different time using the centralized algorithm. (a) π(θ), (b) π(θ|ξ1:c100 ), and (c) π(θ|ξ1:c300 ).
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Fig. 3. The updated prior distribution of θ at time t100 , i.e., π(θ|ξ1:c100 ),
using the distributed algorithm.

(a) (b)

Fig. 4. The comparison of (a) the true field at t100 and (b) the predicted
field at t100 using the distributed algorithm.

our proposed schemes, the running time does not grow with

the time increases.

VII. CONCLUSION

In this paper, we formulated a full Bayesian approach for

spatio-temporal Gaussian process regression under practical

conditions such as measurement noise and unknown hyper-

parmeters. We designed sequential Bayesian prediction al-

gorithms for spatio-temporal Gaussian processes that can be

implemented in constant time as the number of observations

increases. An adaptive sampling strategy was also provided

in order to improve the quality of prediction. Simulation

results showed the effectiveness of the proposed algorithms

in the context of environmental monitoring by mobile sensor

networks.
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