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Abstract. A multimodal biometric system integrates information from
multiple biometric sources to compensate for the limitations in per-
formance of each individual biometric system. We propose an optimal
framework for combining the matching scores from multiple modalities
using the likelihood ratio statistic computed using the generalized den-
sities estimated from the genuine and impostor matching scores. The
motivation for using generalized densities is that some parts of the score
distributions can be discrete in nature; thus, estimating the distribution
using continuous densities may be inappropriate. We present two ap-
proaches for combining evidence based on generalized densities: (i) the
product rule, which assumes independence between the individual modal-
ities, and (ii) copula models, which consider the dependence between the
matching scores of multiple modalities. Experiments on the MSU and
NIST multimodal databases show that both fusion rules achieve consis-
tently high performance without adjusting for optimal weights for fusion
and score normalization on a case-by-case basis.

Keywords: Biometric recognition, multimodal biometric systems, fusion,
Gaussian copula models, Generalized densities, Neyman-Pearson theorem.

1 Introduction

Biometrics refers to the automatic identification of an individual based on his/her
physiological traits [1]. Biometric systems based on a single source of infor-
mation (unimodal systems) suffer from limitations like the lack of uniqueness,
non-universality and noisy data [2] and hence, may not be able to achieve the
desired performance requirements of real-world applications. In contrast, multi-
modal biometric systems combine information from its component modalities to
arrive at a decision [3]. Several studies [4–8] have demonstrated that by consol-
idating information from multiple sources, better performance can be achieved
compared to the individual unimodal systems. In a multimodal biometric sys-
tem, integration can be done at (i) feature level, (ii) matching score level, or (iii)
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decision level. Matching score level fusion is commonly preferred because match-
ing scores are easily available and contain sufficient information to distinguish
between a genuine and an impostor case. Given a number of biometric systems,
one can generate matching scores for a pre-specified number of users even with-
out knowing the underlying feature extraction and matching algorithms of each
biometric system. Thus, combining information contained in the matching scores
seems both feasible and practical.

We propose a framework for optimally combining the matching scores from
multiple modalities based on generalized densities estimated from the genuine
and impostor matching scores. The motivation for using generalized densities is
that some parts of the score distributions can be discrete in nature. As a result,
estimating the densities using continuous density functions can be inappropriate.
We present two approaches for combining evidence based on generalized densi-
ties: (i) the product rule, which assumes independence between the individual
modalities, and (ii) copula models, which parametrically model the dependence
between the matching scores of multiple modalities. Our proposed method by-
passes the need for score normalization and selection of optimal weights for
the score combination on a case-by-case basis [3, 9, 10], and therefore, is a more
principled approach with performance comparable to the commonly used fusion
methods. Experiments have shown that our method achieves consistently high
performance over the MSU and NIST multimodal databases.

2 Generalized Densities

2.1 Estimation of Marginal Distributions

Let X be a generic matching score with distribution function F , i.e., P (X ≤ x) =
F (x). We denote the genuine (impostor) matching score by Xgen (Ximp) and the
corresponding distribution function by Fgen (Fimp). Assuming that Fgen(x) and
Fimp(x) have densities fgen(x) and fimp(x), respectively, the Neyman-Pearson
theorem states that the optimal ROC curve is the one corresponding to the likeli-
hood ratio statistic NP (x) = fgen(x)/fimp(x) [11]. The ROC curve correspond-
ing to NP (x) has the highest genuine accept rate (GAR) for every given value
of the false accept rate (FAR) compared to any other statistic U(x) 6= NP (x)
(this is true even for the original matching scores corresponding to U(x) = x).

However, when fgen(x) and fimp(x) are unknown (which is typically the case)
and are estimated from the observed matching scores, the ROC corresponding to
NP (x) may turn out to be suboptimal. This is mainly due to the large errors in
the estimation of fgen(x) and fimp(x). Thus, for a set of genuine and impostor
matching scores, it is important to be able to estimate fgen(x) and fimp(x)
reliably and accurately. Previous studies by Griffin [11] and Prabhakar et al.
[12] assume that the distribution function F has a continuous density with no
discrete components. In reality, most matching algorithms apply thresholds at
various stages in the matching process. When the required threshold conditions
are not met, specific matching scores are output by the matcher (e.g., some
fingerprint matchers produce a score of zero if the number of extracted minutiae
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is less than a threshold). This leads to discrete components in the matching
score distribution that cannot be modeled accurately using a continuous density
function. A score value x0 is said to be discrete if P (X = x0) = p > 0. It is easy
to see that F cannot be represented by a density function in a neighborhood
of x0 (since this would imply that P (X = x0) = 0). Thus, discrete components
need to be detected and modeled separately to avoid large errors in estimating
fgen(x) and fimp(x). Our approach consists of detecting discrete components in
the genuine and impostor matching score distributions, and then modeling the
observed distribution of matching scores as a mixture of discrete and continuous
components. Hence, this approach generalizes the work of [11, 12].

The following methodology can model a distribution based on a generic set
of observed scores. For a fixed threshold T , the discrete values are identified as
those values x0 with P (X = x0) > T , where 0 ≤ T ≤ 1. Since the underlying
matching score distribution is unknown, we estimate the probability P (X = x0)
by N(x0)

N , where N(x0) is the number of observations in the data set that equals
x0, and N is the total number of observations. The collection of all discrete
components for a matching score distribution will be denoted by

D ≡ {x0 :
N(x0)

N
> T}. (1)

The discrete components constitute a proportion pD ≡ ∑
x0∈D

N(x0)
N of

the total observations. We obtain the collection C by removing all discrete
components from the entire data set. The scores in C constitute a proportion
pC ≡ 1−pD of the entire data set, and they are used to estimate the continuous
component of the distribution (FC(x)) and the corresponding density (fc(x)). A
non-parametric kernel density estimate of fc(x) is obtained from C as follows.
The empirical distribution function for the observations in C is computed as

F̂C(x) =
1

NC

∑

s∈C
I{ s ≤ x }, (2)

where I{s ≤ x} = 1 if s ≤ x, and = 0, otherwise; also, NC ≡ N pC . Note that
F̂C(x) = 0 ∀ x < smin and F̂C(x) = 1 ∀ x ≥ smax, where smin and smax, re-
spectively, are the minimum and maximum of the observations in C. For values
of x, smin < x < smax, not contained in C, F̂C(x), is obtained by linear interpo-
lation. Next, B samples are simulated from F̂C(x), and the density estimate of
fC(x), f̂C(x), is obtained from the simulated samples using a Gaussian kernel
density estimator. The optimal bandwidth, h, is obtained using the “solve-the-
equation” bandwidth estimator [13], which is an automatic bandwidth selector
that prevents oversmoothing and preserves important features of the distribution
of matching scores (see Figure 1). The generalized density is defined as

l(x) = pC f̂C(x) +
∑

x0∈D

N(x0)
N

· I{x = x0}, (3)
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where I{x = x0} = 1 if x = x0, and = 0, otherwise. The distribution function
corresponding to the generalized density is defined as

L(x) = pC

∫ x

−∞
f̂C(u) du +

∑

x0∈D, x0≤x

N(x0)
N

. (4)
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Fig. 1. Histograms of matching scores and corresponding generalized density estimates.
Row 1: Histograms of genuine scores for face (a), finger (b), and hand-geometry (c).
Row 2: Histograms of impostor scores for face (d), finger (e), and hand-geometry (f).
The solid line is the estimated density using the kernel density estimator, and the
spikes in (c) and (e) correspond to detected discrete components. Note that no pre-
processing of the matching score data (including the conversion of distance measures
into similarity scores) was performed before density estimation.

For a multimodal system with K modalities, the generalized densities and
distributions estimated for the genuine (impostor) scores for the kth modality
will be denoted by lgen,k(x) and Lgen,k(x) (limp,k(x) and Limp,k(x)), respectively,
for k = 1, 2, . . . ,K. Figures 1 (a)-(f) give the plots of lgen,k(x) and limp,k(x) for
the distribution of observed genuine and impostor matching scores for K = 3
modalities of the MSU-Multimodal database (see Section 4). Figures 1 (a)-(f)
also give the histograms of the genuine and impostor matching scores for the
three modalities. The “spikes” (see Figure 1 (c) and (e)) represent the detected
discrete components and have a height greater than the threshold T = 0.02.
Note that the individual “spikes” cannot be represented by a continuous density
function. Forcing a continuous density estimate for these values will result in
gross estimation errors and yield suboptimal ROC curves.
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2.2 Joint Density Estimation using Copula Models

The methodology described in Section 2.1 only estimates the marginal score dis-
tributions of each of the K modalities without estimating the joint distribution.
One way to estimate the joint distribution of matching scores is by using copula
models [14]. Let H1,H2, . . . , HK be K continuous distribution functions on the
real line and H be a K-dimensional distribution function with the kth marginal
given by Hk for k = 1, 2, . . . , K. According to Sklar’s Theorem [14], there exists
a unique function C(u1, u2, . . . , uK) from [0, 1]K to [0, 1] satisfying

H(s1, s2, . . . , sK) = C(H1(s1),H2(s2), . . . ,HK(sK)), (5)

where s1, s2, . . . , sK are K real numbers. The function C is known as a K-copula
function that “couples” the one-dimensional distributions functions H1,H2, . . . ,
HK to obtain the K-variate function H. Equation (5) can also be used to con-
struct K-dimensional distribution functions H whose marginals are the distri-
butions H1,H2, . . . ,HK : choose a copula function C and define H as in (5).

Copula functions are effective in modeling the joint distribution when the
marginal distributions are non-normal and do not have a parametric form (as
is usually the case for biometric data, see Figure 1). The family of copulas
considered in this paper is the K-dimensional multivariate Gaussian copulas
[15]. These functions can represent a variety of dependence structures using a
K×K correlation matrix R. The K-dimensional Gaussian copula function with
correlation matrix R is given by

CK
R (u1, u2, . . . , uK) = ΦK

R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK)) (6)

where each uk ∈ [0, 1] for k = 1, 2, . . . ,K, Φ(·) is the distribution function of the
standard normal, Φ−1(·) is its inverse, and ΦK

R is the K-dimensional distribution
function of a random vector Z = (Z1, Z2, . . . , ZK)T with component means
and variances given by 0 and 1, respectively. The (m,n)-th entry of R, ρmn,
measures the degree of correlation between the m-th and n-th components for
m,n = 1, 2, . . . , K. In practice, ρmn will be unknown and hence, will be estimated
using the product moment correlation of normal quantiles corresponding to the
observed scores from the K modalities.

We denote the density of CK
R by

cK
R (u1, u2, . . . , uK) ≡ ∂CK

R (u1, u2, . . . , uK)
∂u1∂u2 . . . ∂uK

=
φK

R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK))∏K
k=1 φ(Φ−1(uk))

, (7)

where φK
R (x1, x2, . . . , xK) is the joint probability density function of the K-

variate normal distribution with mean 0 and covariance matrix R, and φ(x) is
the standard normal density function. We will assume that the joint distribution
function of genuine (impostor) matching scores for K modalities, FK

gen (FK
imp), is

of the form (5) for some correlation matrix R0 (R1). For the genuine (impostor)
case, Hk will be estimated by Lgen,k(x) (Limp,k(x)) for k = 1, 2, . . . , K.

To appear in Proceedings of AVBPA 2005



3 Fusion Based On Generalized Densities

Two methods of fusion have been considered in this paper. The first method
assumes independence between the K biometric modalities and combines the
estimated marginal densities using the product rule. For the matching score set
S = (S1, S2, . . . , SK), the product fusion score of S, PFS(S), is given by

PFS(S) =
K∏

k=1

lgen,k(Sk)
limp,k(Sk)

, (8)

where lgen,k(·) and limp,k(·) are the estimates of generalized densities of the
genuine and impostor scores of the kth biometric modality.

The copula fusion rule combines the individual modalities using the estimated
Gaussian copula functions for the score distributions. The copula fusion score of
a matching score set S = (S1, S2, . . . , SK), CFS(S), is given by CFS(S) =

PFS(S) · cK
R0

(Φ−1(Lgen,1(S1)), Φ−1(Lgen,2(S2)), . . . , Φ−1(Lgen,K(SK)))
cK
R1

(Φ−1(Limp,1(S1)), Φ−1(Limp,2(S2)), . . . , Φ−1(Limp,K(SK)))
, (9)

where Lgen,k(Sk) and Limp,k(Sk) are, respectively, the estimates of generalized
distribution functions for the kth biometric modality, and cK

R is the density of CK
R

as defined in (7). This fusion rule assumes that the Gaussian copula functions
can adequately model the dependence between the K biometric modalities.

4 Experimental Results

Experiments on fusion of matching scores using rules (8) and (9) were carried
out on two different multimodal databases. For each experiment, 70% of the
genuine and impostor matching scores were randomly selected to be the training
set for the estimation of the generalized densities and the correlation matrices.
The remaining 30% of the genuine and impostor scores were used to generate
the ROC curves. This training-testing partition was repeated 20 times and the
performance results reported for each value of FAR are the median GAR values.

4.1 Databases

Table 1 summarizes the multimodal databases used in our experiments. The
first database (referred to as the MSU-Multimodal database) consisted of 100
“virtual” subjects each providing five samples of face, fingerprint (left-index) and
hand-geometry modalities. Face images were represented as eigenfaces [16] and
the Euclidean distance between the eigen coefficients of the template-query pair
was used as the distance metric. Minutia points were extracted from fingerprint
images and the elastic string matching technique [17] was used for computing
the similarity between two minutia point patterns. Fourteen features describing
the geometry of the hand shape [18] were extracted from the hand images and
Euclidean distance was computed for each template-query pair.
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Table 1. Summary of Multimodal Databases Used

Database Modalities K No. of Users

MSU-Multimodal Fingerprint, Face, Hand-geometry 3 100

NIST-Multimodal Fingerprint (Two fingers), 4 517
Face (Two matchers)

Experiments were also conducted on the first partition of the Biometric
Scores Set - Release I (BSSR1) released by NIST [19]. The NIST-Multimodal
database consists of 517 users and is “truly multimodal” in the sense that the
fingerprint and face images used for genuine matching score computation came
from the same individual. One fingerprint score was obtained by comparing a
pair of impressions of the left index finger and another score was obtained by
comparing impressions of the right index finger. Two different face matchers were
applied to compute the similarity between frontal face images. Even though the
number of subjects in the NIST database is relatively large, there are only two
samples per subject. So the number of genuine scores is still rather small.
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Fig. 2. Performance of product and copula fusion on the MSU-Multimodal database
based on (a) continuous and (b) generalized density estimates.

Figure 2 gives the ROC curves for the two fusion rules and the ROC curves
based on the matching scores of individual modalities for the MSU-Multimodal
database. Figure 2(a) shows the recognition performance when the genuine and
impostor score distributions of the three modalities are modeled purely by contin-
uous densities. The performance improvement obtained by modeling the match-
ing score distributions as a mixture of discrete and continuous components (gen-
eralized densities) can be observed by comparing Figures 2(a) and 2(b). The ROC
curves for the two fusion rules on the NIST-Multimodal database are shown in
Figure 3(a). We see that both fusion rules give significantly better matching
performance compared to the best single modality in each database. We also
observe that the best single modality in both the databases is uncorrelated to
the other modalities. For the MSU-Multimodal database, the estimates of the
correlation of the best single modality (fingerprint) with the other two modali-
ties (face and hand-geometry) are −0.01 and −0.11 for the genuine scores, and
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−0.05 and −0.04 for the impostor scores. For the NIST-Multimodal database
(the best single modality is finger 2), the correlation estimates (with face1, face2,
and finger1 modalities, respectively) are −0.02, −0.06, and 0.43 for the genuine
cases and 0.04, 0.02, and 0.14 for the impostor cases. Since the fusion is driven
mostly by the best modality, the fact that this modality is approximately inde-
pendent of the others means that the product and copula fusion rules should be
comparable to each other as reflected by the ROC curves in Figures 2 and 3(a).
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Fig. 3. ROC curves for the NIST-Multimodal database; (a) all four modalities (b) only
face1 and face2 modalities.

In order to study the usefulness of the copula fusion rule, we analyzed the
fusion results of the face1 and face2 modalities of the NIST-Multimodal database
(see Figure 3(b)). This pair had the highest degree of correlation among all pairs
in the two databases (0.75 and 0.29 for the genuine and impostor scores, respec-
tively). We observed that even in this case, the performance difference between
the product and copula fusion rules is not significant. This may be due to the
fact that although incorporating the correlation between the multiple matching
scores into the fusion rule should result in better performance than fusion based
on the independence assumption, the difference will be significant only in a few
cases. The following simulations illustrate this fact. Let the matching scores of
two biometric modalities follow the bivariate normal distribution with the fol-
lowing parameters (these values were chosen so as to closely model the matching
scores of face1 and face2 modalities in the NIST-Multimodal database):

Sgen ∼ N

(
µgen =

[
0.72
76.78

]
, Σgen =

[
0.006 0.15
0.15 8.31

])
, (10)

Simp ∼ N

(
µimp =

[
0.53
66.87

]
, Σimp =

[
0.0015 0.03
0.03 9.45

])
. (11)

We generated 100, 000 genuine and 100, 000 impostor scores from the above
distributions. In the first experiment, we assume that the parameters in equa-
tions (10) and (11) are known. The likelihood ratios were computed by utilizing
the full Σ, and under the independence assumption (non-diagonal elements of
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Σ matrix are set to zero). The ROC curves for these two cases are plotted in
Figure 4(a) which show that for this specific parameter set, utilizing the correla-
tion information does not substantially improve the performance. On the other

hand, if the Σgen matrix is changed to
[

0.006 0.20
0.20 8.31

]
(corresponds to increasing

the correlation between the genuine matching scores of the two modalities (ρgen)
from 0.75 to 0.90), we observe that fusion accounting for the correlation provides
substantial improvement over the independence case (see Figure 4(b)). Now, if
we estimate the parameters in equations (10) and (11) using the simulated data,
the copula fusion rule outperforms the product rule as shown in Figure 4(c).
These experiments illustrate that improvement in the recognition performance
by using copula fusion rule depends on the underlying distribution of the match-
ing scores. In the general case, the copula rule will perform at least as good as
the product rule, provided there is sufficient amount of training data to estimate
the correlation matrices accurately.
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Fig. 4. ROC curves for the simulated data; (a) fusion with true parameters when
ρgen = 0.75, (b) fusion with true parameters when ρgen = 0.90 and (c) fusion using
estimated parameters when ρgen = 0.90.

5 Summary

Based on the generalized density estimates of the genuine and impostor matching
scores, two methods of fusion that follow the Neyman-Pearson rule are described.
The first fusion rule computes the product of the likelihood ratios for each com-
ponent modality of a multimodal system and is optimal when the modalities are
independent of each other. The second fusion rule assumes that the generalized
joint density of matching scores can be modeled using a Gaussian copula function
and is a generalization of the product rule when the component modalities are
not independent. Experimental results indicate that the two fusion rules achieve
better performance compared to the single best modality in both the databases.
The proposed method bypasses the need to perform score normalization and
choosing optimal combination weights for each modality on a case-by-case basis.
In this sense, the proposed solution is a principled and general approach that is
optimal when the genuine and impostor matching score distributions are either
known or can be estimated with high accuracy.
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