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Abstract

Fingerprint individuality is the study of the extent of uniqueness of fingerprints and is the central

premise of expert testimony in court. A forensic expert testifies whether a pair of fingerprints is either

a match or non-match by comparing salient features of the fingerprint pair. However, the experts are

rarely questioned on the uncertainty associated with the match: How likely is the observed match between

the fingerprint pair due to just random chance? The main concern with the admissibility of fingerprint

evidence is that the matching error rates (i.e., the fundamental error rates of matching by the human

expert) are unknown. The problem of unknown error rates is also prevalent in other modes of identification

such as handwriting, lie detection, etc. Realizing this, the U.S. Supreme Court, in the 1993 case of Daubert

vs. Merrell Dow Pharmaceuticals, ruled that forensic evidence presented in a court is subject to five

principles of scientific validation, namely whether (i) the particular technique or methodology has been

subject to statistical hypothesis testing, (ii) its error rates has been established, (iii) standards controlling

the technique’s operation exist and have been maintained, (iv) it has been peer reviewed, and (v) it has

a general widespread acceptance. Following Daubert, forensic evidence based on fingerprints was first

challenged in the 1999 case of USA vs. Byron Mitchell based on the “known error rate” condition
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mentioned above, and subsequently, in 20 other cases involving fingerprint evidence. The establishment

of matching error rates is directly related to the extent of fingerprint individualization. This article gives

an overview of the problem of fingerprint individuality, the challenges faced and the models and methods

that have been developed to study this problem.

Related entries: Fingerprint individuality, fingerprint matching automatic, fingerprint matching manual,

forensic evidence of fingerprint, individuality.

Definitional entries:

1.Genuine match: This is the match between two fingerprint images of the same person.

2. Impostor match: This is the match between a pair of fingerprints from two different persons.

3. Fingerprint individuality: It is the study of the extent of which different fingerprints tend to match

with each other. It is the most important measure to be judged when fingerprint evidence is presented in

court as it reflects the uncertainty with the experts’ decision.

4. Variability: It refers to the differences in the observed features from one sample to another in a

population. The differences can be random, that is, just by chance, or systematic due to some underlying

factor that governs the variability.

I. Introduction

The two fundamental premises on which fingerprint identification is based are:(i) fingerprint details

are permanent, and(ii) fingerprints of an individual are unique. The validity of the first premise has

been established by empirical observations as well as based on the anatomy and morphogenesis of

friction ridge skin. It is the second premise which is being challenged in recent court cases. The notion

of fingerprint individuality has been widely accepted based on a manual inspection (by experts) of

millions of fingerprints. Based on this notion, expert testimony is delivered in a courtroom by comparing

salient features of a latent print lifted from a crime scene with those taken from the defendant. A
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reasonably high degree of match between the salient features leads the experts to testify irrefutably that

the owner of the latent print and the defendant are one and the same person. For decades, the testimony

of forensic fingerprint experts was almost never excluded from these cases, and on cross-examination,

the foundations and basis of this testimony were rarely questioned. Central to establishing an identity

based on fingerprint evidence is the assumption of discernible uniqueness; salient features of fingerprints

of different individuals are observably different, and therefore, when two prints share many common

features, the experts conclude that the owners of the two different prints are one and the same person.

The assumption of discernible uniqueness, although lacking sound theoretical and empirical foundations,

allows forensic experts to offer an unquestionable proof towards the defendant’s guilt.

A significant event that questioned this trend occurred in 1993 in the case of Daubert vs. Merrell Dow

Pharmaceuticals [1] where the U.S. Supreme Court ruled that in order for an expert forensic testimony

to be allowed in courts, it had to be subject to five main criteria of scientific validation, that is, whether

(i) the particular technique or methodology has been subject to statistical hypothesis testing, (ii) its

error rates has been established, (iii) standards controlling the technique’s operation exist and have been

maintained, (iv) it has been peer reviewed, and (v) it has a general widespread acceptance [4]. Forensic

evidence based on fingerprints was first challenged in the 1999 case of USA vs. Byron Mitchell [8] under

Daubert’s ruling, stating that the fundamental premise for asserting the uniqueness of fingerprints had

not been objectively tested and its potential matching error rates were unknown. After USA vs. Byron

Mitchell, fingerprint based identification has been challenged in more than 20 court cases in the United

States.

The main issue with the admissibility of fingerprint evidence is that the underlying scientific basis of

fingerprint individuality has not been rigorously studied or tested. In particular, the central question is:

What is the uncertainty associated with the experts’ judgement? How likely can an erroneous decision

be made for the given latent print? In March2000, the U.S. Department of Justice admitted that no
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such testing has been done and acknowledged the need for such a study [12]. In response to this,

the National Institute of Justice issued a formal solicitation for “Forensic Friction Ridge (Fingerprint)

Examination Validation Studies” whose goal is to conduct “basic research to determine the scientific

validity of individuality in friction ridge examination based on measurement of features, quantification,

and statistical analysis” [12]. The two main topics of basic research under this solicitation include:(i)

measure the amount of detail in a single fingerprint that is available for comparison, and(ii) measure

the amount of detail in correspondence between two fingerprints.

This article gives an overview of the problem of fingerprint individuality, the challenges faced and

the models and methods that have been developed to study the extent of uniqueness of a finger. Our

interest in the fingerprint individuality problem is twofold. Firstly, a scientific basis (a reliable statistical

estimate of the matching error) for fingerprint comparison can determine the admissibility of fingerprint

identification in the courts of law as an evidence of identity. Secondly, it can establish an upper bound

on the performance of automatic fingerprint verification systems.

The main challenge in assessing fingerprint individuality is to elicit models that can capture the

variability of fingerprint features in a population of individuals. Fingerprints are represented by a large

number of features, including the overall ridge flow pattern, ridge frequency, location and position of

singular points (core(s) and delta(s)), type, direction, and location of minutiae points, ridge counts between

pairs of minutiae, and location of pores. These features are also used by forensic experts to establish

an identity, and therefore, contribute to the assessment of fingerprint individuality. Developing statistical

models on complex feature spaces is difficult albeit necessary. In this paper, minutiae have been used as

the fingerprint feature of our choice to keep the problem tractable and as a first step. There are several

reasons for this choice: Minutiae is utilized by forensic experts, it has been demonstrated to be relatively

stable and it has been adopted by most of the commonly available automatic fingerprint matching systems.

In principal, the assessment of fingerprint individuality can be carried out for any particular matching
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mode, such as by human experts or by automatic systems, as long as appropriate statistical models are

developed on the relevant feature space used in the matching. Thus, our framework also extends to the

case where matching is performed based on an automatic system. The matching mode in this paper has

been selected to be an automatic matcher (see Section V for details) as it is computationally easy to

validate the models proposed. In future, our formulation will be extended to include other fingerprint

representations and other matching modes as well.

Even for the simpler fingerprint feature, namely minutiae, capturing its variability in a population of

fingerprints is challenging. For example, it is known that fingerprint minutiae tend to form clusters [6],

[7], minutiae information tend to be missed in poor quality images and minutiae location and direction

information tend to be highly dependent on one another. All these characteristics of minutiae variability,

in turn, affect the chance that two arbitrary fingerprints will match. For example, if the fingerprint pair

have minutiae that are clustered in the same region of space, there is a high chance that minutiae

in the clustered region will randomly match one another. In this case, the matches are spurious, or

false, and statistical models for fingerprint individuality should be able to quantify the likelihood of

spurious matches. To summarize, candidate models for assessing fingerprint individuality must meet two

important requirements: (i) flexibility, that is, the model can represent the observed distributions of the

minutiae features in fingerprint images over different databases, and (ii) associated measures of fingerprint

individuality can be easily obtained from these models.

Several works have been reported in the literature on fingerprint individuality. The reader is referred

to the overview by Pankanti et al. [4] on this subject. This article focuses on two recent works of

fingerprint individuality where statistical models have been developed for minutiae to address the question

of fingerprint individuality. These two works are (1) Pankanti et al. [4], and (2) Zhu et al. [9]. The rest of

this paper is organized as follows: Section II develops the problem of biometric recognition in terms of a

statistical hypotheses testing framework. Section III develops the statistical models of Pankanti et al. and
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Zhu et al. and discusses how fingerprint individuality estimates can be obtained from them. Section IV

describes how the statistical models can be extended to a population of fingerprints. Relevant experimental

results based on the NIST Special Database 4 [3], and FVC2002 [2] databases are reported in Section

V.

II. The Statistical Test of Biometric Recognition

Fingerprint based recognition, and more generally biometric recognition, can be described in terms

of a test of statistical hypotheses. Suppose a query image,Q, corresponding to an unknown identity,It,

is acquired. Fingerprint experts claim thatQ belongs to individualIc, say. This is done by retrieving

information of a template imageT of Ic and matchingT with Q. The two competing expert decision

can be stated in terms of two competing hypotheses: The null hypothesis,H0, states thatIc is not the

owner of the fingerprintQ (i.e., Q is an impostor impression ofIc), and the alternative hypothesis,H1,

states thatIc is the owner ofQ (i.e., Q is a genuineimpression ofIc). The hypotheses testing scenario

is

H0 : It 6= Ic vs. H1 : It = Ic. (1)

Forensic experts matchQ and T based on their degree of similarity (see Figure 1) For the present

article, it will be assumed that the degree of similarity is given by the number of matched minutiae

pairs,S(Q, T ), betweenQ andT . Large (respectively, small) values ofS(Q,T ) indicate thatT andQ

are similar to (respectively, dissimilar to) each other. IfS(Q,T ) is lower (respectively, higher) than a

pre-specified thresholdλ, it leads to rejection (respectively, acceptance) ofH0. Since noise factors distort

information in the prints, two types of errors can be made: False match1 (FM) and false non-match2. False

match occurs when an expert incorrectly accepts an impostor print as a match whereas false non-match

occurs when the expert incorrectly rejects a genuine fingerprint as a non-match. The false match and

1False match is also called the Type I error in statistics sinceH0 is rejected when it is true
2False non-match is also called the Type II error in statistics sinceH0 is accepted whenH0 is false
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non-match rates (FMR and FNMR, respectively), are the probability of FM and FNM. The formulae for

FMR and FNMR are:

FMR(λ) = P (S(Q,T ) > λ | It 6= Ic),

FNMR(λ) = P (S(Q,T ) ≤ λ | It = Ic).
(2)

In case there is no external noise factors that affect the acquisition ofQ andT , it can decided without

error whetherQ belongs toIc or not based on the premise of the uniqueness of fingerprints. However,

the process of fingerprint acquisition is prone to many sources of external noise factors that distort the

true information present inQ (as well asT ). For example, there can be variability due to the placement

of the finger on the sensing plane, smudges and partial prints in the latent that is lifted from the crime

scene, non-linear distortion due to the finger skin elasticity, poor quality image due to dryness of the

skin and many other factors. These noise factors cause information inQ to be distorted, for example,

true minutiae points may be missed and spurious minutiae points can be generated which in turn affects

the uncertainty associated with rejecting or acceptingH0.

The different noise factors can be grouped into two major sources of variability: (1) inter- and (2)

intra-class fingerprint variability. Intra-class variability refers to the fact that fingerprints from the same

finger look different from one another. As mentioned earlier, sources for this variability includes non-linear

deformation due to skin elasticity, partial print, non uniform fingertip pressure, poor finger-condition (e.g.,

dry finger), and noisy environment, etc. Figure 2 demonstrate the different sources of intra-class variability

for multiple impressions of the same finger. Inter-class variability refers to the fact that fingerprints from

different individuals look very similar. Unlike intra-class variability, the cause of inter-class variability is

intrinsic to the target population. The bottom panel of Figure 1 shows an example of inter-class variability

for two different fingerprint images. Both intra- and inter-class variability need to be accounted for when

determining whetherQ andT match or not. It is easy to see that fingerprint experts will be able to make
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(a)

(b)

Fig. 1. Illustrating genuine and impostor minutiae matching (taken from [4]). (a) Two impres-

sions of the same finger are matched; 39 minutiae were detected in input (left), 42 in template

(right), and 36 “true” correspondences were found. (b) Two different fingers are matched; 64

minutiae were detected in input (left), 65 in template (right), and 25 “false” correspondences

were found.
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Fig. 2. Multiple impressions of the same finger illustrating the intra-class variability [2]

more reliable decisions if the inter-class fingerprint variability is large and the intra-class fingerprint

variability is small. On the other hand, less reliable decisions will be made if the reverse happens, that

is, when intra-class variability is large and inter-class variability is small. In other words, the study of

fingerprint individuality is the study of quantification of inter- and intra-class variability inQ andT , as

well as to what extent these sources of variability affect the fingerprint expert’s decision.

III. Statistical Models for Fingerprint Individuality

The study and quantification of inter- and intra-class variability can be done by eliciting appropriate

stochastic (or, statistical) models on fingerprint minutiae. Figure 3 show two examples of minutiae (ending

and bifurcation) and the corresponding location and direction information. Two such approaches are

described in this section, namely, the work done by Pankanti et al [4] and the subsequent model that was
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θ

θ

s=(x,y)

s=(x,y)

(a) (b) (c)

Fig. 3. Minutiae features consisting of the location, s, and direction, θ, for a typical fingerprint

image (b): The top (respectively, bottom) panel in (a) shows s and θ for a ridge bifurcation

(respectively, ending). The top (respectively bottom) panel in (a) shows two subregions in

which orientations of minutiae points that are spatially close tend to be very similar.

proposed by Zhu et al. [9]. Both works focus on modelling the inter-class fingerprint variability, that is,

the variability inherent in fingerprint minutiae of different fingers in a population.

A. Pankanti’s Fingerprint Individuality Model

The set up of Pankanti et al [4] is as follows: Suppose the query fingerprintQ hasn minutiae and the

templateT hasm minutiae denoted by the sets

MQ ≡ {{SQ
1 , DQ

1 }, {SQ
2 , DQ

2 }, ...., {SQ
n , DQ

n }} (3)

MT ≡ {{ST
1 , DT

1 }, {ST
2 , DT

2 }, ...., {ST
m, DT

m}}, (4)

where in (3) and (4),S andD refer to a generic minutiae location and direction pair. To assess a measure

of fingerprint individuality, it is first necessary to define a minutiae correspondence betweenQ and T .
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Fingerprint
Image
Area, A

Sensing 
Plane, S

d

r
0

0Minutiae

Fig. 4. Identifying the matching region for a query minutiae (image taken from [4] and [9]).

A minutiae inQ, (SQ, DQ), is said to match (or, correspond) to a minutiae inT , (ST , DT ), if for fixed

positive numbersr0 andd0, the following inequalities are valid:

|SQ − ST |s ≤ r0 and |DQ −DT |d ≤ d0, (5)

where

|SQ − ST |s ≡
√

(xQ − xT )2 + (yQ − yT ) (6)

is the Euclidean distance between the minutiae locationsSQ ≡ (xQ, yQ) andST ≡ (xT , yT ),

and

|DQ −DT |d ≡ min(|DQ −DT |, 2π − |DQ −DT |) (7)

is the angular distance between the minutiae directionsDQ andDT . The choice of parametersr0 andd0

defines a tolerance region (see Figure 4), which is critical in determining a match according to Equation

5. Large (respectively, small) values of the pair (r0, d0) will lead to spurious (missed) minutiae matches.

Thus, it is necessary to select(r0, d0) judiciously so that both kinds of matching errors are minimized.

A discussion on how to select (r0, d0) is given subsequently.
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In [4], fingerprint individuality was measured in terms of the probability of random correspondence

(PRC). The PRC ofw matches is the probability that two arbitrary fingerprints from a target population

have at leastw pairs of minutiae correpondences between them. Recall the hypothesis testing scenario

of Equation 1 for biometric authentication. When the similarity measureS(Q,T ) is above the threshold

λ, the claimed identity (Ic) is accepted as true identity. Based on the statistical hypothesis in Equation

1, the PRC is actually the false match rate, FMR, given by

PRC(w) = P (S(Q,T ) ≥ w | Ic 6= It) (8)

evaluated atλ = w.

To estimate the PRC, the following assumptions were made in [4]: (1) Only minutiae ending and

bifurcation are considered as salient fingerprint features for matching. Other types of minutiae, such as

islands, spur, crossover, lake, etc., rarely appear and can be thought of as combination of endings and

bifurcations. (2) Minutiae location and direction are uniformly distributed and independent of each other.

Further, minutiae locations can not occur very close to each other. (3) Different minutiae correspondences

betweenQ and T are independent of each other, and any two correspondences are equally important.

(4) All minutiae are assumed true, that is there are no missed or spurious minutiae. (5) Ridge width is

unchanged across the whole fingerprint. (6) Alignment betweenQ and T exists, and can be uniquely

determined.

Based on the above assumptions, Pankanti et al. were able to come up with the uniform distribution as

the statistical model for fingerprint individuality. The probability of matchingw minutiae in both position

as well as direction is given by

p(M, m,n, w) =
min (m,n)∑

ρ=w







m

ρ







M −m

n− ρ







M

n




×




ρ

w


 (l)w (1− l)ρ−w




, (9)
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whereM = A/C with A and C defined, respectively, as the area of overlap betweenQ and T and

C = πr2
0 is the area of the circle with radiusr0. Pankanti et al. further improved their model based on

several considerations of the occurrence of minutiae. The ridges occupy approximatelyA
2 of the total

area with the other half occupied by the valleys. Assuming that the number (or the area) of ridges across

all fingerprint types is the same and that the minutiae can lie only on ridges, i.e., along a curve of length

A
ω whereω is the ridge period, the value ofM in Eq. (9) is changed fromM = A/C to

M =
A/ω

2r0
, (10)

where2r0 is the length tolerance in minutiae location.

Parameters(r0, d0) determine the minutiae matching region. In the ideal situation, a genuine pair

of matching minutiae in the query and template will correspond exactly, which leads to the choice of

(r0, d0) as(0, 0). However, intra-class variability factors such as skin elasticity and non-uniform fingertip

pressure can cause the minutiae pair that is supposed to perfectly match, to slightly deviate from one

another. To avoid rejecting such pairs as non-matches, non-zero values ofr0 andd0 need to be specified

for matching pairs of genuine minutiae. The value ofr0 is determined based on the distribution of the

Euclidean distance between every pair of matched minutiae in the genuine case. To find the corresponding

pairs of minutiae, pairs of genuine fingerprints were aligned, and Euclidean distance between each of the

genuine minutiae pairs was then calculated. The value ofr0 was selected so that only the upper5% of

the genuine matching distances (corresponding to large values ofr) were rejected. In a similar fashion,

the value ofd0 was determined to be the95-th percentile of this distribution (i.e., the upper5% of the

genuine matching angular distances were rejected).

To find the actualr0 and d0, Pankanti et al. used a database of 450 mated fingerprint pairs from

IBM ground truth database (see [4] for details). The true minutiae locations in this database and the

minutiae correspondences between each pair of genuine fingerprints in the database were determined by

a fingerprint expert. Using the ground truth correspondences,r0 andd0 were estimated to be15 and22.5,
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respectively. These values will be used to estimate the PRC in the experiments presented in Section V.

Pankanti et al. [4] was the first attempt at quantifying a measure of fingerprint individuality based

on statistical models. However, the proposed uniform model does have some drawbacks. Comparison

between model prediction and empirical observations showed that the corrected uniform model grossly

underestimated the matching probabilities (see Section V as well as [4]). The inherent drawbacks of the

uniform model motivated the research by Zhu et al. [9] to propose statistical distributions that can better

represent minutiae variability in fingerprints.

B. Mixture Models for Fingerprint Features

Zhu et al. [9] proposed a mixture model to model the minutiae variability of a finger by improving

Assumption (2) of [4]. A joint distribution model for thek pairs of minutiae features{ (Sj , Dj), j =

1, 2, . . . k } is proposed to account for (i) clustering tendencies (i.e., non-uniformity) of minutiae, and (ii)

dependence between minutiae location (Sj) and direction (Dj) in different regions of the fingerprint. The

mixture model on(S, D) is given by

f( s, θ |ΘG) =
G∑

g=1

τg fS
g (s |µg, Σg) · fD

g (θ | νg, κg), (11)

whereG is the total number of mixture components,fS
g (·) is the bivariate Gaussian density with mean

µg and covariance matrixΣg, and

fD
g (θ | νg, κg, pg) =





pg v(θ) if 0 ≤ θ < π

(1− pg) v(θ − π) if π ≤ θ < 2π,

(12)

wherev(θ) is the Von-Mises distribution for the minutiae direction given by

v(θ) ≡ v( θ | νg, κg) =
2

I0(κg)
exp{κg cos2(θ − νg)} (13)

with I0(κg) defined as

I0(κg) =
∫ 2π

0
exp{κg cos(θ − νg)} dθ. (14)
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In Equation (13),νg and κg represent the mean angle and the precision (inverse of the variance) of

the Von-Mises distribution, respectively (see [9] for details). The distributionfD
g in Equation 12 can

be interpreted in the following way: The ridge flow orientation,o, is assumed to follow the Von-Mises

distribution in Equation (13) with meanνg and precisionκg. Subsequently, minutiae arising from the

g-th component have directions that are eithero or o + π with probabilitiespg and1− pg, respectively.

The model described by Equation (11) has three distinct advantages over the uniform model: (i) it

allows for different clustering tendencies in minutiae locations and directions viaG different clusters, (ii)

it incorporates dependence between minutiae location and direction since ifS is known to come from the

g-th component, the directionD also comes from theg-th component, and (iii) it is flexible in that it can

fit a variety of observed minutiae distributions adequately. The estimation of the unknown parameters in

(11) has been described in details in [9].

Figure 5 illustrates the fit of the mixture model to two fingerprint images from the NIST 4 database.

Observed minutiae locations (white boxes) and directions (white lines) are shown in panels (a) and (b).

Panels (c) and (d), respectively, give the cluster assignment for each minutiae feature in (a) and (b). Panels

(e) and (f) plot the minutiae features in the 3-D(S,D) space for easy visualization of the clusters (in both

location and direction). The effectiveness of the mixture models can also be shown by simulating from

the fitted models and checking to see if a similar pattern of minutiae is obtained as observed. Figures

6 (a) and (b) show two fingerprints whose minutiae features were fitted with the mixture distribution

in (11). Figures 6 (e-f) show a simulated realization when eachS and D is assumed to be uniformly

distributed independently of each other. Note that there is a good agreement, in the distributional sense,

between the observed (Figures 6 (a) and (b)) and simulated minutiae locations and directions from the

proposed models (Figures 6 (c) and (d)) but no such agreement exists for the uniform model.

Zhu et al. [9] obtains a closed form expression for the PRC corresponding tow matches under similar

assumptions of Pankanti et al. [4] (barring Assumption (2)). The probability of obtaining exactlyw
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Fig. 5. Assessing the fit of the mixture models to minutiae location and direction. Figure taken

from [9].
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Fig. 6. All (S,D) realizations from the proposed model ((c) and (d)), and from the uniform

distribution ((e) and (f)) for two different images ((a) and (b)). The true minutiae locations and

directions are marked in (a) and (b). Images are taken from [9].



18
matches given there arem andn minutiae inQ andT , respectively, is given by the expression

p∗(w ; Q,T ) =
e−λ(Q,T ) λ(Q,T )w

w!
(15)

for largem andn; equation (15) corresponds to the Poisson probability mass function with meanλ(Q,T )

given by

λ(Q,T ) = mn p(Q,T ), (16)

where

p(Q,T ) = P (|SQ − ST |s ≤ r0 and|DQ −DT |a ≤ d0) (17)

denotes the probability of a match when(SQ, DQ) and(ST , DT ) are random minutiae from the mixture

distributions fitted toQ and T , respectively. The mean parameterλ(Q,T ) can be interpreted as the

expected number of matches from the total number ofmn possible pairings betweenm minutiae inQ

andn minutiae points inT with the probability of each match beingp(Q,T ).

IV. Incorporating Inter-Class Variability via Clustering

The above PRC was obtained for a single query and template fingerprint pair. An important differ-

ence between the proposed methodology and previous work is that mixture models are fitted to each

finger whereas previous studies assumed a common distribution for all fingers/impressions. Assuming a

common minutiae distribution for all fingerprint impressions has a serious drawback, namely, that the

true distribution of minutiae may not be modeled well. For example, it is well-known that the five major

fingerprint classes in the Henry system of classification (i.e., right-loop, left-loop, whorl, arch and tented

arch) have different class-specific minutiae distributions. Thus, using one common minutiae distribution

may smooth out important clusters in the different fingerprint classes. Moreover, PRCs depend heavily

on the composition of each target population. For example, the proportion of occurrence of the right-

loop, left-loop, whorl, arch and tented arch classes of fingerprints is 31.7%, 33.8%, 27.9%, 3.7% and
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2.9%, respectively, in the general population. Thus, PRCs computed for fingerprints from the general

population will be largely influenced by the mixture models fitted to the right-loop, left-loop and whorl

classes compared to arch and tented arch. More important is the fact that the PRCs will change if the

class proportions change (for example, if the target population has an equal number of fingerprints in

each class, or with class proportions different from the ones given above). By fitting separate mixture

models to each finger, it is ensured that the composition of a target population is correctly represented.

The clustering of mixture models reduces the computational time for obtaining the PRC for a large

population (or database) of fingerprints without smoothing out salient inter-class variability in the popu-

lation. To formally obtain the composition of a target population, Zhu et al. [9] adopt an agglomerative

hierarchical clustering procedure on the space of all fitted mixture models. The dissimilarity measure

between the estimated mixture densitiesf andg is taken to be the Hellinger distance

H(f, g) =
∫

x∈S

∫

θ∈[0,2π)
(
√

f(x, θ)−
√

g(x, θ))2 dx dθ. (18)

The Hellinger distance,H, is a number bounded between 0 and 2, withH = 0 (respectively,H = 2) if

and only if f = g (respectively,f and g have disjoint support). Once the clusters are determined (see

[9] for details), the mean mixture density is found for each clusterCi as

f̄(x, θ) =
1
|Ci|

∑

f∈Ci

f(x, θ). (19)

The mean parameterλ(Q,T ) in (16) depends onQ andT via the mean mixture densities of the clusters

from which Q andT are taken. IfQ andT , respectively, belong to clustersCi andCj , say, fori, j =

1, 2, . . . , N∗ with i ≤ j and N∗ denoting the total number of clusters,λ(Q, T ) ≡ λ(Ci, Cj) with the

mean mixture densities ofCi and Cj used in place of the original mixture densities in (17). Thus, the

probability of obtaining exactlyu matches corresponding to clustersCi andCj is given by

p∗(u ; Ci, Cj) = e−λ(Ci,Cj) λ(Ci, Cj)u

u!
. (20)
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and the overall probability of exactlyu matches is

p∗∗(u) =
∑

i≤j |Ci| |Cj | p∗(u ; Ci, Cj)∑

i≤j

|Ci| |Cj |
. (21)

It follows that the overall PRC corresponding tow matches is given by

PRC=
∑

u≥w

p∗∗(u) (22)

In order to remove the effect of very high or very low PRCs, the100(1−α)% trimmed mean is used in-

stead of the ordinary mean as in (21). The lower and upper100α/2-th percentiles of{ p∗(u ; Ci, Cj), 1 ≤

i, j ≤ N∗} are denoted byp∗C(u; α/2) andp∗C(u; 1−α/2). Also, define the set of all trimmedp∗(u ; Ci, Cj)

probabilities asT ≡ { (i, j) : p∗C(u; α/2) ≤ p∗(u ; Ci, Cj) ≤ p∗C(u; 1− α/2)}. Then, the100(1− α)%

trimmed mean PRC is

PRCα =
∑

u≥w

p∗∗T (u) (23)

where

p∗∗T (u) =
∑

(i,j)∈T |Ci| |Cj | p∗(u ; Ci, Cj)∑

(i,j)∈T
|Ci| |Cj |

(24)

In Section V, we have used the trimmed mean withα = 0.05.

V. Experimental Results

The results in this section are taken from Zhu et al. [9]; the interested reader is referred to more details

discussed in the paper. The methodology for assessing the individuality of fingerprints are validated on

three target populations, namely, the NIST Special Database 4 [3], FVC2002 DB1 and FVC2002 DB2

[2] fingerprint databases. The NIST fingerprint database [3] is publicly available and contains 2,000 8-bit

gray scale fingerprint image pairs of size 512-by-512 pixels. Because of the relative large size of the

images in the NIST database, the first image of each pair is used for statistical modeling. Minutiae could

not be automatically extracted from two images of the NIST database due to poor quality. Thus, the total

number of NIST fingerprints used in our experiments isF = 1, 998.
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Mixture Model

Freeman-Tukey Chi-square

p-value NIST (1,998) DB1 (100) DB2 (100) NIST (1,998) DB1 (100) DB2 (100)

p-value> 0.01 (Mixture accepted) 1, 864 71 67 1, 569 65 52

p-value≤ 0.01 (Mixture rejected) 134 29 33 429 35 48

Uniform Model

Freeman-Tukey Chi-square

p-value NIST (1,998) DB1 (100) DB2 (100) NIST (1,998) DB1 (100) DB2 (100)

p-value> 0.01 (Uniform accepted) 550 1 0 309 1 0

p-value≤ 0.01 (Uniform rejected) 1, 448 99 100 1, 689 99 100

TABLE I. Results from the Freeman-Tukey and Chi-square tests for testing the goodness of

fit of the mixture and uniform models. Entries correspond to the number of fingerprints in

each database with p-values above and below 0.01. The total number of fingerprints in each

database is indicated in parenthesis. Table entries are taken from [9].

For the FVC2002 database, also available in the public domain, two of its subsets DB1 and DB2 is

used. The DB1 impressions (images size= 388×374) are acquired using the optical sensor “TouchView

II” by Identix, while the DB2 impressions (image size= 296 × 560) are acquired using the optical

sensor “FX2000” by Biometrika. Each database consists ofF = 100 different fingers with 8 impressions

(L = 8) per finger. Because of the small size of the DB1 and DB2 databases, a minutiae consolidation

procedure was adopted to obtain a master (see [9] for the details). The mixture models were subsequently

fitted to each master.

Zhu et al. developed a measure of goodness of fit of hypothesized distributions to the observed minutiae

based on a chi-square type criteria. Two tests were considered, namely, the Freeman-Tukey and Chi-square

tests. The results for the goodness of fit for two hypothesized distributions, namely, mixture and uniform
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models are reported in Table I. For all the three databases, the number of fingerprint images withp-

values above (corresponding to accepting the hypothesized distribution) and below the threshold 0.01

(corresponding to rejecting the hypothesized distribution) were obtained. Note that the entries in Table I

imply that the mixture model is generally a better fit to the observed minutiae compared to the uniform;

for example, the mixture model is a good fit to1, 666 images from the NIST database (corresponding to

p-values above 0.01) based on the Freeman-Tukey test. For the Chi-square test, this number is1, 784. In

comparison, the uniform model is a good fit to only905 and762 images, respectively.

The distributions ofm andn for the three fingerprint databases are shown in Figures 7 (a), (b) and (c),

respectively (the distribution ofm and the distribution ofn are identical, and hence only one histogram

is obtained). The meanm (andn) values for the NIST, FVC2002 DB1 and FVC2002 DB2 databases are

approximately62 , 63 and 77 respectively (For the FVC databases,m and n are reported as the mean

number of minutiae centers in each master).

Zhu et al. compared the PRC obtained by [9] with those of Pankanti et al. [4]. The query and template

fingerprints in the NIST and FVC databases are first aligned using the matcher described in [5], and

an overlapping area between the two fingerprints are determined. In order to compute the PRCs, the

mixture models are restricted onto overlapping area (see [9] for more details). Table III gives the PRCs

corresponding to the meanm, meann and mean overlapping area for the NIST and FVC databases. The

empirical PRC is computed as the proportion of impostor pairs with 12 or greater matches among all

pairs with m and n values within±5 of the mean in the overlapping area. The empirical probabilities

of at leastw matches are obtained by counting the number of fingerprint pairs with 12 or more matches

divided by the total number of pairs. Thus, one should note that the empirical probability is matcher

dependent. Since fingerprint individuality is assessed based on minutiae location and direction only, the

matcher of [5] was used which depends only on minutiae information.

Note that asm or n or both increase, the values of PRCs for both the models become large as it
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Fig. 7. Empirical distributions of the number of minutiae in the (a) NIST database, (b) master

prints constructed from the FVC2002 DB1 database, and (c) master prints constructed from

the FVC2002 DB2 database. Average number of minutiae in the three distributions are 62, 63

and 77, respectively. Figure taken from [9].

becomes much easier to obtain spurious matches for largerm and n values. Additionally, Table III

illustrates an important fact: The PRCs based on the mixture models are orders of magnitude larger

compared to Pankanti’s model and closer to the empirical probability of at leastw matches. Note also

that the mean ofλs (the theoretical mean number of matches) are closer to the empirical counterpart

(mean number of observed matches) compared to Pankanti’s model. This demonstrates the adequateness

of the mixture models for the assessment of fingerprint individuality. While the mixture models is more
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Database (m,n) Mean Overlapping Area (pixel2) M

NIST (52,52) 112,840 413

FVC2002 DB1 (51,51) 71,000 259

FVC2002 DB2 (63,63) 110,470 405

TABLE II. Table giving the mean m and n in the overlapping area, the mean overlapping area

and the value of M for each database.

Database (m,n,w) Empirical Mixture Pankanti

Mean no. of matches PRC Meanλ PRC Meanλ PRC

NIST (52,52,12) 7.1 3.9× 10−3 3.1 4.4× 10−3 1.2 4.3× 10−8

FVC2002 DB1 (51,51,12) 8.0 2.9× 10−2 4.9 1.1× 10−2 2.4 4.1× 10−6

FVC2002 DB2 (63,63,12) 8.6 6.5× 10−2 5.9 1.1× 10−2 2.5 4.3× 10−6

TABLE III. A comparison between fingerprint individuality estimates using the (a) Poisson and

mixture models, and (b) Pankanti et al. [4].

adequate at representing minutiae variability, the PRCs obtained are far too large indicating a large amount

of uncertainty in declaring a match between a fingerprint pair. One way to reduce the PRC is to add more

fingerprint features when performing the identification. Fingerprint individuality assessment can then be

made by developing appropriate statistical models for these features.

VI. Summary and Future Work

In this article, an overview of the challenges involved in assessing the individuality of fingerprints

is presented. Two works have been discussed. Pankanti’s model is the first attempt at modeling the

observed minutiae distribution via statistical models whereas Zhu et al. developed more flexible models

that adequately describe all minutiae characteristics. There are many open problems that still remain

unsolved. Both works have only addressed the issue of inter-class minutiae variability. Appropriate

statistical models for modeling the intra-class minutiae variability are still very few in the literature.
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A very important source of intra-class variability is the quality of the query and template images, and

work still needs to be done to investigate how PRCs change with quality of the fingerprint image. It is

also important to develop statistical models for more complex fingerprint features. In this case, one can

use more useful matching criteria that utilize richer fingerprint features.

In this article, the PRCs have been related to the false match rates. Another measure of fingerprint indi-

viduality should be related to the false non-match rates. Eventually, a measure of fingerprint individuality

should be a optimal combination of the two measures of errors.
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