
Markov Face Models

Sarat C. Dass
Department of Statistics & Probability

Michigan State University
E Lansing, MI 48824, USA

sdass@stt.msu.edu

Anil K. Jain
Department of Computer Science & Engineering

Michigan State University
E Lansing, MI 48824, USA

jain@cse.msu.edu

Abstract

The spatial distribution of gray level intensities in an im-
age can be naturally modeled using Markov Random Field
(MRF) models. We develop and investigate the performance
of face detection algorithms derived from MRF consider-
ations. For enhanced detection, the MRF models are de-
fined for every permutation of site indices (pixels) in the
image. We find the optimal permutation that provides maxi-
mum discriminatory power to identify faces from nonfaces.
The methodology presented here is a generalization of the
face detection algorithm in [7, 5] where a most discrimi-
nating Markov chain model was used. The MRF models
successfully detect faces in a number of test images.
Key words and phrases: Markov Random Fields, face de-
tection, maximum pseudolikelihood estimation, simulated
annealing, site permutation.

1. Introduction

The use of Markov Random Fields (MRFs) to model
spatial processes on lattices has been popular and
widespread [3]. By using MRF models, one is able to
model the behaviour of spatial processes locally via con-
ditional distributions of attributes (gray values). In this pa-
per, we use MRF automodels to represent the distribution
of gray level intensities of facial images. Faces typically
correspond to changes in gray level intensities along some
spatial direction or at some special sites in the image. Our
interest here is to determine whether MRFs capture these
local changes in intensities for typical face images. There
have been numerous attempts to detect faces in images us-
ing different techniques such as neural networks [15, 16],
tree classifiers [2], distance from prototype criteria [17] and
Markov Chains [7, 5]. Although Markov Chains use some
notion of pixel dependence, this dependence is only allowed
in one direction in space. For this reason, we feel that MRFs
will be viable models for face detection since dependence

can be captured along several spatial directions for different
sites in the image. MRFs have also been successfully used
for texture modeling, see [6], for example. Since facial im-
ages can be viewed as a type of texture in some sense, this is
another reason we feel that MRFs will also be good models
for facial images.

The MRF models used here do not utilize high level fea-
ture extraction for the purpose of face detection. Indeed,
our aim here is to provide an initial low-level detection al-
gorithm. In the post processing stage, algorithms based on
facial features can be utilized to finally decide if a face is
indeed present in the test image. For this reason, we put
greater emphasis in developing algorithms with low false
negative rates in the detection framework.

In order to achieve better detection rates, we seek an op-
timal permutation of sites in the image for which the MRF
model has the best fit. In other words, for detection between
faces and nonfaces, it can turn out that a permutation of the
sites in the image has better discriminatory power to distin-
guish between a face and a nonface compared to the origi-
nal (unpermuted) sites. We call the resulting MRF the most
discriminating MRF for detecting faces. Thus, the most dis-
criminating MRF approach is a generalization of the most
discriminating Markov Chain approach of [7, 5].

It is essential that low level detection algorithms be com-
putationally efficient. For the most discriminating Markov
Chain approach, this is definitely the case since sites can be
updated sequentially utilizing the Markovian structure. It
is well known that the normalizing constant in MRF mod-
els causes great difficulty in computations and may actually
compromise the efficiency of the algorithm. For this reason,
we avoid likelihoods resulting from MRF models. Instead,
we use pseudolikelihoods and pseudolikelihood ratios for
estimating model parameters and for subsequent detection.
The resulting reduction in computational time and complex-
ity is significant.

The remainder of this paper is organized as follows. In
Section 2, we present the basic MRF models that we use.
In Section 3, we discuss the procedures to train and cross
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Figure 1. First order neighbors of site s and
corresponding gray level intensities.

validate the MRF models. We present MRFs defined via a
permutation of sites in Section 4. The Chi-square criteria
to find an optimal permutation of sites for face detection is
given. We also present cross validation results of our detec-
tion algorithm in Section 4. Finally, the performance of our
detection algorithm on real images is illustrated in Section
5.

2. Markov Random Field Models

Let S = f1; 2; � � � ; Ng denote the collection of all sites
in a R � C image, where N = RC. For each site s in
S, we denote by xs to be the gray level intensity at that
site (this is an integer between 0 and L� 1, both inclusive,
and where L is the number of gray levels). Also, we will
denote by x�s to be the gray level intensities of all sites
in S excluding site s. The spatial distribution of gray level
intensities, X = fxs; s 2 Sg on S will be modeled as a
Markov Random Field (MRF). For any MRF, there is an
associated neighborhood system N = fNs; s 2 Sg, where
Ns denotes the neighbors of site s. We consider only the
first order neighborhood structure for the MRF models (see
Figure 1). In Figure 1, xsn; xsw ; xss and xse represent the
north, west, south and east neighbors of xs, respectively.
For a MRF, the local characteristic (conditional distribution)
of xs given x�s at each site s depends only on the neighbors
of s, namely, fxt; t 2 Nsg.

Markovian models are, in general, parameterized by a
certain number of coefficients which govern the degree of
spatial correlation between sites. These coefficients are un-
known in typical applications and have to be estimated from
training samples. It is well known that there is a trade off
between the number of parameters to be estimated and re-
liability of the overall model fit to the data. We present a
general class of MRFs for faces in this paper and focus our
attention on two special cases. The two special cases of
MRFs are characterized by different number of parameters
(3 and 468, respectively). We investigate the overall fit of
these two classes of models for faces and non-faces in the
training samples. Finally, the trained models are used to
detect faces in independent test images.

2.1. Automodels

We consider the general class of auto MRF models (see
[8]) as candidate models for faces. The local characteristics
at site s for auto MRF models is given by

p(xs jx�s ) =
expfH(xs jx�s)gPL�1

xs=0 expfH(xs jx�s)g
; (1)

where H(xs jx�s) = �sxs +
P

t2Ns
�stxsxt represents

the conditional potential function corresponding to the lo-
cal characteristics at site s. The conditional specifications
in (1) are parameterized by the coefficients f�s; s 2 Sg
and f�st; s 2 S; t 2 Nsg. It follows from Brooks’ expan-
sion that these conditional distributions uniquely determine
a joint distribution (likelihood) on S (provided � st = �ts)
given by

p(x) =

exp

(X
s

�sxs +
X
s�t

�stxsxt

)

X
x1

X
x2

: : :
X
xN

exp

(X
s

�sxs +
X
s�t

�stxs xt

) ;

(2)
where s � t stands for all pairs of sites s and t that are
neighbors in S. The likelihood in (2) is hard to maximize
with respect to the parameters f�sg and f�st; s 2 S; t 2
Nsg due to the presence of the normalizing constant in the
denominator. Approximations to the likelihood, such as the
pseudolikelihood (PL), have been considered to avoid han-
dling of the normalizing constant. The pseudolikelihood
(PL) for the MRF automodels specified by the conditional
distributions in (1) is given by

PL =

NY
s=1

p(xs jx�s)

=

NY
s=1

exp

(
�sxs +

X
t2Ns

�st xsxt

)

L�1X
xs=0

exp

(
�sxs +

X
t2Ns

�stxsxt

) : (3)

We consider two special cases of the auto MRF models in
(2). The first class of models, henceforth called Model I,
is obtained by taking �s = �, �st = �h if t 2 fw; eg
and �st = �v if t 2 fn; sg (see Figure 1) in (2). In other
words, Model I captures overall gray level intensity (via �)
and spatial correlations, via �h and �v , in the horizontal
and vertical directions, respectively. In this case, the joint



distribution can be written as

p(x) =

exp
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(4)
where the sum over d represents the sum over vertical and
horizontal directions (d = fv; hg, respectively), and

Toverall =
X
s

xs and Td =
X
s

X
s
d
�t

xsxt;

where the sum s
d
� t is taken over all neighbors of s in the

direction d; d = fv; hg. The pseudolikelihood for Model I
is given by
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:

(5)
Since �, �h and �v are independent of s, Model I as-

sumes that all sites have the same degree of spatial correla-
tion.

Our main reason for considering the auto MRF model in
(1) is to determine if the information present in special sites
(for example, the locations of eyes, nose and facial outline)
is actually used by the MRF when distinguishing between
a face and nonface. The importance of a site can be deter-
mined by relative magnitudes of the site coefficients, (�s

and �st, t 2 Ns; s 2 S) in typical face and nonface images.
However, estimating the coefficients in (2) is computation-
ally challenging because of difficulty in handling the nor-
malizing constant. This problem is not alleviated when the
pseudolikelihood in (3) is used since each parameter � st,
with �st = �ts, occurs in the conditional specifications of
more than one site.

Thus, we consider another class of models, henceforth
called Model II, by considering a simple approximation to
(3) while retaining the ability to measure the importance
of special sites. For each site s, we consider a parameter
�s that measures the overall importance of f�st; t 2 Nsg
in a face image. Instead of (3), we consider the following
approximation for the pseudolikelihood

PL(Model II) =
NY
s=1

exp f�sUs + �sVsg
L�1X
xs=0

exp

(
�sxs + �s

X
t2Ns

xsxt

) ;

(6)

where Us = xs and Vs =
P

t2Ns
xsxt represent the gray

level intensity of pixel s and the joint moment of neighbor-
ing gray level intensities, respectively. The pseudolikeli-
hood in (6) is obtained by taking �st = �s for t 2 Ns in (3).
For each site s, �s measures the “average” correlation of xs
with its neighbors. However, since the condition �st = �ts
is not satisfied for neighboring sites s and t, Model II does
not define a proper joint distribution for the gray levels at all
sites in the image (as in (2)). Nevertheless, the approximate
MRF model can assess the relative importance of site s via
�s and �s in discriminating between a face and a nonface.
Thus, we use Model II in the context of face detection only
and not for the purpose of simulating facial patterns. The
parameters f�s; �sg in (6) can be estimated separately for
each site s which entails great reduction in computational
complexity. This is not possible for (3).

3. Training the MRF Models and Cross Valida-
tion Results

The MRF models (Models I and II) given in Section 2
are trained using a database of faces and nonfaces. Face ex-
amples are generated by extracting gray level values from
a 20 � 15 window (which contains the central part of the
human face). Each pixel can take the 16 (L = 16) possi-
ble values of gray levels. The nonface examples are gener-
ated from images that resemble a face but are not actually
so. The training database consists of 7,200 and 8,422 im-
ages (of size 20 � 15) of faces and nonfaces, respectively.
Figures 2 and 3 each give 6 examples of face and nonface
images in the training database. We fit each class of mod-
els for faces and nonfaces training samples. We estimate
the unknown parameters in each model by the Maximum
Pseudolikelihood (MPL) method, that is, by maximizing the
pseudolikelihoods given in (5) and (6), with respect to the
unknown parameters.

3.1. Detection Algorithm

Subsequent to parameter estimation, the trained models
are used for face detection. We classify an input image,
fxinps ; s 2 Sg, as a face if the log pseudolikelihood ratio,

LPR = log

 
NY
s=1

p̂face(x
inp
s jxinp

�s )

p̂nonface(x
inp
s jxinp

�s )

!
(7)

=

NX
s=1

log

 
p̂face(x

inp
s jxinp

�s )

p̂nonface(x
inp
s jxinp

�s )

!
(8)

> 0: (9)

Otherwise, the input image will be classified as a nonface.
In (7) and (8), p̂M (� j �) stands for the estimated value of
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Figure 2. Examples of faces in the training data (20�
15 images with 16 gray levels).
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Figure 3. Examples of nonfaces in the training data
(20� 15 images with 16 gray levels).

the local characteristics at site s after the parameters have
been estimated from each M = fface; nonfaceg training
data sets. The criteria stated in (9) is in terms of the sum
of logarithms of pseudolikelihood ratios for faces and non-
faces, and will be called the log pseudolikehood ratio (LPR)
criteria.

3.2. Cross Validation Results

We use cross validation to obtain estimates of Type I
and Type II errors for Models I and II. Type I error is
viewed as the more costly of the two, since a post process-
ing stage which detects facial features can eliminate most
of the falsely detected faces [9]. Both the training data
sets of faces and nonfaces are randomly divided into two
groups; the first group for model training and parameter es-
timation, and the second group for estimation of misclassi-
fication probabilities using the LPR criteria. For Model I, 5
runs of the cross validation procedure gave an average Type
I error of 0.3667 with an estimated standard deviation of
0.03. For Model II, the results of the cross validation proce-
dure are given in the second and third columns of Table 1.
The superior performance of Model II compared to Model I
is due to the ability of Model II to capture site importance;
the degree of spatial association in face images varies sig-
nificantly for different sites in the image. Since we found
Model II to be more satisfactory for face detection, subse-
quent investigations were carried out for Model II only.

Denote by f and g to be the density estimates corre-
sponding to the distribution of LPR values (see (7) and (8))
under the face and nonface images, respectively, obtained
from the cross validation procedure. A measure of the de-
gree of overlap between f and g is given by

D(f; g) =

Z
R

(
p
f(x)�

p
g(x))

2
dx:

It can be shown that 0 � D(f; g) � 2, with D(f; g) = 0 iff
f = g, and D(f; g) = 2 if f and g are completely disjoint.
Small values of D in the fourth column of Table 1 indicate
the the distributions of face and nonface are not very well
separated.

4. Most Discriminating MRF Models via Per-
mutations

For better detection purposes, we investigate if the MRF
models are a better fit to a permutation of the sites in the im-
age, instead of the natural ordering of the sites. We consider
the class of all permutations of sites 1 to N , and choose that
permutation which gives maximum discriminatory power
for detecting faces. One argument for considering permuta-
tions of site indices is that the joint association of x�s and
x�t , for a permutation �, may be better at discriminating
between faces and nonfaces compared to xs and xt. Thus,
following the construction of joint MRF models on S using
the conditional specifications in Section 2, one can simi-
larly define local characteristics for a given permutation �,
namely,

p(x�s jx��s ) =
expfH(x�s jx��s)gPL�1

x�s=0 expfH(x�s jx��s)g
; (10)

where H(x�s jx��s) = �sx�s +
P

t2Ns
�stx�sx�t .

The joint MRF model specified by the local characteris-
tics in (10) becomes

p(x) =

exp

(X
s

�sx�s +
X
s�t

�stx�sx�t

)

X
x1

X
x2

: : :
X
xN

exp

(X
s

�sx�s +
X
s�t

�stx�sx�t

) :

(11)

For Model II, the approximate pseudolikelihood (PL) is
given by

PL(�) =

NY
s=1

exp f�sU
�
s + �sV

�
s g

L�1X
x�s=0

exp

(
�sx�s + �s

X
t2Ns

x�sx�t

) :

(12)
where U�

s = x�s and V �
s =

P
t2Ns

x�sx�t are the coun-
terparts of Us and Vs in Section 2 for a given permutation
�.



Table 1. Crossvalidation results for Model II
(natural order of sites)

Run No. Type I Error Type II Error D

1 0.1587 0.1007 0.92
2 0.1553 0.1067 0.91
3 0.1753 0.0960 0.93
4 0.1573 0.0987 0.94
5 0.1420 0.1080 0.91

Table 2. Crossvalidation results for Model II
(optimal permutation of sites)

Run No. Type I Error Type II Error D

1 0.0920 0.0787 1.24
2 0.0947 0.0767 1.22
3 0.1027 0.0780 1.20
4 0.1060 0.0773 1.22
5 0.0907 0.0767 1.26

4.1. Chi-square criteria for Model II

We seek a criteria that will maximize discrimination be-
tween face and nonface images based on a permutation of
sites. In [7] and [5], the Kullback-Leibler distance (which
involves the likelihoods of face and nonface images) was
used in the case of Markov chain models. Using the like-
lihoods in the discrimination criteria is not feasible in the
case of MRF models, since the normalizing constants can-
not be broken down in simpler sum components as was done
in the case of the Markov chain model. Using the ratio of
pseudolikelihoods is easier compared to the full likelihood
but computing the discrimination criteria based on pseudo-
likelihoods is still time consuming. Therefore, we resort to
a Chi-square discrimination criteria that is discussed below
for MRFs.

We propose a criteria based on the chi-square statistic to
obtain a permutation, �opt, that best distinguishes between
a face and a non-face. For the approximate PL in (12), the
relevant site statistics are given by U �

s and V �
s for each site

s. We use the following Chi-square criteria for discrimina-
tion

�2(�) =

NX
s=1

fEface(U
�
s )�Enonface(U

�
s )g

2

Eface(U�
s )

+

NX
s=1

fEface(V
�
s )�Enonface(V

�
s )g2

Eface(V �
s )

; (13)

where the expectations are computed under the (unknown)
spatial distributions of the face and non-face images. Thus,
the expected values in (13) are estimated using the sample
averages from the face and nonface training data set. De-
note the total number of face and nonface images in the
training data set by Nf (Nf = 7; 200) and Nnf (Nnf =
8; 422), respectively. For every permutation�, the estimates
of EM (U�

s ) and EM (V �
s ) are

ÊM (U�
s ) =

1

NM

NMX
k=1

x(k)�s

and

ÊM (V �
s ) =

1

NM

NMX
k=1

X
t2Ns

x(k)�s
x(k)�t

for M = fface; nonfaceg and NM = fNf ; Nnfg, re-
spectively.

4.2. Finding the Best Permutation using the Chi-
square Criteria

Since the space of all permutations is extremely large,
(O(N !), forN sites), we resort to simulated annealing (SA)
to find the best permutation according to (13) for Model II.
The SA algorithm [1] is described as follows. Start with an
initial permutation, �0, and initial temperature, T = t0, say.
Randomly select two sites for interchange and obtain the
updated permutation, �1. For �1, calculate the Chi-square
distance between faces and nonfaces in the training set. If
this distance is larger than the initial Chi-square distance
for �0, accept the new permutation, �1. Otherwise, accept
the new permutation, �1, with probability eÆ, where Æ is the
difference between the two chi-square values (computed ac-
cording to (13)) for �1 and �0. The acceptance-rejection
scheme is carried out for a large number of runs. Subse-
quently, T is reduced to, say, t1, and the above algorithm is
repeated for the temperature, t1. The SA procedure reaches
a solution that is close to the global optimal solution when T
is small. The acceptance-rejection scheme for each temper-
ature level was carried out for n = 1000 times. The cooling
schedule was taken to be T = T � 0:97, with t0 = 5.

Once the best permutation was found, the parameters of
the MRF for faces and nonfaces were estimated using the
Maximum Pseudolikelihood (MPL) method.

4.3. Detection Algorithm

For the optimal permutation,�opt, and the corresponding
estimated parameters (for both the face and nonface MRF
models), a input image, fxinps ; s 2 Sg, is classified as a
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Figure 4. Permutations of sites. (a) Face example, (b)
Permuted face, (c) Nonface example, (d) Permuted non-
face.
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Figure 5. Parameter values for faces and nonfaces. (a)
f�sg for faces, (b) f�sg for faces, (c) f�sg for nonfaces,
(d) f�sg for nonfaces.
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1
A > 0: (14)

Otherwise, the input image will be classified as a nonface.
In (14), p̂M (� j �) stands for the estimated value of the local
characteristics at site s after the optimal permutation �opt

has been found, and the parameters have been estimated un-
der M = fface; nonfaceg, respectively. This is again the
log pseudolikelihood ratio (LPR) criteria for the permuted
sites.

4.4. Cross Validation Results

The results of the cross validation procedure for per-
muted sites are given in Table 2. The cross validation pro-
cedure is run 5 times. It is clear from Tables 1 and 2 that
the permuted Model II has better detection property com-
pared to the unpermuted sites. This can also be seen from
the increase in the values of D in Table 2.

It is interesting to see how the optimal permutation for
Model II rearranges gray level intensities in an image. Fig-
ure 4 (a) shows a typical face image from the training data
base. The optimal permutation is applied to the face image
and the resulting image is presented in Figure 4 (b). It is
clear that the optimal permutation forms two distinct clus-
ters of gray level intensities, one cluster of low gray level
intensities while another cluster of higher gray level inten-
sities. The relative positions of these clusters in a face image
are also fixed for different face images. No such cluster are
formed when a nonface image is considered. See Figures 4
(c) and 4 (d), for example.

We also display the site coefficients, f�sg and f�sg, of
Model II for faces and nonfaces. The image plots are ob-
tained first by rescaling the coefficients to the 0�255 range,
and then reordering the permuted sites back to the natural
order. Figures 5 (a) and (b) show the relative magnitude of
the f�sg and f�sg, respectively, for a face image. Observe
that the f�sg image extracts the distinguishing features of a
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Figure 6. Effects of Blocking and
Scaling.

face, namely the face outline, and the positions of the eyes
and nose. Since the eyes and nose are relatively darker re-
gions compared to the surrounding sites, f�sg at the bound-
aries of the eyes, nose and face outlines capture this change
in gray level intensities. Since the intensities change in op-
posite directions (from lighter to darker, or vice versa), this
is reflected in the f�sg coefficients by their large negative
values.

5. Experimental Results

For face detection in test images with gray intensities
ranging from 0-255, modulo 16 scaling converts the orig-
inal intensities into the 0-15 range. Some blocking effect
in the original image is observed after performing this step
(see Figure 6). In order to fit a face in the test images into
our 20�15 detection frame, we scale (up or down) the orig-
inal image so that the faces approximately fit into the detec-
tion frame; we assume that the scaling factor is known for
each test image considered. A 20 � 15 window is moved
in a raster scan fashion over the rescaled image. A gray
level transformation is carried out for each window so that
the mean and variance of gray intensities in the test window
match that of the face training data base. This step is incor-
porated to detect relatively darker facial patterns. The LPR
values are calculated for each position of the detection win-
dow. If an LPR value is greater than 0, a face frame (white



rectangular frame) is placed over the window. A post pro-
cessing stage is also incorporated into the detection algo-
rithm. Overlapping rectangular frames are merged together
to form a rectangular frame that encompasses all the initial
overlapping frames. Several threshold values, other than 0
(in (14)), are also considered. Possible faces correspond to
high positive LPR values.

We applied our algorithm on 102 test images each con-
taining a single frontal face view from the FERET database
[14]. All 102 faces were detected with 13 false alarms.
Figure 7 shows the performance of the face detection algo-
rithm applied to a number of test images containing multiple
faces.

The detection algorithm was written in MATLAB and
was run on a PC with a 750 Mhz Pentium III processor.
The detection times (in seconds) for these images are ap-
proximately 170s for (a)-(c), 80s for (d), 300s for (e) and
330s for (f). Detection times can be improved considerably
by coding the algorithm in a compilable language such as
C.

6. Summary and Conclusions

We have presented MRF models for face detection. Bet-
ter detection properties are obtained for a permutation of the
sites, instead of the natural ordering. Models that account
for varying degrees of spatial correlation according to sites
are better as face models. Future work includes investigat-
ing multiple MRF models for faces and extensions to color
images. Automatic scaling factors that work for a variety
of test images will also be incorporated into our detection
algorithm.
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Figure 7. Input images, sizes (a) 150� 250, (b) 200� 460, (c) 230� 400, (d) 170� 220, (e) 600� 620, (f) 350� 550.


