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Abstract

Markov Random Fields (MRFs) are proposed as viable
stochastic models for the spatial distribution of gray levels
for images of human faces. These models are trained using
data bases of face and non-face images. The trained MRF
models are then used for detecting human faces in test im-
ages. We investigate the performance of the face detection
algorithm for two classes of MRFs given by the first- and
second-order neighborhood systems. From the cross vali-
dation results and from actual detection in real images, it is
shown that the second-order model makes fewer false detec-
tions. We also investigate the possibility of increasing our
training data base of faces by simulating face-like images
from the trained MRFs. The performance of the re-trained
MRFs based on added face-like images is compared to the
original training data base.

Key words and phrases: Markov Random Fields, face de-
tection, maximum pseudolikelihood estimation, simulated
annealing, site permutation.

1. Introduction

Numerous attempts have been made in recent years to
detect human faces in images using a variety of tech-
niques. Some of the approaches include face detection al-
gorithm based on neural networks [8, 9], tree classifiers [1],
distance from prototype criteria [10] and Markov Chains
[6, 3]. However, the inherent spatial nature of digital images
makes Markov Random Fields (MRFs) a natural choice for
modeling the distribution of gray levels on face images. Pre-
liminary results given in [5] indicate that the approach to de-
tecting faces using MRFs appears promising. However, to
circumvent the computational requirements, the MRFs used
in [5] were only a valid approximation. In this paper, we
develop exact estimation procedures that lead to parameter

∗This research was supported by ONR grant no. N00014-01-1-0266.

estimates for the actual MRF model. Two classes of auto-
MRF models, based on the first- and second-order neigh-
borhood structures, are of interest. An immediate advantage
of this stochastic approach over [5] is that now we are able
to simulate face-like images from the estimated MRF mod-
els and increase the number of training samples in both the
face and non-face data bases. We investigate if subsequent
re-estimation of model parameters and detection show a sig-
nificant reduction of error rates for test images.

The MRF models used here do not utilize high level fa-
cial features for the purpose of face detection. Indeed, our
aim here is to provide an initial low-level detection algo-
rithm. In the post processing stage, algorithms based on fa-
cial features (e.g., eyes and mouth) can be utilized to finally
decide if a face is indeed present in the test image. For this
reason, we put greater emphasis in developing algorithms
with low false negative rates in the detection framework.
We also adopt the best discriminating MRF approach re-
ported in [5] where the most discriminating permutation of
the sites is used compared to the natural order of site pixels.

2. Markov Random Field Models

Let S = {1, 2, · · · ,M} denote the collection of all sites
in a R × C image, where M = RC. For each site s in S,
we denote by xs, the gray level at that site, xs ∈ [0, L − 1].
Let x−s be the gray levels of all sites in S excluding site
s. The spatial distribution of gray levels, X = {xs, s ∈ S}
on S will be modeled as a MRF with an associated neigh-
borhood system N = {Ns, s ∈ S}, where Ns denotes the
neighbors of site s. In Figure 1, xs,2, xs,4, xs,7 and xs,5

represent the north, west, south and east neighbors of xs,
respectively, for the first-order neighborhood system. For
the second-order neighborhood system, the additional sites
xs,1, xs,3, xs,6 and xs,8 are also taken to be neighbors of s.

The joint distribution of MRFs is uniquely defined by
specifying the conditional distribution (local characteris-
tics) of xs given its neighbors, {xt, t ∈ Ns}, at each site
s in S. We consider the local characteristics at site s given
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Figure 1. First- and second-order neighbor-
hood systems for the site s.

by

p(xs |x−s ) =
exp{H(xs |x−s)}∑L−1

xs=0 exp{H(xs |x−s)}
, (1)

where

H(xs |x−s) = αsxs +
∑
t∈Ns

βstxsxt, (2)

with parameters {αs, s ∈ S} and {βst, s ∈ S, t ∈ Ns} for
all sites s in S with neighbors t ∈ Ns. The joint distribution
(likelihood) on S (provided βst = βts) is given by

p(x) =

exp

{∑
s

αsxs +
∑
s∼t

βstxsxt

}

∑
x1

∑
x2

. . .
∑
xM

exp

{∑
s

αsxs +
∑
s∼t

βstxs xt

} ,

(3)
where s ∼ t stands for all pairs of sites s and t that are
neighbors in S. The normalizing constant in (3) is hard to
compute; thus, we resort to an approximation of the like-
lihood to avoid evaluating the normalizing constant. One
such approximation is the pseudolikelihood (PL) defined by

PL =
M∏

s=1

exp

{
αsxs +

∑
t∈Ns

βst xsxt

}

L−1∑
xs=0

exp

{
αsxs +

∑
t∈Ns

βstxsxt

} . (4)

3. Model Training

The MRF models in Section 2 are fitted to a permutation
πopt of sites in the image which is obtained as follows. For
a permutation π on S = {1, 2, . . . ,M}, the gray intensity
value at a site s ∈ S is given by xπ(s) (which is the gray
value at the site π(s)). We choose the permutation πopt that
maximizes the Chi-square criteria given by

χ2(π) =
N∑

s=1

{Eface(Uπ
s ) − Enonface(Uπ

s )}2

Eface(Uπ
s )

+
N∑

s=1

{Eface(V π
s ) − Enonface(V π

s )}2

Eface(V π
s )

, (5)
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Figure 2. Examples of (a) faces and (b) non-
faces in the training data base.

where Uπ
s = xπ(s), V π

s =
∑

t∈Ns
xπ(s) xπ(t), and the ex-

pectations are computed based on the face and non-face im-
ages in the training data bases. The criteria in (5) avoids pa-
rameter estimation while finding the optimal permutation,
πopt, and incorporates information on spatial dependence.
For the rest of this paper, the notation xs will actually stand
for xπopt(s); we use the former notation for simplicity of
exposition.

The MRF models are trained using a database of faces
and nonfaces. Face examples are generated by extracting
gray level values from a 20×15 window (which contains the
central part of the face). Each pixel can take 16 (L = 16)
possible gray levels. The nonface examples are generated
from images that resemble a face but are not actually so.
The models were trained using 4,000 images from each of
the face and non-face training data base. Figure 2 gives 6
examples of face and nonface images.

The value of the observed log pseudolikelihood (LPL)
(see (4)) for the training sample is given as

LPL(α, β) =
N∑

k=1

M∑
s=1

(
αsx

(k)
s +

∑
t∈Ns

βst x(k)
s x

(k)
t −

log

(
L−1∑
xs=0

exp{αsxs +
∑
t∈Ns

βstxsx
(k)
t }

))
, (6)

where α = {αs, s ∈ S}, β = {βst, s ∈ S, t ∈ Ns}, and
x(k) = (x(k)

1 , x
(k)
2 , . . . , x

(k)
M ) are the observed gray levels

of the k-th training image, k = 1, 2, . . . , N . We seek the
maximum pseudolikelihood (MPL) estimates, α̂ and β̂, that
maximize the observed LPL. We assume toroidal (peri-
odic) boundary conditions. Thus, for the first-order neigh-
borhood system, there are a total of 900 unknown parame-
ters; a total of 300 for the αs, 300 for βst along the hori-
zontal direction and 300 for βst along the vertical direction.
For the second-order neighborhood system, the number of
unknown parameters is 1,500. A multidimensional version
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Figure 3. Simulated face-like images from
the first-order model.

of the Newton-Raphson iteration procedure is used to find
the MPL estimates of α and β.

4. Face Detection and Synthesis

A test image, {xtest
s , s ∈ S}, is classified as a face if the

log pseudolikelihood ratio (LPR) of face to non-face,

LPR =
M∑

s=1

log

(
p̂face(xtest

s |xtest
−s )

p̂nonface(xtest
s |xtest

π−s)

)
> 0. (7)

Otherwise, the test image will be classified as a nonface. In
(7), p̂face/nonface(· | ·) stands for the estimated value of the
local characteristics at site s based on the face and non-face
training data bases, respectively. Recall that during the face
detection phase, the pixels have already been permuted ac-
cording to πopt. Hence, the criteria in (7) implicitly depends
on πopt.

For face detection in test images, modulo 16 scaling con-
verts the original intensities into the 0-15 range. Automatic
image scaling is carried out at several different scales to de-
tect faces of different sizes. A 20 × 15 window is moved
in a raster scan fashion over the rescaled image. A gray
level transformation is carried out for each window so that
the mean and variance of gray levels match that of the face
training data base. This step is incorporated to detect rela-
tively darker facial patterns. The LPR values are calculated
for each position of the detection window. If an LPR value
is greater than 0, a face frame (white rectangular frame) is
placed over the window. A post processing stage merges
overlapping frames. Several threshold values, other than 0
(in (7)), are also considered.

Type I and Type II error rates for the first- and second-
order MRFs models are estimated based on 4,000 face and
8,000 non-face images in the training data bases. The av-
erage Type I and Type II error rates (based on 5 runs) for
the first-order (second-order) model are 0.060 (0.034) and
0.131 (0.064) with standard deviations 0.007 (0.006) and
0.010 (0.004), respectively. Clearly, the second-order MRF
model performs better. The reported errors for the second
order MRF model is also better than that of [5]. Figure
4 gives the results of the detection algorithm based on the
second-order model for some independent test images. The
results of the first-order model are not presented here.

Figure 3 gives several examples of simulated faces from
a Gibbs sampler for the first-order MRF model; faces in
Figure 3 are an average of 10 simulated images from the
MRF model. The second-order model gives simulated im-
ages similar to those in Figure 3 but takes longer to gener-
ate. Subsequently, 4,000 simulated face images were added
to the existing training data base and the first-order MRF
model was re-trained as in Section 3, thus, increasing the
number of training samples to 8, 000. The cross valida-
tion procedure run on the re-trained first-order MRF model
did not show any significant improvement over the original
training data base.

5. Summary and Conclusions

We have presented MRF models for face detection and
synthesis. Better detection results are obtained for the
second-order model compared to the first-order. However,
addition of simulated face images from the estimated MRF
model do not significantly reduce detection error rates.
There are several difficulties in fitting MRF models to face
images, for example, due to pose. In future work, we would
also like to incorporate facial features in model definition
and fitting.
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Figure 4. Detection results based on the second-order model. The detection algorithm was written
in C++ and run on a Pentium IV PC with 1.8GHz processing speed.


