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Situations with incomplete multivariate spatial data on a lattice are considered. The goal is to impute the missing data in the presence of
edges or boundaries and recover the image. Two methods based on Bayesian hierarchical models that iterate between edge detection and
spatial smoothing to impute the missing data within identified homogeneous regions are examined. Their performance is compared with
another method that imputes the missing values using edge-preserving spatial smoothers with locally varying weights. The performances
of the three methods are compared on artificial and real datasets. It is seen that information from the multivariate data is critical in
recovering the images. An application with color images where only one of three primary colors (red, green, or blue) is observed at
each pixel is used to illustrate the results.
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1. INTRODUCTION

Consider the following application that arises in the recov-
ery of color images. A digital camera of resolution m×n is
mounted with a single charged couple device (CCD) at each
pixel location. A single CCD records the intensity of only one
primary color: red, green, or blue (R, G, B). The goal is to
impute the missing values of the (R, G, B) color intensities
so that we can reconstruct the digital image. Similar problems
also arise in other applications, such as flat panel displays.

Various designs have been used to determine the choice
of color to be recorded at each pixel in a rectangular lattice
(see Holst 1998, p. 180). One design that is widely used for
sampling colors (sometimes called the Bayer design) is shown
in Figure 1. In this scheme, G is sampled twice as often as R
and B, because variation in the intensity of G is more sensitive
to the eye compared that of to R and B. Thus it is necessary
to get more accurate readings for G. Partially sampled images
that are obtained from digital cameras using this design are
referred to as Bayer images.

One interpolation scheme for the missing colors takes a
simple average of the observed colors at k nearest neighbors
of the pixel of interest. Often k is chosen to be 4, made up
of the east–west–north–south neighbors. We refer to this as
Bayer interpolation. Figure 2 shows the result of this smooth-
ing applied to two simple images: panels (a) and (c) are
the true images, and panels (b) and (d) are the correspond-
ing recovered images using Bayer interpolation. It is clear
from this figure that problems arise from smoothing across
the boundaries and can result in blurred reconstructions. Thus
there is a need to incorporate edge or boundary information
while imputing the missing data. We consider two different
approaches based on the incomplete data: iterative methods for
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edge detection and spatial smoothing/interpolation, and edge-
preserving smoothers with locally varying weights.

Techniques for edge detection and image reconstruction
have been discussed extensively in the literature. What makes
the present problem of special interest is the presence of
incomplete multivariate data. As we discuss, borrowing infor-
mation from the multivariate data from neighboring pixels is
critical in determining the edges and imputing the missing
values.

We begin with a general formulation of the problem. Let S
denote the set of all pixels on a m×n rectangular lattice. For
every s ∈ S, let xs denote the p-variate vector of attributes of
interest at that site. In the color image application, this will be
the true color intensity (R, G, B). Denote the collection of all
attributes by X = 	xs
 s ∈ S�, and denote the observable data
by Y = 	ys
 s ∈ S�. This represents the partially observed ver-
sion of X with possible degradation or noise in the form of
iid normal errors with mean 0 and known variance �2. For
example, in the Bayer design, there is a measurement at every
pixel, but only one component of the trivariate vector (R, G,
B) is available. In other applications, all of the p-dimensional
attributes �x1
 � � � 
 xp� may be unobservable at some pixels. It
is possible that the attributes of interest, X, are measured with-
out error whenever the measurements are available. This case
can be handled by taking �2 ≡ 0 in the foregoing formulation.

We use the following notation throughout. For each site, s,
let obss denote the component of colors observed at site s,
and let miss denote the components that were unobserved at
that site. In the color image application, xs = �x1s
 x2s
 x3s�=
�Rs
Gs
Bs�. So if R is observed at pixel s, then obss = 	1�
and miss = 	2
3�. In other applications, if all of the component
are missing at a site s, then obss will be empty. Let obs =⋃
s∈S obss and mis =⋃

s∈S miss . Let yobs = 	yi
 i ∈ obss
 s ∈ S�
denote the vector of all observed colors, and let ymis = 	yi
 i ∈
miss
 s ∈ S� denote the missing components.
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Figure 1. The Bayer Design.

Hierarchical models such as the one described earlier have
been used in many image restoration and segmentation prob-
lems (see, e.g., Geman and Geman 1984; Derin and Elliot
1987; Geman and McClure 1987; Jeng and Woods 1991).
However, the performance of these models has been investi-
gated only in situations with no missing observations. Our goal
here is to reconstruct the multivariate data X from the (incom-
plete) observed data Y . We can handle situations in which we
just want to recover some function of X, say Z = f �X� as a
special case, by using Ẑ = f �X̂�. Alternative approaches that
use information about the structure of f �·� explicitly are not
considered here.

If the image is homogeneous, then spatial interpolation
or smoothing techniques (kriging, cokriging, or related tech-
niques) can be used to impute the missing data. These are
discussed at some length in Section 2, because they form
the building blocks for later sections. However, when natu-
ral edges are present in an image, interpolating across these
boundaries will cause blurring in the reconstructed image, as
seen in Figure 2. Thus it is critical that information about the
boundaries be incorporated into the imputation process.

The rest of the article is organized as follows. Sections 3
and 4 impute the missing values iteratively by first doing edge
detection and then spatial smoothing/interpolation within the
identified homogeneous regions. Both are based on Bayesian
hierarchical methods; Section 3 uses a Markov random field
(MRF) to model the edge processes, whereas Section 4 is
based on underlying class processes. Instead of explicitly
doing edge detection, Section 5 considers edge-preserving
imputation via spatial smoothing with locally varying weights.
The idea can also be motivated as hierarchical Bayesian mod-
eling through the use of locally weighted pairwise difference
priors. Section 6 compares the results of various interpolation
schemes on simulated data and on a real CCD image.

Figure 2. Blurring of Edges Using Bayer Interpolation Scheme. (a) Original image; (b) Bayer reconstruction; (c) original image; (d) Bayer
reconstruction.

2. SPATIAL SMOOTHING AND IMPUTATION
IN HOMOGENEOUS REGIONS

We first consider the case with a homogeneous region. We
make the following model assumptions throughout the article:
the underlying multivariate spatial process X is a Gaussian
Markov random field (GMRF) and, given X = x, the observed
data Yobs are iid N�xobs
�

2�.
We begin with a brief introduction to MRFs. There is an

extensive literature on the subject (see, e.g., Mardia 1988;
Chellapa and Jain 1991; Guyon 1995; Winkler 1995). Given
a set of sites S, let � = 	Ns � s ∈Ns� be a collection of neigh-
borhoods for all of the sites s ∈ S. For any pair of sites s
and t, the neighborhood system is assumed to have the prop-
erties s � Ns and s ∈ Nt if and only if t ∈ Ns . For a subset
C of sites in S, we call C a clique if all pairs of sites in
C are neighbors. Thus the neighborhood system as defined
earlier will generate a collection of cliques, � . Specifying a
collection of cliques or a neighborhood system on S for a
MRF is equivalent. When S = 	all edge sites�, we specify a
MRF for the edge process via a collection of cliques, whereas
when S = 	all pixels in the image�, we model the color inten-
sity distribution on S via a neighborhood system.

As noted earlier, we consider Gaussian models for the data.
In the digital camera application, the color intensity process
(R, G, B) is modeled as a trivariate GMRF. In the sequel,
we will continue to use the term “colors” to also refer to
the general situation with arbitrary attributes. We include here
a brief description of general p-variate GMRF models (see
Mardia 1988 for a more extensive discussion).

Let � = 	xs � s ∈ S� be a collection of multivariate random
variables on S. The total number of sites in S is N , say. Denote
by xs = �x1s
 x2s
 � � � 
 xps�

T the vector of attributes of interest
at site s. Also, let x−s denote the attributes at all pixels in S
excluding pixel s. For a given neighborhood system � and for
� ∈ Rp, assume that the conditional distribution of xs given
x−s is

��xs � x−s�= Np
(
�+�∑

t∈Ns
Bst�xt−��
Gs

)

 (1)

where 0 < � ≤ 1, Bst is a p×p matrix of weights, and Gs
is a p×p positive definite matrix. The mean term � in (1) is
the underlying common mean for the homogeneous region. It
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is well known that the foregoing conditionals may not define
a consistent joint distribution for � on S. However, it can
be shown (Guyon 1995) that the joint distribution is uniquely
defined and is multivariate Gaussian under the consistency
condition

G−1
s Bst = �G−1

t Bts�
T

 (2)

for t �= s. For t = s, define Bss = −Ip×p. Also, define M =
block diagonal��G−1

s �� and B = ��Bst��. Under (2), the joint
distribution of X = �xT1 
 xT2 
 � � � 
 xTN �T is given by

X ∼ N (
#
$

)

 (3)

where # = 1N ⊗� and $−1 =−M ·B.
In the hierarchical specification, we assume that the

observed colors, yobs, are recorded with error with a known
noise variance �2. This parameter �2 can also be viewed as
a tuning parameter that controls the degree of smoothing for
reconstructing the underlying color process X. As �2 → 0,
smoothing tends to an interpolation scheme for the missing
colors, xmis. As shown later, this leads to precisely the cokrig-
ing equations for xmis given yobs.

To write the expressions for the spatial predictor of the
missing values explicitly, reorder the components of X as
X∗ = �xobs
 xmis�

T . Then

X∗ ∼ N (
#∗
$∗)
 (4)

where #∗ and $∗ are obtained from the # and $ corresponding
to the reordering of the rows of X in (3). We decompose #∗

and $∗ into the observed and missing parts, #∗ = �#∗obs
 #
∗
mis�

T

and

$∗ =
(
$obs
obs $obs
mis

$mis
obs $mis
mis

)

 (5)

with $mis
obs = $Tobs
mis. Writing y = �yobs
 ymis�
T , the joint dis-

tribution of �yobs
 xmis�
T is given by

�yobs
 xmis�
T ∼ N (

#∗
$∗∗) (6)

with

$∗∗ =
(
$obs
obs + �2I $obs
mis

$mis
obs $mis
mis

)
% (7)

The minimum variance predictor of xmis given yobs is the
expectation of the conditional distribution of xmis given yobs as
before. From (6), we get

E�xmis � yobs�= #∗mis +$mis
obs

(
$obs
obs +�2I

)−1

× �yobs −#∗obs�% (8)

Also, for the observed sites, xobs is estimated using the mini-
mum variance predictor

E�xobs � yobs�= #∗obs +$obs
obs

(
$obs
obs +�2I

)−1

× �yobs −#∗obs�% (9)

In (8) and (9), �2 controls the degree of smoothing for
estimating xmis and xobs. The case �2 = 0 corresponds to spa-
tial interpolation. Note that E�xobs � yobs� = yobs in (9) when
�2 = 0. Similarly, for xmis, (8) reduces to the well-known cok-
riging equations with known � and $ when �2 = 0. When �
is unknown, it can be estimated from the data, which results
in the usual cokriging equations for unknown means. (See
Ver Hoef and Cressie 1993 and Ver Hoef and Barry 1998 for
details on cokriging and general multivariable spatial predic-
tion for homogeneous regions, and Le and Zidek 1992 and Le,
Sun, and Zidek 1997 for a fully Bayesian approach to kriging
and cokriging.) We discuss some choices of $ next.

Spatial smoothing/interpolation schemes such as cokriging
that use information from the multivariate dependence struc-
ture are more efficient than marginal methods such as krig-
ing. However, we need to estimate the multivariate correlation
structure to use these schemes. For the color image appli-
cation, only a single coordinate (color) is observed at each
pixel, so there is no way to estimate the multivariate correla-
tion structure without making further model assumptions. One
reasonable class of models to consider is

$= U ⊗(
 (10)

where U = ��ust�� depends only on the spatial locations �s
 t�
and ( = ��*kl�� is the covariance between xks and xls , which
is assumed to be independent of s. In other words, we model
the covariance between attribute components at two differ-
ent sites as a product of two terms, the first term measuring
only the correlation between spatial locations and the second
term measuring only the correlation between attributes (col-
ors). This model allows estimation of the covariance under the
Bayer design or other similar missing-data schemes. This kind
of multispectral decomposition for GMRFs has been used in
other image reconstruction problems (see, e.g., Guyon 1995
and references therein). Such decompositions of $ also enable
an enormous reduction in computational complexity.

There can be many choices for U , for example, ust =H�s−
t� for some known positive definite function H (see Cressie
1993 for examples of H ). For the color image application, the
choice of U that we consider can be motivated through the
conditional GMRF specification in (1). With p = 3, we take
Bst and Gs in (1) as

Bst =


1
ns

0 0

0
1
ns

0

0 0
1
ns

 (11)

and

Gs = (/ns
 (12)

where ns is the number of neighboring sites of s. This sim-
ply means that we impute the missing values at site s as
a weighted average of neighboring attributes and the mean
attribute �. Equation (12) implies that there is a common
unknown variance covariance matrix for xs for every s ∈ S. In
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view of (11) and (12), we have $=U ⊗( with U−1 = ��vst��,
where

vst =


ns if t = s
−� if t ∈ Ns
0 otherwise,

(13)

(provided that U−1 is invertible) with �= 1.
When � = 1, (1) says that each color is interpolated as

the (unweighted) average color of its neighbors. When �= 1,
the GMRF model is noninformative in the direction of the
unknown mean. The posterior becomes informative if each
component of (R, G, B) is observed at least once (possibly
at different sites) in S (see Dass 2000). In our simulations
discussed in Section 5, we report on image reconstructions
for values of � close to 1 ��= %99
 %95�, for which the prior
GMRF model is proper. There were no visible differences in
the reconstructions. For the simulations, we chose �2 to be a
small positive value (�2 = %01).

The spatial smoothing/interpolation schemes discussed thus
far do not account for edges or boundaries present in images.
In the next three sections, we discuss methods that incorporate
edge information and prevent interpolation across boundaries
when imputing the missing data.

3. MODELING WITH AN UNDERLYING
MRF EDGE PROCESS

In this section we consider methods based on a hierarchical
MRF model for edge processes (see Geman and Geman 1984).
Specifically, we assume that edge sites are located between
each pair of pixels in the lattice, and they take value 0 if no
edge is present and 1 if an edge is present. The presence or
absence of an edge site is determined by whether there is a
sudden change in intensity of the colors as we move between
adjacent pixels. The cliques that we consider are the same as
those of Geman and Geman (1984), which consists of the four
edge sites corresponding to a group of four image pixels as
shown in Figure 3.

The notation e�s
 t� stands for the edge between sites s
and t. For each edge clique C, consisting of edges e�s1
 s2�,
e�s2
 s3�, e�s3
 s4�, and e�s4
 s1�, we define a potential func-
tion VC based on the values of e�s1
 s2�, e�s2
 s3�, e�s3
 s4�,
and e�s4
 s1�. It follows that the MRF for the edge process
is uniquely defined if we specify the values of the poten-
tials VC for all possible values of e�s1
 s2�, e�s2
 s3�, e�s3
 s4�,
and e�s4
 s1� for all cliques C. Following Geman and Geman
(1984), we set VC = 0 for “no edges,” VC = %8 for “lines”
and “corners,” and VC = 2%7 for “T junctions” and “four-way
junctions.” It is reasonable to believe that “no edges” is the

Figure 3. Example of an Edge Clique.

most likely occurrence in an image (having the lowest value
of VC), whereas “T junctions” and “four-way junctions” are
least likely to occur (having the highest values of VC). With
these specifications of potential values, the MRF model for
the edge process is given by

��E�= 1
K

· exp
{
− ∑
C∈�

VC�E�

}

 (14)

where K is the normalizing constant.
Given the edges, the multivariate GMRF model in Section 2

is used to model the data within homogeneous regions. Specif-
ically, given E, a realization of the edges on S, we use the
conditional distributions

��xs � x−s
E�= N3

(∑
t∈Ns
Bst�E�xt
Gs�E�

)

 (15)

where the sum now extends over all neighboring pixels t with
e�s
 t�= 0; that is, no edge is present between pixels s and t.
In other words, the conditional distribution of xs given a real-
ization of the edge process depends only on neighbors of xs
that are not separated by an edge (or within the same homoge-
neous region of the image). For every realization of the edge
process, we must ensure that the modified conditionals defined
as in (4) consistently define a unique joint distribution on S.
The consistency conditions in the model with edges entail that

G−1
s �E�Bst�E�= �G−1

t �E�Bts�E��
T

(16)

should hold for all pairs of pixels s and t. Choosing Bst and
Gs to satisfy (2) for every edge realization E, we see that the
consistency condition (16) holds. So we have the following
hierarchical specification:

� The distribution of E is an MRF with the specified values
of the potential function.

� Given E, the underlying color process X is multivariate
GMRF with local characteristics defined by (1).

� Given X, 	Yi� are independent with

Yi ∼ N�xi
�2�
 i ∈ obss
 (17)

where �2 is a known constant.
The foregoing hierarchical model specifies the full joint

distribution of the observable process Y = �yobs
 ymis�. Using
the notation �a
 b
 � � � � c
d
 � � �� to denote the posterior of
�a
 b
 � � �� given �c
d
 � � ��, we can write the full posterior of
X and E given yobs as

��X
E � yobs�∝
(∏
s∈S

∏
i∈obss

exp
{
− 1

2�2
�yi−xi�2

})
·��X � E� ·��E�% (18)

We are interested in finding the maximum a posteriori (MAP)
estimate of �X
E� that maximizes the posterior in (18). Find-
ing this MAP estimate can be difficult for two reasons. First,
the observed likelihood can be intractable for maximization
due to the presence of missing observations; second, the joint
maximization of �X
E� can itself be hard. The difficulty
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of handling missing values can be overcome by using the
EM algorithm of Dempster, Laird, and Rubin (1977) for the
observed posterior �X�yobs�. The E step of the EM algorithm
substitutes each missing value at step t+ 1 with its expected
value at step t under the posterior distribution �ymis�X
E
yobs�.
It is clear that this expected value is just the underlying miss-
ing color intensity at step t. The M step of the EM algorithm
involves joint maximization of �X
E�, which is difficult. Thus
the M step is broken down into two conditional maximiza-
tion (CM) steps, maximizing the posteriors of �X � E
y� and
�E � X
y� with respect to X and E. Maximizing the condi-
tional posterior distributions �X � E
y� and �E � X
y� is rela-
tively easy. In the case of �E �X
y�, because we used an MRF
model for the prior edge process, it follows that �E � X
y� is
also a MRF with an updated collection of cliques. Thus we
can use simulated annealing to obtain the conditional maxi-
mum of �E � X
y� (see Geman and Geman 1984). The con-
ditional posterior distribution �X � E
y� is a mixture of inde-
pendent GMRF models, with conditional modes given by the
posterior means. The EM algorithm and the CM updates will
ensure only that a local maximum is obtained, not that it will
always converge to a global maximum.

We illustrate and compare the performance of this method
in Section 6. It turns out that in general, using the edge process
does not work as well in the presence of missing data. The
algorithm is too flexible and ends up with too many edges. It
appears that the missing data cause the algorithm to get stuck
at suboptimal local maxima.

4. MODELING WITH AN UNDERLYING
CLASS PROCESS

In this section we consider an alternative approach based on
a spatial mixture model with underlying class processes. This
approach fixes the number of homogeneous regions and thus
limits the tendency inherent in the edge process to detect too
many spatially homogeneous regions.

Let G be the total number of classes (spatially homoge-
neous regions). We use a MRF to model membership in the
classes. Specifically, define a collection of random variables
C = 	cs
 s ∈ S�, with each cs taking values in 	1
2
 � � � 
G�.
The distribution of C can be taken to be a variation of
Strauss’s color model (Strauss 1975, 1977) with joint density

��C�= K · exp
{ G∑
u=1

6unu+
∑
u�=v
7	uv�n	uv�

}

 (19)

where nu is the number of pixels with cs = u, n	uv� is the
number of neighboring pairs with cs = u and ct = v, and K
is the normalizing constant. The joint distribution can also be
written as

��C�= K · exp
{ G∑
u=1

6u
∑
s∈S
I	cs = u�+

∑
u�=v
7	uv�

∑
s∼t
I	cs = u�

× I	ct = v�
}

 (20)

where s ∼ t denotes the sum over all pairs of neighbors 	s
 t�.
The parameters 6u measure the overall intensity of each class

value in the image, whereas 7	uv� measures the degree of asso-
ciation between values u and v of the class assignment. The
local characteristics of cs , given c−s , are

��cs = u � c−s�∝ 6u+
∑
v �=u
7	uv�

∑
t∈Ns
I	cs = u
 ct = v�
 (21)

where � = 	Ns
 s ∈ S� denotes the neighborhood system
of choice. We consider two choices for the neighborhood
system—namely, the first- and second-order neighborhood
systems—for the reconstruction of images. We take 7	uv� = 7
for all pairs �u
 v� and take 6u = 6 for all u = 1
2
 � � � 
G.
In other words, we assume that all component pairs have the
same degree of association and that each component color has
the same overall intensity value. It turns out that the value
of 6 plays no role in the reconstruction, so we take it to be
0 throughout. Thus our model for the class process turns out
to be the Potts model (Potts and Ward 1955; Bowsher et al.
1996). The parameter 7 controls the degree of spatial corre-
lation between neighboring class assignments; higher values
of 7 correspond to similar neighborhood class assignments,
whereas small values of 7 allow neighboring classes to differ
from one another. With these choices, (21) becomes

��cs = u � c−s�∝ 7
∑
t∈Ns

G∑
v=1
v �=u

I	cs = u
 ct = v�

= 7 · �ns−nuu�
 (22)

where ns = �Ns� is the total number of neighbors of s and nuu
is the number of neighbors, t, of s such that ct = u.

Given a realization of C = 	cs
 s ∈ S�, the underlying spatial
process X is modeled as a GMRF, similar to the one in Section
2, with local characteristics

xs � x−s ∼ N
(
�+ ∑

t∈Ns
Bst�C��xt−��
(s�C�

)
% (23)

Bst�C� is chosen as

Bst�C�=
wst�C�∑
t∈Ns wst�C�

· Ip×p =
wst�C�

ns�C�
· Ip×p
 (24)

say, for some nonnegative weights wst�C� with ns�C� =∑
t∈Ns wst�C�. Also, (s�C� is chosen as

(s�C�= (/ns�C�% (25)

It is easily verified that the consistency conditions hold if
wst�C� = wts�C�. In Section 3, wst was taken to be 1 if no
edge was present between pixels s and t, and 0 otherwise. The
choice of wst�C� is taken to be

wst�C�=
{

1 if cs = ct
0 otherwise.

(26)

For this choice of weights, the joint distribution of �cs
 xs�
given �c−s
 x−s� is

��cs = u
xs � c−s
 x−s�∝ ��xs � cs = u
x−s
 c−s�
·��cs = u � c−s�
 (27)
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where

��xs � cs = u
x−s
 c−s�= exp
{
−1

2
· ∑
t∈Ns
wst�C��xs− x̄s�T

×(−1�xs− x̄s�
}

 (28)

with x̄s = 1/ns
∑
t∈Ns xt and

��cs = u � c−s�∝ exp	6+7 · �ns−nuu��
 (29)

as given in (22).
The reconstruction algorithms for retrieving �X
C� from

the observable data yobs are based on the iterative conditional
mode (ICM) algorithm. This algorithm iteratively maximizes
the conditional modes of the posterior distributions

��xs � x−s
C
 yobs�∝ exp
{
− 1

2�2
�yobss

−xobss
�2
}

·��xs � cs = u
x−s
 c−s� (30)

and

��cs � c−s
X
 yobs�∝ ��xs � cs = u
x−s
 c−s�
·��cs = u � c−s�
 (31)

where the two expression on the right of (31) are as given in
(28) and (29). Equation (30) updates the attributes, whereas
(31) updates the class assignments. From (28), the estimate
of xmiss

depends only on the xt’s for which cs = ct . Thus,
while updating attributes using (28), the imputation algorithm
interpolates within boundaries of homogeneous regions. The
class updates are as follows. From (28), we see that the first
term on the right side of (31) implies that the class cs should
chosen to be close to the ct’s for which xs is close to x̄s in
the Mahalanobis distance 9= �xs− x̄s�T (−1�xs− x̄s�. Thus in
the presence of an edge, cs is chosen to be the same class as
its neighbors within the same homogeneous region so that xs
will be close to x̄s , and hence 9 will be small, satisfactory
reconstruction in practice.

Implementation of the foregoing procedure assumes that
the number of classes is known. Estimating the number of
classes is similar to the problem of estimating the number
of components in a mixture model and is known to be diffi-
cult. There is an extensive literature on this topic, and many
different approaches have been discussed, including the use
of likelihood-based methods and information-theoretic tech-
niques such as the Akaike information criterion and Bayes
information criterion (see McLachlan and Peel 2000 for a
recent review). The statistical theory and inference associated
with this is complicated because it is a nonregular estimation
problem. In the kinds of application that we have in mind,
computational speed is also an important requirement. Thus
here we have restricted attention to heuristic techniques for
estimating the number of classes based on multidimensional
clustering.

Specifically, we considered a measure of dissimilarity
between pixels based on both spatial distance and attribute

information and used a standard clustering algorithm to group
the pixels into homogeneous groups. We have examined dif-
ferent heuristic rules for deciding on the number of clusters.
When using with a hierarchical clustering algorithm, one can
interact visually with the cluster tree to decide where to cut
the tree and determine the number of clusters. This seems to
work well when only few edges or boundaries are present.
With more complex images, we have found that partitioning
them into smaller subregions and applying the clustering algo-
rithm to the subproblems works better.

The dissimilarity measure between pixels that we consid-
ered uses both attributes and spatial distances as follows:

D�s
 t�= ��DC�xs
 xt�
DS�s
 t��
 (32)

where DC�xs
 xt� is a (normalized) distance or dissimilarity
measure of the attributes xs and xt and DS�s
 t� is a (normal-
ized) measure of spatial distance of the pixels s and t. This
measure can be motivated from the expression of the con-
ditional posterior of �xs
 cs� given �x−s
 c−s�. (See also Chu
et al. 1998 for a discussion of similar measures in the context
of robust edge-preserving smoothers.) In our simulations, we
have specifically used D�s
 t�= aDC�xs
 xt�+�1−a�DS�s
 t�,
where 0< a < 1 is a tuning parameter.

Another advantage of this approach is that it also provides
an initial assignment of the pixels to classes. In our algorithm,
we use this class assignment as the starting values in the itera-
tive procedure (with ICM and spatial smoothing) to update the
classification. The simulation results are given in Section 6.

5. IMPUTATION USING EDGE-PRESERVING
SMOOTHERS WITH LOCALLY VARYING WEIGHTS

One drawback of the previous approaches is that they rely
on explicitly detecting the edges and then doing imputation
within the regions identified to be homogeneous. The method
in Section 4 requires determining the number of classes,
which can be time-consuming. Here we consider an alternative
based on edge-preserving spatial smoothing. To keep the nota-
tion and discussion simple, we assume that that the observed
attributes (colors) are recorded without any errors (�2 ≡ 0).
The ideas can be easily extended to the case with additional
degradation.

We consider local estimation of missing colors at each site
s. We need the following notation, which is specific to site s.
By rearranging the components of xs as necessary, let xs =
�xTmiss


 xTobss
�
T = �x1s
 x2s�

T . For t ∈ Ns , let x1t be the attributes
of xt that correspond to the missing components of xs , and
let x2t be those corresponding the observed components of xs .
Correspondingly, rearrange the variance covariance matrix (
as

( =
(
(1s
1s (1s
2s

(2s
1s (2s
2s

)
%

We use the color image example to motivate the basic
idea. Suppose that R is the only observed color at pixel s.
Then, according to our local notation, xs = �Bs
Gs
Rs� and
xt = �Bt
Gt
Rt� for all t ∈ Ns . We can estimate the missing
value, Bs , by computing an average of the Bt’s in the local
neighborhood, Ns . However, we want to average only over
pixels that are in the same homogeneous region as pixel s.
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Because we are not explicitly considering edge detection here,
an alternative is to use a weighted average that gives greater
weight to pixels that are more likely to be in the same homo-
geneous region as pixel s. The weights are data-based and
depend on how similar the observed value of Rs is to the val-
ues of Rt for t ∈ Ns . If an edge is present between pixels s
and t, then Rs and Rt are very different, so the weight should
be small. Therefore, we choose the weights to decrease the
influence of neighboring sites that are not similar. This is the
basis of the iterative updating scheme discussed later.

Formally, for a fixed set of weights, the local cokriging
equation for x1s = xmiss

is the conditional expectation of x1s

given the observed data in the local neighborhood Ns and is
given by ∑

t∈Ns
wstx1t+(1s
2s(

−1
2s
2s ·

∑
t∈Ns
wst�x2s−x2t�% (33)

We use the estimator in (33) with data-dependent weights to
do adaptive imputation and take ( to be the identity matrix.
Our weights depend on the absolute differences �x2s − x2t�.
In our reconstruction algorithms, we use weights of the form
wst = K2 ·w�x2s−x2t�, where

w�x�= 1(�x�6∗ +;∗) (34)

for positive real numbers 6∗ and ;∗ and K2 is the normalizing
constant such that the weights wst sums to unity. We present
a Bayesian motivation for such weights in the Appendix. The
addition of ;∗ also prevents singularities at x = 0.

The iterative algorithm works as follows. First, an initial
estimate of the partially observed image, such as the Bayer
estimate, is obtained. Then the missing attributes are estimated
using the local cokriging equations given in (33) for all the
sites. The specific order of sites to be sequentially updated is
arbitrary; the reconstructed images in Section 6 were obtained
by raster scan updating of the sites. The updating of attributes
at all sites is cycled several times until convergence.

This approach using adaptive weights offers several advan-
tages. First, the number of components in a spatial mixture
need not be estimated. This entails significant reduction of
computational time. By choosing adaptive weights, we are
able to preserve edges and overcome the problem with ordi-
nary cokriging. The local nature of the algorithm also enables
us to perform the estimation procedure quickly. This step
avoids the inversion of matrices of large dimensions. In the
color image application, only the inverse of matrices of dimen-
sion 1, (2s
2s , [see (33)] must be found.

The local cokriging equations in (33) can also be motivated
through the use of a multivariate pairwise difference prior for
the spatial process X, namely

��x�= K · exp
{
−1

2

∑
s∼t
wst�xs−xt�T (−1�xs−xt�

}

 (35)

where wst are positive weights and K is the appropriate
normalizing constant (see the Appendix for details). Large
(small) values of wst indicate that the color intensities xs
and xt are similar (dissimilar). Thus the normalized weights,
wst/

∑
t∈Ns wst , represent a continuous version of the 0–1 edge

process in Section 3. We show in the Appendix that the cri-
terion in (34) turns out to be the posterior mode of wst for a
suitable choice of prior. The weights are chosen adaptively at
the updating step. The foregoing procedure can also be viewed
as Bayesian model averaging, in which 0–1 weights (or edges)
are averaged and this average weight is used to compute the
estimates of missing colors in (33). Our final goal is interpola-
tion of missing colors, and so it is sufficient to obtain a locally
adaptive estimate of the missing colors at each updating step
without having to explicitly recover boundaries, as was done
in Section 3.

We now discuss some connections of the aforementioned
procedure with localM estimation. The estimate of xmiss

, using
(33), can also be obtained as

x̂miss
= arg min

xmiss

∑
t∼s
wst<�xs−xt�
 (36)

where xu = �xTmisu

 xTobsu

�
T for u = s
 t and <�x� = xT(−1x. In

other words, the estimated value of xmiss
can be seen as a local

M estimate for the function <�x� = xT(−1x (see Chu, Glad,
Godtliebsen, and Marron 1998). Chu et al. obtained the local
M estimator by choosing weights to be inversely proportional
to the distance between covariate observations; imputation of
the dependent variable at site s would involve observations
with similar covariate values as those of site s. In the case of
spatial interpolation, information on location of sites was also
included as covariate information, resulting in local smoothing
based on neighboring sites. In our interpolation scheme, pos-
itive weights are assigned only to nearest neighbors of a site.
(This corresponds to hard thresholding for the location covari-
ate information in the case of local M estimators.) Covariate
information at neighboring sites s and t is taken to be x2s and
x2t . Thus at each iteration of our imputation scheme, xmiss

is
obtained as an M smoothing estimator with covariate informa-
tion �s
 x2s� and �t
 x2t�. As we move from one site to another
in raster scan fashion, we estimate different components of xs
(either R, G, or B) with corresponding observed components
as covariate information according to the Bayer design.

We have only investigated the performance of the local M
estimator based on the quadratic distance <�x� = xT(−1x. In
our simulation results, this choice of <�·� satisfactorily recov-
ers edges between homogeneous regions in the presence of
missing observations. Several other choices of <�·� in the mul-
tivariate case can be considered, including multivariate ver-
sions of more robust analogs such as <�·�= �x�, or any func-
tion of the form =�x�= <′�x�, where =�x� is bounded. These
may lead to better edge-preserving imputation with missing
data, although problems may occur due to multiple local min-
ima in (36). This will be considered in future research.

6. SIMULATION RESULTS

6.1 Artificial Images

Figures 4 and 5 provide a comparison of the three meth-
ods on two simulated images. Figures 4(a) and 5(a) corre-
spond to the true images [same as the true images in pan-
els Figure 2(a) and (c)]. They were generated using GMRFs
with mean color intensities for (R, G, B) �90
90
90� (darker)
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Figure 4. Reconstructed Images. (a) Original image, (b) edge process, (c) class process, (d) edge-preserving smoothers with adaptive
weights.

and �180
180
180� (lighter), variance 20 and correlation of
%4 between R, G, and B. The value of � was chosen to be %99.

Figures 4(b) and 5(b) show the results of the imputation and
recovery using underlying edge processes. Although the recon-
struction is smoother than the Bayer interpolation in Figure 2,
the algorithm is unable to recover the true boundary sharply.
The algorithm appears to be too flexible and to detect too
many edges.

The reconstructions using class processes are shown in
Figures 4(c) and 5(c). A second-order neighborhood structure
(3× 3 neighborhood) was used for the MRF class process.
The starting value for the initial class assignment was obtained
from a multidimensional cluster analysis. We also estimated
the number of spatial mixtures as two from this analysis. The
particular resconstruction shown is based on the (relatively
large) value of 7= 20. We tried a number of different values
of 7 ranging from 1 to 20, and the reconstructions were robust
to changes in the 7 values in these two examples. This may be
due in part to the fact that the initial class assignments based
on cluster analysis correctly determined the image boundaries.
We consider this issue in more detail later.

Figures 4(d) and 5(d) show the reconstructions based on
edge-preserving imputations with adaptive weights. We used
6∗ = 1%0 and ;∗ = %01 in selecting the weights [see (34)]. We
see that the methods using class processes and edge-preserving
smoothers do well in both of these examples and recover the
edges exactly.

We now consider some additional simulations to study the
impact of initial class assignment and the tuning parame-

Figure 5. Reconstructed Images. (a) Original image, (b) edge process, (c) class process, (d) edge-preserving smoother with adaptive weights.

ters (neighborhood structure and choice of 7) on the method
in Section 4. We use a bivariate problem with two colors
(R, G), with B held fixed. Figure 6 shows the two origi-
nal images. They were simulated using a spatial mixture of
GMRFs for (R, G) with mean intensities �90
90� (darker side)
and �150
150� (lighter side), variance 30, and correlation %8.
B was held fixed at 100 for all pixels. The missing-data pattern
corresponded to observing R or G at only alternating pixels.

Figures 7 and 8 show the reconstructed images based on
underlying class processes. The top and bottom rows corre-
spond to first- and second-order neighborhoods for the class
process. The columns correspond to three different values of
the tuning parameter, 7 = 2
10
20. Higher values of 7 cor-
respond to a greater penalty for different neighboring class
assignments.

We used two different initial class assignments for the two
panels in Figure 6. For Figure 6(a), pixels in the interior were
all assigned correctly, those on the left boundary (column 5)
were assigned to class 1, and those on the right boundary (col-
umn 6) were assigned to class 1 or class 2 alternately, starting
with class 2 for the topmost pixel. The initial assignment of
pixels to classes for Figure 6(b) was done as follows: pixels
in the interior were all assigned correctly, but those on the
boundary were assigned to classes 1 or 2 randomly with prob-
ability %5. The ICM reconstruction algorithm was run on both
panels until it converged. In all of the experimental settings,
it converged within 30 iterations.

Figures 7 and 8 allow us to draw several conclusions
about the impact of the tuning parameters. In both cases, the
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Figure 6. Original Images Used in the Two-Color Simulation Study.
(a) Edge image; (b) diagonal image.

use of second-order neighborhoods worked well for all val-
ues of 7. Reconstructions based on first-order neighborhoods
did not work as well with small 7. Increasing 7 improves
performance and allows one to recover from the bad ini-
tial class assignments for the diagonal image in Figure 8,
but not for the straight line edge in Figure 7. This is an
artifact of the “confounding” between the neighborhood struc-
ture, edge pattern, and initial class assignments in this partic-
ular case. In general, higher values of 7 allow better recov-
ery of edges. It should be noted, however, that the boundaries
are sharply defined in these examples. In situations with less
well-defined boundaries, large values of 7 can lead to under-
estimation of the number of classes and thus oversmoothing
across class boundaries. The quality of edge reconstruction
depends heavily on the choice of good starting values. In this

Figure 7. Reconstructions of Straight Line Edge Image. (a)–(c) First-order neighborhood with �= 2� 10� 20; (d)–(f) second-order neighborhood
with �= 2� 10� 20.

respect, second-order neighborhood structures appear to be
more robust with respect to initial starting values.

Figure 9 shows the reconstructed images based on (essen-
tially) kriging (marginal information in just each of the
components). More precisely, the missing values of R were
imputed using only the observed Rs (similarly for the miss-
ing values of G). The reconstruction is based on second-order
neighborhoods with 7= 20 was for the class processes. These
should be compared with Figures 7(f) and 8(f) which corre-
spond to (essentially) cokriging. We see that borrowing multi-
variate information from neighboring sites enables one to bet-
ter decide whether an edge is present at a given pixel location.

We also examined the influence of the tuning parameters
on the edge-preserving imputation method in Section 5. We
reconstructed the images in Figures 7 and 8 with several val-
ues of 6∗: 6∗ = %2
 %5
1%0, and 2%0. The value of ;∗ was fixed
at %01. Both first- and second-order neighborhoods were con-
sidered. All of these reconstructions picked up the edges well,
giving essentially the same recovered images as in Figures 7(f)
and 8(f). Computing the reconstructions were fast for both the
first- and second-order neighborhood structures; convergence
was obtained within 30 iterations of the algorithm.

6.2 Real Images

Figure 10 is the Bayer interpolation of a color CCD image
from a real (professional) football game. We will use this
to compare the two methods based on class processes and
edge-preserving imputations. We do not consider the method
based on edge processes here. The algorithm based on the
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Figure 8. Reconstructions of Diagonal Edge Image. (a)–(c) First-order neighborhood with �= 2� 10� 20; (d)–(f): second-order neighborhood
with �= 2� 10� 20.

class process was applied to the image in Figure 10 by slid-
ing a 15×20 window across the entire image, each time car-
rying out Gaussian interpolation after class assignments were
determined by the clustering procedure. The difference in the
reconstructed images can be clearly seen when the images are
examined at higher levels of detail. Figure 11(a) is the Bayer
interpolation of one of the player’s thighs [corresponding to
pixels around the coordinate �x
 y� = �90
200� in Fig. 10].
Figures 11(b) and (c) are reconstructions based on class pro-
cesses and edge-preserving imputation. We see that both of
them do a much better job of recovering the edge sharply.
Figure 12(a) is another thigh image [corresponding to pixels
around the coordinate �x
 y�= �350
75� in Fig. 10]. Here the
original Bayer scheme was adequate, although the boundary is
still somewhat blurred. The two methods discussed here give
better reconstructions. Due to space restrictions, we do not
present the entire reconstructed images here.

7. SUMMARY AND CONCLUSIONS

We have considered several methods for imputing missing
multivariate data and recovering images in the presence of
edges. The information from the multivariate data is seen to be
critical in determining the edges and doing spatial imputation.

The method based on underlying edge processes appears to
detect too many edges and is not recommended. The method
based on class processes works quite well in the examples that
we have seen. However, in situations where the boundaries are
not as sharply defined, the posterior distributions for the class
assignments can be badly multimodal, leading to underestima-
tion of the number of classes. This is particularly true with

large values of 7 or larger neighborhood structures. In gen-
eral, edge-preserving imputation with locally varying weights
performs best. One advantage of this approach is that it does
not require explicit reconstruction of the edges or classes. We
show in the Appendix that this method can be viewed as mod-
eling with an underlying edge process, analogous to Section 3,
for a suitable prior. However, instead of actually reconstruct-
ing the edges at each stage of the algorithm and then smooth-
ing within boundaries, this method uses the posterior infor-
mation about the edges to compute locally weighted averages
and thus impute the missing values. This is one explanation
for the more stable reconstructions. One can also view this
method, at least conceptually, as Bayesian model averaging of
results from binary edge processes.

Figure 9. Reconstructed Images With Kriging; Second-Order Neigh-
borhood With �= 20.
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Figure 10. Original Bayer Reconstruction; Image Size 281×400.

Figure 11. (a) Bayer Interpolation of Player’s Thigh, (b) Reconstruction Using Class Process, and (c) Reconstruction Using Adaptive Weights.

Figure 12. (a) Bayer Interpolation of Another Player’s Thigh, (b) Reconstruction Using Class Process, and (c) Reconstruction Using Adaptive
Weights.
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APPENDIX:

We establish a connection between the results in Sections 5 and 3
by motivating the choice of locally adaptive weights for interpolation
using a suitable prior distribution on wst . Define a matrix U = ��ust��
by uss =

∑
t∈Ns wst , ust =−wst with wst = wts for neighbors s and t,

and ust = 0 elsewhere. Denote the generalized Gaussian density for
x = �x1
 x2
 � � � 
 xN � by

��x�= 1
�2��d/2

�U �1/2 · exp	−x′Ux�
 (A.1)

where d is the number of nonzero eigenvalues of U and �U � is the
product of the nonzero eigenvalues. Equation (A.1) can be rewritten
as the first-order pairwise difference prior

��x�= 1
�2��d/2

�U �1/2 · exp

− ∑
�s
t�

neighbors

wst�xs−xt�2
 % (A.2)

Consider the prior distribution on the vector of weights, w = �wst�,

��w�∝ 1
�U �1/2 ·

∏
�s
t�

neighbors

exp	−wstast�
∏
�s
t�

neighbors

w
bst
st 
 (A.3)

for some positive constants ast and bst . Using Bayes’s rule, the poste-
rior distribution of wst (given x) can be seen to be independent with

��wst�∝ exp	−wst��xs−xt�2 +ast�� ·wbstst 
 (A.4)

with mode at

ŵst =
bst(

�xs−xt�2 +ast
) % (A.5)

This corresponds to (34) with 6∗ = 2
 ast = ;∗, and bst = 1. Equa-
tion (A.5) shows how the weights can be chosen adaptively for inter-
polation using information based on xs and xt . Assume that site s
belongs to the interior of a homogeneous region. In this case the
differences xs−xt , t ∈ Ns are of the same order of magnitude, mak-
ing the weights ŵst/�

∑
t∈Ns ŵst� approximately constant and equal to

1/�Ns�. On the other hand, if s is an edge site, then the differences
xs − xt , t ∈ Ns will greatly vary, with the smaller values of weights
assigned to the wst with large differences xs − xt , t ∈ Ns . A renor-
malized version of the weights consequently puts high (low) weights
to sites t for which the differences xs −xt , t ∈ Ns are small (large).
Thus neighboring sites t belonging to the same region has s will be
preferred for interpolation.

We now consider updating the missing colors at site s of the image.
Assume that G was observed at site s and that (R, B) are the missing
colors [i.e., x1s = �R
B� and x2s = G in Sec. 5]. In the conditional
updating step, the color attributes (R, G, B) at all neighboring sites
are given. Assume initially that ( is the identity matrix in (35). Then
the multivariate pairwise difference prior can be written as

��x�= 1
�2��3d/2

· �U �3/2 exp

− ∑
c=	R
G
B�

∑
�s
t�

neighbors

wst�xc
s−xc
t�2
 

(A.6)

where xc
s represents the intensity of color c at site s.
Estimates of xR
s and xB
s are given by the local weighted average

of intensities,

x̂c
s =
∑
t∈Ns wstxc
t∑
t∈Ns wst


 (A.7)

for c = 	R
B� if the weights wst are known. However, because they
are unknown, we estimate the weights wst using the marginal distri-
bution of xG and the prior in (A.4). This entails replacing the xu’s
in (A.2) and (A.5) by xG
u. The estimates of xR
s and xB
s are then
given by the estimated local means

xR
s =
∑
t∈Ns ŵstxR
t∑
t∈Ns ŵst

and xB
s =
∑
t∈Ns ŵstxB
t∑
t∈Ns ŵst

% (A.8)

For a general ( , we use the conditional distribution of �xR
s
 xB
s�
given realizations at all other sites and xG
s , instead of (A.6). In this
case, (A.7) turns out to be the local cokriging equations given in (33),
whereas the unknown weights wst are estimated from the marginal
distribution of xG, as before.

[Received April 2001. Revised June 2002.]
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