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Particle-Filter-Based Multisensor Fusion for
Solving Low-Frequency Electromagnetic

NDE Inverse Problems
Tariq Khan, Pradeep Ramuhalli, Senior Member, IEEE, and Sarat C. Dass

Abstract—Flaw profile characterization from nondestructive
evaluation (NDE) measurements is a typical inverse problem.
A novel transformation of this inverse problem into a tracking
problem and subsequent application of a sequential Monte Carlo
method called particle filtering has been proposed by the authors
in an earlier publication. In this paper, the problem of flaw char-
acterization from multisensor data is considered. The NDE inverse
problem is posed as a statistical inverse problem, and particle
filtering is modified to handle data from multiple measurement
modes. The measurement modes are assumed to be independent
of each other with principal component analysis used to legitimize
the assumption of independence. The proposed particle-filter-
based data fusion algorithm is applied to experimental low-
frequency NDE data to investigate its feasibility.

Index Terms—Data fusion, inverse problems, nondestructive
evaluation (NDE), particle filters.

I. INTRODUCTION

THE ESTIMATION of flaw depth profiles (i.e., the se-
quence of flaw depths as a function of spatial position)

from nondestructive evaluation (NDE) measurements is a
typical inverse problem. This inverse problem is ill-posed due
to nonuniqueness of solutions, particularly in the presence of
measurement noise. Various techniques have been proposed in
the literature to address ill-posedness [2]. Direct approaches
for solving NDE inverse problems typically rely on the use of
signal processing techniques to establish a relationship between
specific characteristics of a signal and the geometry of a de-
fect, ignoring the underlying physical process. These methods
typically pose the inverse problem as determining a mapping
from a measurement space to a material property space [3], [4],
where the set of unknown parameters that define the mapping
are determined from measurements. Direct approaches ranging
from calibration methods to more recent procedures based on
neural networks [5], [6] have been proposed. The advantages
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of these approaches are their simplicity and speed; however,
the approaches are very sensitive to analytical models that are
used as well as noise in measurements. Iterative methods, on the
other hand, usually rely on a physical model to accurately sim-
ulate the underlying physical phenomenon and predict a probe
response [7]. The model is used to estimate measurements given
a flaw profile, which is iteratively derived by minimizing the
difference between estimated and actual measurements. Mini-
mization may be through conventional techniques such as con-
jugate gradients, although other techniques such as simulated
annealing [8] or genetic algorithms [9] have been proposed.
Numerical models such as a finite-element model or integral
equation models [3], [6], [9]–[21] have been proposed for elec-
tromagnetic NDE signal inversion, and although accurate, they
tend to be computationally expensive since the models must
be solved iteratively. A Bayesian technique was also proposed
for defect signal analysis in NDE images [22], [23], where a
hierarchical Bayesian framework was designed for detecting
and estimating NDE defect signals from noisy measurements.

The use of multiple inspection modes is becoming common
in various NDE applications. Availability of information from
multiple measurement modes has the potential for improving
accuracy and reliability in flaw profiling due to complemen-
tary information contained in multiple sensors. However, this
requires development of computationally efficient data fusion
techniques for solving inverse problems when multiple mea-
surements are available. Many researchers have employed data
fusion techniques to solve the NDE inverse problem [24], [25].
Commonly proposed solutions include neural networks
[26]–[29], Bayesian analysis based on the Dempster–Shafer
evidence theory [30]–[32], wavelet and other multiresolution
algorithms [29], and image fusion [31], [34], [35] in the time-
and-frequency domain. These methods have been applied to
fuse NDE data from a range of sources, including multifre-
quency eddy current testing (ECT) [25], [26], [28]; ECT data
and ultrasound measurements [26]–[28], [34], [35]; ultrasound,
X-ray, and acoustic emission measurements [32]; and other
techniques (such as pulsed eddy current measurements) [36]. In
addition to these conventional fusion techniques, other methods
such as a Q-transform-based technique [37] have also been
recently investigated.

Available fusion algorithms are generally based on process-
ing signals or images without regard to the physics of a
measurement process. Furthermore, most of the proposed
techniques have drawbacks in terms of lower accuracy of
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TABLE I
LIST OF NOTATIONS

inversion and high computational cost. In order to address these
drawbacks, the authors have proposed a sequential Monte-
Carlo-based method for the solution of low-frequency NDE
inverse problems [1]. In this paper, the sequential Monte Carlo
technique is extended to fusing NDE data from multiple NDE
measurement modes.

The rest of this paper is organized as follows. The next
section describes the problem formulation for an NDE inverse
problem in terms of a recursive framework in the presence of
measurement data from multiple measurement modes. A parti-
cle filtering technique followed by its application for solving the
NDE inverse problem in the presence of multiple measurement
modes is discussed. The particle-filter-based data fusion tech-
nique is developed assuming that NDE measurement modes
are uncorrelated to each other. The use of principal component
analysis (PCA) to legitimize the assumption of independence of
measurement modes is then discussed. Results of flaw profiling
from multimodal NDE measurements are presented to validate
the proposed techniques. A comparative study of flaw profiling
results when using a single-measurement mode and data fusion
with/without PCA is also reported in this paper. Finally, con-
clusions and future work are presented. The notations used in
this paper are tabulated in Table I for clarity.

II. NDE INVERSE PROBLEM FORMULATION

A. Problem Formulation

The problem formulation described here is applicable to flaw
profile reconstruction in both 2-D and 3-D. The 2-D problem

Fig. 1. NDE inverse problem for 1-D flaw profile reconstruction (assuming
L = 0).

is equivalent to estimating flaw depths along the length of
a specimen (where the depth along the width dimension is
assumed to be invariant). In this case, the length of the specimen
is divided into K locations. The 3-D problem is equivalent
to estimating flaw depths at each location on a specimen
surface; therefore, the surface of the specimen is divided into
K discrete locations. In each case, flaw depth is unknown at
each discretized location. Examples of the formulation for 2-D
(cracklike) and 3-D (volumetric flaws such as corrosion, wear,
or wall thickness loss) profiling are shown in Figs. 1 and 2,
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Fig. 2. NDE inverse problem for 2-D flaw profile reconstruction (assuming
L = 0).

respectively. The depth profile of flaws in a specimen (2-D or
3-D) is expressed in terms of set �X = {x1, x2, . . . , xk−1, xk,
xk+1, . . . , xK−1, xK}, where each element xk of the set is
stated (flaw depth) at the discrete location k. Assume that
measurements z̄k = {z1

k, z2
k, . . . , zq

k, . . . , zQ
k } = {zq

k|q = 1 :
Q} from Q measurement modes are available at each position
index k (1 ≤ k ≤ K). The evaluation of the sequence of states
given the set of measurements is the inverse problem. This
inverse problem can be formulated in terms of a statistical
estimation problem. In this case, the unknown parameter is the
set of states �X , whereas the corresponding observation is the
set of measurements �Z = {z1

1 , z2
1 , . . . zQ

1 , z1
2 , . . . zq

k, . . . zQ
K}.

The posterior probability density function (pdf) p �X|�Z of states
�X for each measurement mode q can be computed in the
framework of statistical inverse problems [38]. States �X are
estimated from the posterior pdf as follows:

p( �X|�Z) ∝ p(�Z| �X)p( �X). (1)

Here, p(�Z| �X) is the likelihood function, and p( �X) captures
available prior information about the set of states (set of flaw
depths). The estimation of p(�Z| �X) is generally a computation-
ally expensive process due to the high dimensionality of the
state vector �X . Evaluating the posterior pdf sequentially (i.e.,
at each position by stepping through the position index k) can
potentially keep the computational cost and the complexity of
the inverse problem low. Three conditions, which are funda-
mental to the proposed problem formulation, are assumed to
enable a sequential solution to the inverse problem [38]. First, a
locally dependent Markov field is adopted to solve the problem.
This Markovian assumption has been shown to be valid for low-
frequency electromagnetic NDE (e.g., magnetostatic and eddy
currents) [39]. Therefore, the relationship offered by (1) holds
locally, and the equation can also be written for neighborhood
Nk around the position index k, where 1 ≤ k ≤ K, as follows:

p (xk|{z̄j |j ∈ Nk}) ∝ p ({z̄j |j ∈ Nk}|xk) p(xk). (2)

The neighborhood elements Nk of each discretized lo-
cation for the 2-D problem are given by the 1-D window

xk−(2L+1):k−1, k+1:k+(2L+1), as shown in Fig. 1 L is a scalar
parameter, which controls the size of the neighborhood. The
neighborhood elements Nk for each location for a 3-D problem
are defined by a 2-D window on the surface of specimen
xp, q| p=m−(2L+1):m−1, m+1:m+(2L+1),

q=n−(2L+1):n−1, n+1:n+(2L+1)
, as shown in Fig. 2. The

neighborhood, as defined here, is similar to the lexicographic
arrangement of pixels commonly used in the image processing
literature [40].

The second assumption is that the observations (or measure-
ments) are mutually independent within the neighborhood of
the state, given the true values of the unknown states as

p ({z̄j |j ∈ Nk}|xk) =
∏

j∈Nk

p(z̄j |xj). (3)

Finally, the prior density of the unknown state is assumed to
be a product of exponential densities centered on the value of
the states in the neighborhood as follows:

p
(
xk|xj | j∈Nk

j �=k

)
= e

−
∑

j∈Nk

‖xj−xk‖p

p

(4)

where p is a scalar, with a value selected to be around 1 to
ensure a low amount of variability in the state value within the
neighborhood, and xj | j∈Nk

j �=k

are the states in neighborhood Nk

of location k. The assumptions specified by (3) and (4) simplify
the computation for local Markov fields [38].

B. Inverse Problem as a Tracking Problem

As discussed earlier, the inverse problem in NDE is to
determine the best flaw characteristics that match the measure-
ments. The inverse problem may be modeled using two sets
of equations [41]: A state transition equation that is used to
model the evolution of the states with respect to spatial position,
given as

xk = fk

(
xj | j∈Nk

j �=k

, νk

)
⇔ p

(
xk|xj | j∈Nk

j �=k

)
(5)

and measurement models that relate the measurements from
multiple sensors to the states at a given position, given as

zk = hq
k (xk, μq

k) ⇔ p(zk|xk) (6)

where fk and hq
k are functions that model the state transition

and measurement processes, respectively, and νk and μq
k repre-

sent the process noise and the measurement noise, respectively.
Note that the state transition and measurement equations are
applied to the local neighborhood of state xk. The problem
described by (5) and (6) is often referred to as a tracking
problem and is used frequently in target tracking applications
[41], [42]. In these applications, the state transition function
models the motion of a target from the known position xj ,
whereas the measurement function describes some function of
the target position. Process and measurement noise densities
represent the uncertainty in the state and measurement models.
The tracking problem, as defined in (5) and (6), is a dynamic
state estimation problem [41]. A Bayesian approach to this
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problem is to construct a posterior pdf of the state, based on
the sequence of measurements.

The problem described by (5) and (6) can be shown to
be equivalent to the statistical inverse problem defined by (1)
using the following arguments. The state transition function
(when taken with the associated process noise distribution) is
equivalent to the local prior pdf used in the statistical inverse
problem. Similarly, the measurement function is equivalent to
the local likelihood pdf in the statistical inverse problem when a
locally independent Markov field is assumed (see Section II-A).
The equivalence of the tracking problem to statistical prob-
abilities is also shown in (5) and (6). The advantage of this
equivalence is the potential applicability of solution techniques
for tracking problems to solve the NDE inverse problem. Note
also that the formulation of the inverse problem as the statistical
inverse problem (1) or, equivalently, a tracking problem, as
in (5) and (6), implicitly assumes that the NDE measurement
process is a localized process; i.e., the measurement at the
particular location k is only affected by the state of the sample
in a neighborhood of k. As aforementioned, the Markovian
assumption is valid for low-frequency electromagnetic NDE
(magnetostatic and eddy current NDE) [40], provided that the
neighborhood is selected appropriately.

III. APPLICATION OF PARTICLE FILTERS TO SOLVE NDE
INVERSE PROBLEMS USING MULTIPLE-MODE

MEASUREMENT DATA

A. Solutions to the Tracking Problem

Kalman filtering [41] provides an optimal solution to the
tracking problem if the following two conditions are met.

1) The function that relates the states in a neighborhood (i.e.,
the state transition function) and the function that relates
the state to measurement (i.e., the measurement function)
are linear.

2) The likelihood and prior pdfs are Gaussian.

In general, for the NDE inverse problem, these functions can
be nonlinear, and the pdfs can be non-Gaussian (multimodal).
Therefore, the Kalman filter cannot provide an optimal solution,
and suboptimal algorithms may be necessary to evaluate flaw
depth. Therefore, a more generalized filtering technique is
required to solve this inverse problem. Particle filters offer such
a generalized filtering technique.

B. Theory of Particle Filters

Particle filters are sequential Monte Carlo methods based
on point-mass (or “particle”) representations of probability
densities that can be applied to any state-space model and that
generalize traditional Kalman filtering methods [41], [42]. In
this approach to a dynamic state estimation, the posterior pdf
of the state is constructed based on all available information,
including the set of received measurements. A brief description
of the particle filter algorithm is provided next. To simplify
the discussion, we assume that measurements zk = {zq

k|q =
1} ≡ zk from a single-measurement mode (i.e., Q = 1) are
available. This assumption will be relaxed in the next section,

where we extend the particle filtering framework to incorporate
multimodal measurements.

With the assumption of a single-measurement mode (and
temporarily simplifying the notation by dropping superscript
q), the pdf of state xk conditioned on all measurements up to
(and including zk) p(xk, z1:k) may be obtained recursively in
two stages: prediction and update stages. The prediction stage
uses the system model to predict the pdf forward from one
measurement location to the next. Suppose that the required pdf
p(xk|z1:k−1) at location k − 1 is available. The prediction stage
involves using the system model to obtain the prediction density
of the state at k via the Chapman–Kolmogorov equation [41] as
follows:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (7)

If we consider a Markov process of order 1, then
p(xk|xk−1, z1:k−1) = p(xk|xk−1). Since the state is usually
subject to unknown disturbances (modeled as random noise),
the prediction step generally translates, deforms, and otherwise
distorts the pdf. The update operation uses the latest mea-
surement to modify the prediction pdf. This is achieved using
Bayes’ theorem as follows:

p(xk|zk) = p(xk|zk, z1:k−1)

=
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(8)

where the normalizing constant is given by

p(zk|z1:k−1) =
∫

p(zk| �X)p( �X|z1:k−1)dxk. (9)

In order to apply particle filtering, the desired posterior pdf is
represented in terms of samples and associated weights at each
location. In order to develop the details of the algorithm, let
{xi

k, wi
k}|1:Ns

denote a random measure that characterizes the
posterior pdf at location k. xi

k is the set of support points with
associated weights wi

k, and i = 1 : Ns is the total number of
samples used. The weights are normalized such that

∑Ns

i=1 wi
k.

Then, posterior density at k can be approximated as [41]

p(xk|zk) ≈
Ns∑
i=1

wi
kδ

(
xk − xi

k

)
. (10)

Normalized weights are chosen using the principle of impor-
tance sampling [41]. According to this principle, suppose that
p(x) ∝ π(x) is a probability density from which it is difficult to
draw samples but for which π(x) can be evaluated, and samples
can be drawn from π(x). In addition, let xi be the samples
that are easily generated from proposal q(.) called importance
density. Then, a weighted approximation to density p(x) is
given by

p(x) ≈
Ns∑
i=1

wiδ(x − xi) (11)
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where wi ∝ (π(xi)/q(xi)) is the normalized weight of the
ith particle. Therefore, if samples xi

k were drawn from the
importance density q(x1:k|z1:k), the weights are given by [41]

wi
k ∝

p
(
xi

1:k|z1:k

)
q
(
xi

1:k|z1:k

) . (12)

With the reception of measurement zk at position k, we wish to
approximate p(x1:k|z1:k) with a new set of samples. Given the
set of weights wk−1 at position k − 1, the weights at position k
may be computed recursively using the weight update equation
derived from the principle of importance sampling as

wi
k ∝ wi

k−1

p
(
zk|xi

k

)
p

(
xi

k|xi
k−1

)
q
(
xi

k|xi
k−1, zk

) . (13)

The most commonly used variant of a particle filter, the sam-
pling importance resampling (SIR) algorithm [42], is used in
this paper. The importance density in the SIR algorithm is
chosen as the transition prior to

q
(
xi

k|xi
k−1, zk

)
= p

(
xi

k|xi
k−1

)
. (14)

Therefore, from (12) and (13), the following is derived:

wi
k ∝ wi

k−1p
(
zk|xi

k

)
. (15)

We can also write (15) as

wi
k ∝ p

(
zk|xi

k

)
. (16)

C. Particle Filtering for Multisensor Data Fusion

When multiple measurement modes are available, likelihood
pdfs corresponding to each measurement mode need to be
considered in weight assignment to the sample. Assume that
wi, q

k is the weight of the sample i at the position index k
assigned by the individual measurement mode q. For every sam-
ple at each position index, Q weights are therefore computed
using the respective likelihood pdfs. The likelihood function
corresponding to the qth measurement mode is given by (16)
and the following:

wi, q
k ∝ p

(
zq
k|xi

k

)
. (17)

If the measurement processes are assumed to be indepen-
dent, then the joint likelihood due to measurement modes
q = 1, 2, . . . , Q is the product of likelihood for the individual
measurement mode, given by

p
(
zk|xi

k

)
= p

(
z1
k|xi

k

)
, p

(
z2
k|xi

k

)
, . . . , p

(
zQ
k |xi

k

)
. (18)

Therefore, from (17) and (18), we get the following:

wi
k ∝ p

(
z1
k|xi

k

)
.p

(
z2
k|xi

k

)
. . . p

(
zQ
k |xi

k

)
. (19)

Using (16) and (19), the final weight assigned to sample i at
position index k is as follows:

wi
k ∝ wi,1

k , wi,2
k , . . . , wi, Q

k . (20)

As aforementioned, it is assumed that the measure-
ment processes are independent. However, the measurement
processes may be correlated, and the assumption of indepen-
dence is not valid in that case. In order to make the assumption
of independence more legitimate, the PCA technique is applied
to data from different measurement modes. PCA [43] is math-
ematically defined as an orthogonal linear transformation that
transforms the data to a new coordinate system. PCA can also
be applied to data from multiple measurement modes. At each
position index k, measurements z1:Q

j |j∈Nk
within its neigh-

borhood from all measurement modes (1 : Q) are considered.
These multidimensional data are now the input of the PCA
technique. The following steps are carried out to evaluate the
principal components.

Step 1: The multisensor measurements z1:Q
j |j∈Nk

are stored
as vector ςq|q=1:Q, where each measurement mode is as-
sumed to be one component of the vector.

Step 2: The data vector is adjusted by subtracting out its mean
given by:

ςq = ςq − mean(ςq). (21)

Step 3: The adjusted data vectors are arranged as rows of
a matrix. This newly formed matrix will be called the
“adjusted data matrix,” given as

ς = [ς1, ς2, . . . , ςQ]. (22)

Step 4: The covariance matrix of the “adjusted data matrix” is
computed as follows:

σq = cov(ςq). (23)

Step 5: Eigenvectors λq of the covariance matrix are then
evaluated as follows:

λq = eig(σq). (24)

Step 6: The computed eigenvectors are arranged as rows of a
new matrix. This newly formed matrix will be referred to
as the ”feature matrix” as follows:

λ = [λ1, λ2, . . . , λQ]. (25)

Step 7: Finally, the “feature matrix” is multiplied by the “ad-
justed data matrix”

ψ = λς. (26)

The rows of the resultant matrix ψ are the principal (uncorre-
lated) components in the data as follows:

ψ = [ψ1, ψ2, . . . , ψQ]. (27)

The resultant components ψq are uncorrelated to each other.
Therefore, the output of the PCA technique is a set of indepen-
dent (uncorrelated) data of Q dimensions. These independent
components are then treated as the data from separate measure-
ment modes.
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Fig. 3. Particle filter implementation for flaw profiling.

D. Implementation

The sequence of steps for evaluation of the posterior pdf of
the state (flaw depth) is shown in Fig. 3 and is summarized
below.
Step 1: In the initialization, Ns samples are sampled at each

position index from the prior pdf, as given in (4).
Step 2: In weight assignment, weights are assigned using the

likelihood pdf, as indicated in (15). The likelihood pdf is
represented by the error between the computed measure-
ment using the measurement model and the actual mea-
surement. As shown in Fig. 3, actual measurements (test
data) and the computed measurement (using a measure-
ment model) are inputs to the weight assignment block. If
the difference between computed and actual measurements
for a sample (particle) is small, the likelihood or weight
of a sample is high and vice versa. The measurement
model typically relates the state to measurements, and
the results of inversion may be expected to depend on
the choice of the measurement model. The measurement
model is derived from a training database of known states
and corresponding NDE measurements. A comparative
study using different measurement models to establish a
relationship between the state and low-frequency electro-
magnetic NDE measurements, in terms of accuracy of
inversion and computational load, was carried out [44].
Based on the results reported in [44], the measurements
(response) are approximated from the state through an Rth-
order polynomial. The model is expressed as follows:

zk =
R∑

r=0

crx
r
k. (28)

The coefficients of polynomial c are determined from
a training database of known states and corresponding
measurements.

Step 3: In resampling, a common problem with particle filters
is degeneracy [42], where after a few iterations, all but
one particle will have negligible weight. The basic idea
of resampling is to eliminate particles that have small
weights and concentrate on particles with large weights.
The posterior pdfs (samples and associated weights) are
estimated at all locations.

Step 4: In convergence checking, single-point estimates of the
unknown state are computed from the evaluated posterior
pdf, as described in Section IV-A. The estimated posterior
pdfs at all locations (1 : K) are then used as initial values
and are updated iteratively (see Fig. 3). In subsequent
iterations, the states (flaw depths) in the neighborhood of
each location are the single-point estimates from the pdfs
evaluated at preceding iterations. The algorithm runs iter-
atively until the error between the single-point flaw profile
estimates in two consecutive iterations is less than some
preset convergence criterion. If each iteration is denoted by
I and the estimated flaw depths throughout the specimen
(K discretized locations) evaluated at I is x1:K(I), then
the convergence criterion is given by

K∑
k=1

(xk(I + 1) − xk(I))2

K
≤ τ. (29)

Here, τ is the preset convergence threshold. At conver-
gence, x1:K(I + 1) is assumed to be the predicted flaw
profile.
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Fig. 4. ECT of steam generator tubing.

The assumption of independence of measurement modes
offers the foundation to the proposed particle-filter-based data
fusion technique. As the output of the PCA technique is a set of
uncorrelated components, this transformation gives legitimacy
to the assumption that measurement data is independent.

IV. RESULTS

The proposed particle-filter-based technique was applied to
steam-generator (SG)-tubing NDE data for flaw profiling as
well as for corrosion quantification in aircraft lap joints. Evalu-
ation measurements are used to evaluate the performance of the
proposed inversion algorithm.

A. Evaluation Measurements

As discussed in the previous sections, the posterior pdf of
the unknown quantity is evaluated at discrete positions using
the proposed technique. Posterior mean estimates (PME) and
maximum a posteriori (MAP) estimates of the states at each
location are subsequently computed from the posterior pdfs.
These computed estimates are assumed to be the predicted
flaw profiles in this paper. The posterior mean estimate is
given by

x̂MMSE
k|k = E{xk|zk} =

∫
xkp(xk|zk)dxk (30)

whereas the MAP estimate is given as

x̂MAP
k|k = max

xk

p(xk|zk). (31)

The resulting predicted profiles using the PME and MAP
estimates were compared with the true profiles using a mean-

square-error (MSE) measurement [1] as follows:

MSE =

K∑
k=1

(
xk(predicted) − xk(actual)

)2

K
. (32)

B. SG Tubing NDE

The proposed technique is applied to estimate flaw profiles
from a multifrequency eddy current inspection [45] of SG
tubing in nuclear power plants.

i) Data Description: The experimental setup for ECT is
shown in Fig. 4 [45]. The setup includes an SG tube along
with a motorized rotating probe coil (MRPC). The MRPC
probe contains three coils: a plus (“+”) point coil, a pancake
coil, and a high-frequency pancake coil. Measurements were
acquired on tubes with laboratory-induced cracking as well
as tubes with cracking pulled from operational power plants.
After the NDE measurements were acquired, the tubes were
destructively analyzed, and the resulting metallographic results
documenting the flaw depth profiles were used as “ground
truth” in this paper. Selected flaws from this database were used
to formulate the training database from which the measurement
model parameters were estimated. For evaluating the proposed
algorithm performance, the magnitude and the phase of the
complex eddy current data from the MRPC plus (“+”) point
probe, with excitation frequencies of 100, 200, and 300 kHz,
were used as the measurements.

ii) Results: Twelve different defect profiles were selected
from an industry test database for investigating the efficacy
of the proposed inversion technique. The flaw profiles are
tabulated in Table II. Only the width and maximum depth are
tabulated in the table. The number of samples used in the par-
ticle filter algorithm, at each position index, was 2000, whereas
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TABLE II
EXPERIMENTAL FLAW PROFILES

Fig. 5. Proposed inversion technique. (a) Phase measurement. (b) Magnitude measurement. (c)Three-dimensional and (d) top views of the posterior pdf.
(e) Computed estimates.

a third-order polynomial measurement model was used. Three
different values of parameter L (0, 1, and 2) were used. The
convergence threshold used in this paper was τ = 10−3. Fig. 5

shows the inversion results using data fusion of magnitude and
phase measurement at 300 kHz for a flaw with a width of 7 mm
and a maximum depth of 100% of tube wall thickness. Fig. 5(a)
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Fig. 6. MSE between the PME of the posterior pdf and the true profiles
versus the state vector length parameter L at different measurement modes for
experimental data.

Fig. 7. Mean and standard deviations of the MSE (between the PME and the
true profile) versus L at different measurement modes.

and (b) shows phase and amplitude measurements, respectively.
Fig. 5(c) and (d) shows the top and 3-D views of the com-
puted posterior pdfs, respectively. Fig. 5(e) shows the computed
estimates.

Fig. 6 presents a summary of the MSE between the PME and
true flaw profiles for the 12 flaws, using different measurement
modes and the state vector length parameter L = 0, 1, 2. The
MSE between the PME and the true flaw profile using mea-
surement data at three individual frequencies (100, 200, and
300 kHz) are shown. The MSE between the PME and true
profiles using data fusion of measurement modes without PCA
and with PCA are shown in Fig. 6. The average and standard
deviation of the MSE for each measurement mode are shown in
Fig. 7.

C. Corrosion Quantification in Aircraft Lap Joints

i) Data Description: Quantification of the loss of plate
thickness due to corrosion on an aircraft skin is presented
as a test case for 3-D flaw profile construction. The NDE

Fig. 8. Aircraft lap joint specimen.

measurement data was acquired from a 30-year-old service-
retired Boeing 727 aircraft, as shown in Fig. 8. Two specimens
(C and D), each consisting of a two-layer aluminum 2024-T3
lap joint cut out from below the cargo floor, were inspected.
The thickness of each layer of the lap joint is 0.045 in (1.143
mm). The specimens were disassembled and cleaned of all
corrosion products after the inspection. X-ray mappings were
then acquired to assess the true plate thickness. The inversion
results were compared with the true thickness to determine
the efficacy of the technique. Measurements from multiple-
frequency eddy current modes (5.5, 17, and 30 kHz) were used
in the inversion. The number of samples Ns in the particle filter
was 2000. The resulting predicted profiles using PMEs and the
MAP estimates are compared with the true profiles using a root
MSE measurement [46].

ii) Results: The inversion result evaluated using a single-
measurement mode and fusing multiple measurement modes
for specimen C is shown in Fig. 9. Results for specimens C
and D are tabulated in Table III. Results indicate improvement
in inversion accuracy when data fusion is used.

D. Discussion

Flaw depth profiling results from eddy current measurements
indicate that the proposed particle filter approach is capable of
producing reasonably accurate results even in the presence of
noise. In particular, results on experimental data validate the ro-
bustness of the proposed approach and indicate the feasibility of
the proposed inversion technique. The use of data fusion is also
seen to reduce the error in the reconstruction when compared to
flaw profiles obtained using a single-measurement mode. The
use of PCA further increases the accuracy of inversion. Note
that in all cases, the flaw profile reconstruction processes were
obtained using the particle-filtering algorithm. Comparison
with other contemporary techniques reported in the literature
[46] indicates that the inversion results using particle filtering
(with or without data fusion) are either comparable to or better
than the results obtained using these other techniques. The
results also indicate that using a large neighborhood improves
the inversion results. Note that the depth variation in real flaws
can be abrupt, and flaw depth does not remain constant for
long spans. This fact is a challenge for the proposed inversion
technique. The use of a larger neighborhood (large value of
L) appears to smooth out the variations in the flaw profiles
and improves inversion accuracy. However, increasing the size
of the neighborhood increases the computational cost. For
instance, increasing L from 0 to 2 increases the computational
load by a factor of 5 [47].
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Fig. 9. Inversion results of specimen C (data fusion). (a) and (e) True profile. (b)–(d) and (f) Predicted profiles using ET data at 5.5, 17, 30 kHz and data fusion.

TABLE III
INVERSION RESULTS FOR SECTIONS C AND D

V. CONCLUSION & FUTURE WORK

A sequential Monte-Carlo-based data fusion technique was
proposed for solving inverse problems. Results on multiple
databases indicate the efficacy of the proposed inversion tech-

nique. The proposed data fusion technique is based on the
assumption that measurement processes are statistically in-
dependent processes, and the use of PCA was proposed to
further legitimatize the assumption. The results indicate that the
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inversion results improve when data from multiple measure-
ment modes are fused. A further improvement is observed in the
inversion results when PCA is used prior to data fusion. Future
work will focus on investigation of alternative preprocessing
approaches when the assumption of independence is not valid.
Application of the proposed technique on other types of data
sets is another focus area for future work. These data sets
include X-ray tomography and ultrasonic data.
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