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Abstract—The performance of a fingerprint matching system is affected by the nonlinear deformation introduced in the fingerprint

impression during image acquisition. This nonlinear deformation causes fingerprint features such as minutiae points and ridge curves to

be distorted in a complex manner. A technique is presented to estimate the nonlinear distortion in fingerprint pairs based on ridge curve

correspondences. The nonlinear distortion, represented using the thin-plate spline (TPS) function, aids in the estimation of an “average”

deformation model for a specific finger when several impressions of that finger are available. The estimated average deformation is then

utilized to distort the template fingerprint prior to matching it with an input fingerprint. The proposed deformation model based on ridge

curves leads to a better alignment of two fingerprint images compared to a deformation model based on minutiae patterns. An index of

deformation is proposed for selecting the “optimal” deformation model arising from multiple impressions associated with a finger. Results

based on experimental data consisting of 1,600 fingerprints corresponding to 50 different fingers collected over a period of two weeks

show that incorporating the proposed deformation model results in an improvement in the matching performance.

Index Terms—Fingerprints, nonlinear deformation, ridge curves, thin plate spline, index of deformation, minutiae pattern, template

selection.
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1 INTRODUCTION

THE uniqueness of a fingerprint is dictated by the
topographic relief of its ridge structure and the presence

of ridge anomalies, termed minutiae points. The problem of
automatic fingerprint matching involves determining the
degree of similarity between two fingerprint impressions by
comparing their ridge structure and the spatial distribution
of the minutiae points [2], [3], [4], [5]. However, the image
acquisition process introduces nonlinear distortions in the
ridge structure due to the nonuniform finger pressure
applied by the subject and the elastic nature of the skin. The
effects of these nonlinear distortions must be addressed
when matching two fingerprint images. Models based on
affine transformations invariably lead to unsatisfactory
matching results since the distortions are basically elastic
(nonrigid) in nature (Fig. 1).

To deal with the problem of nonlinear distortion in
fingerprint images, four types of approaches have been
discussed in the literature. The first approach accounts for
distortion in the image acquisition stage by capturing the least
distorted print from the user while rejecting the others. Ratha
and Bolle [6] describe a system which does not accept a
fingerprint image if the user applies excessive force on the
sensor. The system operates by measuring the forces and
torques applied on the sensor. Dorai et al. [7] observe a video
sequence of the fingertip as it interacts with the sensor and

measure the distortion across successive frames. When
excessive distortion is observed, the system requests the user
to provide another fingerprint. These systems require
specialized hardware and the ability to perform extensive
computations in real-time. As a result, they do not offer a
practical solution to fingerprint deformation in real-time
embedded fingerprint applications.

In the second approach, the distortion is estimated
during the matching stage. Thebaud [8] uses a gradient
descent technique to compute local warps when comparing
two fingerprints. The fingerprint correlation score is used as
the objective function. Besides being time consuming, this
technique potentially results in a higher False Accept Rate
(FAR) since it performs local warping to force a match
between the two images. Kovács-Vajna [4] uses minutiae
triplets to compare two minutiae sets. By not using the
entire minutiae pattern at once, the cumulative effect of
distortion is avoided. Bazen and Gerez [9] use a thin-plate
spline (TPS) model to account for nonlinear distortions
when comparing two minutiae sets.

In the third approach, the distortion is removed before the
matching stage. Senior and Bolle [10] have developed a model
which assumes that ridges in a fingerprint are constantly
spaced and that deviations from this model indicate the
presence of elastic distortions. They apply local warps in
regions exhibiting such deviations so that local ridge
distances nearly equal the average interridge spacing. Their
experimental results show a significant improvement in
genuine matching scores (i.e., the matching score when
comparing two impressions of the same finger), as indicated
by the t-statistic. However, their assumption that interridge
spacing in a fingerprint is a constant is not always valid.
Watson et al. [11] construct distortion tolerant filters for each
(template) fingerprint. These filters when applied to the
image before matching are shown to result in improved
system performance.

The fourth approach is more suited for introducing
distortions in synthetic fingerprints. Cappelli et al. [12] have
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attempted to model the distortions that could occur in a
fingerprint image by considering three concentric regions in
a fingerprint; the inner and outer regions are assumed to
have no distortions although ridges in the outer region can
be translated and rotated with respect to the ridges in the
inner region; the region in between is assumed to undergo
nonlinear distortions in order to accommodate the transi-
tion of ridges from the inner to the outer region. The
authors, however, do not use this model to perform
fingerprint matching. Rather, they use it to synthesize
multiple impressions of the same finger [13].

Most current techniques deal with the problem of non-
linear distortion on a case by case basis, i.e., for every pair of
fingerprint impressions (or for every fingerprint impression),
a distortion removal technique is applied and a matching
score generated. No attempt has been made thus far to
develop a finger-specific deformation model that can be
computed offline and later used for matching. The advantage

of such a scheme is that, once a finger-specific model has been
computed and stored along with the template, recomputation
of the model is not necessary during matching. In this paper,
we propose a technique for computing the average deforma-
tion model of a fingerprint impression by using the thin plate
spline (TPS) warping model. It is assumed that multiple
impressions of a user’s fingerprint are available during the
training phase. The model is expected to capture the
intraclass variability due to nonlinear deformations in a
fingerprint impression. The relative distortion between two
impressions is estimated based on their ridge curve corre-
spondences. The average deformation model associated with
an arbitrary fingerprint impression (called the baseline
impression) is an indication of its average distortion with
respect to other impressions of the same finger. For a single
finger, an optimal baseline impression with the most
consistent distortions (i.e., distortions that deviate the least
from the average) is selected based on its index of deforma-
tion. We demonstrate that predistorting the baseline impres-
sion using the average deformation model can improve
matching performance.

Earlier work in modeling the nonlinear distortion in
fingerprint images [14], [9], [15] used only the spatial
distribution of the minutiae points (Fig. 2). In this paper, the
relative distortions are estimated based on ridge curve
correspondence (Fig. 3). Modeling the distortion using ridge
curve correspondences offers several advantages over
minutiae correspondences, resulting in improved matching
performance. Unlike minutiae points, which can be sparsely
distributed in certain regions of a fingerprint image, ridge
curves are present all over the image domain, thereby
permitting a more reliable estimate of the distortion. The
spatial continuity of ridge curves enables sampling of a large
number of points on the ridges for establishing correspon-
dences, including points in the vicinity of undetected
minutiae points. Also, in some poor quality images, minutiae
information cannot be reliably extracted and, thus, cannot be
used to construct a fingerprint distortion model. For these
reasons, ridge curve-based warping techniques are expected
to provide a robust and reliable estimate of the distortion in
fingerprint impressions.

The rest of the paper is organized as follows: Section 2 lists
a few warping (deformation) models commonly used in the
literature and presents the warping model based on thin-
plate splines (TPS) that has been used in this work, Section 3
describes the average deformation model that we propose,
Section 3.1 defines the index of deformation that is utilized to
select the optimal deformation model from a given set of
models, Section 4 describes the experiments conducted and
the results obtained, and Section 5 summarizes the paper and
presents future directions for research.

2 THE FINGERPRINT WARPING MODEL

Warping methods can be used to obtain global deformation
models for image registration. Applications of warping
techniques abound in the statistical, medical imaging, and
computer vision literature. Examples include warping by
elastic deformations [16], [17], optical or fluid flow [18], [19],
[20], diffusion processes [21], Bayesian prior distributions
[22], [23], and thin-plate splines (TPS) [24], [25], [26]. Only
recently have warping techniques based on deformation
modelsbeenusedtodescribedistortions infingerprint images
for thepurposeofmatching [14], [9].BazenandGerez[9]show
that the use of nonlinear deformation models, as opposed to
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Fig. 1. Alignment of two impressions of the same finger using affine
transformation. (a) and (b) are the gray-scale images, (c) and (d) are the
thinned (skeletonized) images of (a) and (b), respectively, and (e) shows
the alignment based on the thinned images. Ridge lines do not align in (e).



simple rigid transformations, can result in significant im-
provement in fingerprint matching performance.

In this work, a landmark-based registration scheme is
employed. Specifically, we use a skeletonized version of a
fingerprint image, known as the thinned image, to extract
ridge curve information (see Fig. 1) that is sampled at
regular intervals in order to derive landmark points.
Estimating the deformation model based on ridge curves
offers several advantages over minutiae point patterns.
First, ridge lines are distributed over the entire fingerprint
image and, thus, a more reliable deformation model can be
obtained. Second, the likelihood of incorrectly associating
two ridge curves is much less than incorrectly associating
two minutiae points due to the richer intrinsic information
available in curves compared to points. Consequently, the
deformation model based on ridge curves yields better
matching performance compared to minutiae points.

When multiple impressions of a finger are available, the
relative distortion between one pair can be significantly
different from another pair (Fig. 4). Furthermore, even in a

single impression, the deformation of the ridges can vary
from region to region. Thus, we address the following two
problems: 1) Obtain a deformation model based on ridge
curve correspondences that can be incorporated in the
matching stage and 2) given multiple deformation models
for a finger (each model corresponds to one impression of the
finger), select the optimal model that has the most consistent
distortion effects as measured from a baseline impression.

Let I0ðx; yÞ and I1ðx; yÞ denote two fingerprint impres-
sions, where ðx; yÞ 2 S for a domain S � R2. Our conven-
tion is to refer to I0 and I1 as the template and query (or
input) images, respectively. A warping of I0 to I1 is defined
as the function F : S ! S such that

F ðI0Þ ¼ I1: ð1Þ

We register the two impressions I0 and I1 by matching
corresponding ridge curves. Thus, in (1), the warping
function, F : S ! S, registers two sets of ridge curves
derived from I0 and I1. Let uk � ukðtÞ ¼ ðuk1ðtÞ; uk2ðtÞÞT
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Fig. 2. An example of minutiae correspondences between two impressions of a finger.

Fig. 3. An example of ridge curve correspondences between two impressions of a finger.



denote a discretized ridge curve in I0 for k ¼ 1; 2; . . . ; n, and

let vk � vkðtÞ ¼ ðvk1ðtÞ; vk2ðtÞÞT , k ¼ 1; 2; . . . ; n, denote the

corresponding discretized ridge curves in I1. Here, t is the

index of discrete points on a single ridge curve and n is the

total number of corresponding curves. The two sets of ridge

curves, one set in I0 and the other in I1, with known

correspondences is denoted by the pair ðU; V Þ where U ¼
ðu1; u2; . . . ; unÞT and V ¼ ðv1; v2; . . . ; vnÞT . We assume that

each correspondence pair is aligned as close as possible

using rigid transformation prior to nonlinear warping. This

can be achieved using the Procrustes analysis ([27], [28])

after pairs of corresponding points are obtained using the

methodology outlined in Section 2.2. For n pairs of ridge

curve correspondences, a warping function, F , that warps U

to V , subject to perfect alignment, is given by the conditions

F ðukÞ ¼ vk ð2Þ

for k ¼ 1; 2; . . . ; n.

2.1 Establishing Ridge Curve Correspondences

Given a pair of gray-scale fingerprint images, I0 and I1, we

obtain their thinned versions, R0 and R1, using the

algorithm described in [29]. A thinned image is a binary

image (see Figs. 1c and 1d) with gray-scale values of 0

(indicating ridges) and 255 (indicating valleys). Each

thinned image can be thought of as a collection of ridge

curves. In order to develop ridge curve correspondences,

we proceed as follows:

1. Minutiae points are extracted from I0 and I1 using the
algorithm described in [29]. Let M0 ¼ ðm0;1;m0;2; . . . ;
m0;K0

ÞandM1 ¼ ðm1;1;m1;2; . . . ;m1;K1
Þdenote the two

minutiae sets of cardinalitiesK0 andK1, respectively.
Here, each minutiae point mi;j is characterized by its
location in the image, the orientation of the associated
ridge, and the gray-scale intensity of pixels in its
vicinity.

2. Minutiae correspondences between M0 and M1 is
obtained using the elastic string matching technique
described in [29]. The output of the matcher is a
similarity score in the range [0, 1000] and a set of
correspondences of the form C ¼ fðm0;aj ;m1;bjÞ :
j ¼ 1; 2; . . . ; Kg, where K � minfK0; K1g, and the ajs
(bjs) are all distinct. Fig. 2 shows an example of the
minutiae point pattern correspondence for two im-
pressions of a finger.

3. Once the correspondence between M0 and M1 is
established, the ridge curves associated with these
minutiae points are extracted from R0 and R1 using
a simple ridge tracing technique. A minutiae point
that is a ridge ending has one ridge curve associated
with it, while a ridge bifurcation has three associated
ridges. In the case of a ridge ending, the ridge curve
correspondence between the two images can be
easily established since each minutiae point has only
one associated ridge curve. However, in the case of a
ridge bifurcation, the problem of establishing ridge
curve correspondences is nontrivial due to the
presence of multiple ridge curves for each minutiae
point; each of the three component ridge curves of
one minutiae point can potentially match with any
component of the other impression.

To resolve this ambiguity, each ridge curve corre-

sponding to the minutiae point in I0 (I1) is represented

as a directional vector rj (sj), j ¼ 1; 2; 3, based on two

points on the ridge curve: the minutiae point and the

dth point (d ¼ 20) on the ridge from the minutiae (see

Fig. 5). We define �j;k (�j;k) to be the angle that rj (sj)

makes with rk (sk), for k 6¼ j. We find the vector rj (sj)

forwhich theanglesf�j;k; k 6¼ jgðf�j;k; k 6¼ jgÞareboth

obtuse. This establishes the first ridge curve corre-

spondence, say, r1 � s1, without loss of generality. We

then compute the cross products cr ¼ r2 � r3 and

cs ¼ s2 � s3. We assign the correspondence r2 � s2

and r3 � s3 if cr and cs are of the same sign and r2 � s3

and r3 � s2, otherwise. Fig. 3 shows an example of

ridge curve correspondence for a pair of impressions

of a finger.
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Fig. 4. Nonlinear deformations (with rotation and translation parameters
removed) associated with two pairings involving the same template:
(a) Template image. (b) and (c) Query images. (d) and (e) Nonlinear
deformation of (a) into (b) and (c), respectively.



2.2 Sampling Ridge Curves

Having determined the corresponding ridge curves, we

next establish a correspondence between points on these

curves by sampling every qth point (q ¼ 20) on each of

the ridge curves. For the correspondence pair ðU; V Þ, we

have uk � ukðtÞ and vk � vkðtÞ for k ¼ 1; 2; . . . ; n. The
sampling of the kth corresponding ridge curves, say at

points t1; t2; . . . ; tgk , yields gk pairings of the form

ðukðtjÞ; vkðtjÞÞ for j ¼ 1; 2; . . . ; gk. Thus, we have a total

of N ¼
Pn

k¼1 gk points in establishing the correspon-

dence. We denote this set of corresponding points by

U ¼ ðu�1; u�2; . . . ; u�NÞ
T and V¼ðv�1; v�2; . . . ; v�NÞ

T . We use TPS

to estimate the nonlinear deformation F based on these
points. TPS represents a natural parametric general-

ization from rigid to mild nonrigid deformations. The

deformation model for TPS is given in terms of the

warping function F ðuÞ, with

F ðuÞ ¼ cþA � uþWTsðuÞ; ð3Þ

where u 2 S, c is a 2� 1 translation vector, A is a 2� 2 affine

matrix, W is a N � 2 coefficient matrix, sðuÞ ¼ ð�ðu	 u�1Þ;
�ðu	 u�2Þ; . . . ; �ðu	 u�NÞÞ

T , where

�ðuÞ ¼ jjujj2logðjjujjÞ; jjujj > 0
0; jjujj ¼ 0:

�
ð4Þ

In (3), there are 6 and 2N parameters corresponding to the
rigid and nonrigid parts of the deformation model,
respectively, resulting in a total of 2N þ 6 parameters to
be estimated. The restrictions

F ðu�j Þ ¼ v�j ; ð5Þ

j ¼ 1; 2; . . . ; N , provide 2N constraints. For the parameters to
be uniquely estimated, we further assume thatW satisfies the
two conditions: 1) 1TNW ¼ 0 and 2) UT

s W ¼ 0, where 1N is the
vector of ones of length N . Thus, the parameters of the TPS
model can be obtained from the matrix equation

H 1N U

1TN 0 0

UT 0 0

2
66664

3
77775

W
cT

AT

2
4

3
5 ¼ V

0
0

2
4

3
5; ð6Þ

where H is the N �N matrix with entries hij ¼ �ðu�i 	 u�j Þ.
The matrix in (6) gives rise to a TPS model that minimizes

the bending energy subject to the perfect alignment con-
straints in (5). A more robust TPS model can be obtained by
relaxing the constraints in (5) and instead determining the
function F which minimizes the expression

XN
j¼1

v�j 	 F ðu�j Þ
� �T

ðv�j 	 F ðu�j ÞÞ þ �JðF Þ; ð7Þ

where

JðF Þ ¼
X2

j¼1

Z
S

@2Fjðx; yÞ
@x2

� �2

þ2
@2Fjðx; yÞ
@x@y

� �2
(

þ @2Fjðx; yÞ
@y2

� �2
)
dx dy

ð8Þ

represents the bending energy associated withF ¼ ðF1; F2ÞT ,

Fj is the jth component of F , and � > 0. The case � ¼ 0 gives

rise to the TPS model described by (6). For general � > 0, the

parameters of the resulting TPS model can be obtained

using (6) with H replaced by H þ �IN , where IN is the

N �N Identity matrix.

3 AVERAGE DEFORMATION MODEL

Suppose we have L impressions of a finger, T1; T2; . . . ; TL.

Each impression, Ti, can be paired with the remaining

impressions, Tj; j 6¼ i, to create L	 1 pairs of the form

ðTi; TjÞ. For the pair ðTi; TjÞ, we obtain a nonlinear

transformation Fij by employing the technique described

in Section 2. Note that Fij transforms every pixel in the

template fingerprint, Ti, to a new location. Thus, we can

compute the average deformation of each pixel u in Ti as

�FFiðuÞ ¼
1

L	 1

X
j6¼i

FijðuÞ: ð9Þ

There will be L average deformation models correspond-

ing to the L impressions of the finger. The average

deformation is the typical deformation that arises when we

compare one fingerprint impression of a finger (the baseline

impression) with other impressions of the same finger. Fig. 6

shows that changing the baseline impression for the finger

will result in a different average deformation model for that

finger (the � values are as discussed in Section 3.1). Fig. 7

shows the average deformation for three different fingers; it

can be clearly seen that the average warping functions are

different for the three fingers, indicating that the fingerprint

deformation is finger-specific.

3.1 The � Index of Deformation

We consider the following two questions in this section:

1. Which of the L average deformation models can be
considered to be the optimal model for this finger?
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Fig. 5. Vector representation of ridge bifurcation used to establish correspondences between component ridge curves.O marks the bifurcation points

in correspondence and X marks the points on the ridges at Euclidean distance d from O.



2. Will the optimal model, when incorporated in the
matching stage, result in improved performance
compared to the suboptimal models?

In order to address these questions, we first define the
pixel-wise covariance matrix associated with the ith average
deformation, �FFi, as follows:

D �FFiðuÞ ¼
1

L	 1

X
j6¼i
ðFijðuÞ 	 �FFiðuÞÞ � ðFijðuÞ 	 �FFiðuÞÞT ; ð10Þ

where Fij is the deformation function that warps Ti to Tj.
The covariance matrix, defined at each pixel u, is a measure
of the variability associated with the estimated deformation

functions. Two choices of pixel-wise measures of variability

are given by 1) the determinant, �ðD �FFiðuÞÞ ¼ jD �FFiðuÞj, and

2) the trace, �ðD �FFiðuÞÞ ¼ trðD �FFiðuÞÞ. Pixels with large (small)

values of � indicate high (low) variability in the deforma-

tions Fij. We propose using the values of � to determine the

optimal model for a given finger. We define the ith index of

deformation, �i, as

�i ¼
1

jSj
XjSj
u¼1

�ðD �FFiðuÞÞ; ð11Þ
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Fig. 6a. The average deformation model (shown as deformations on a reference grid) corresponding to six templates of a finger sorted in increasing
�-values. (a) is chosen to be the optimal template since it has the least �-value. (a) � ¼ 15:54. (b) � ¼ 17:97. (c) � ¼ 48:79.



where �ðDÞ ¼ trðDÞ and jSj is the number of pixels in the

domain S. Subsequently, we choose Ti� as the template with

the smallest variability in deformation if i� ¼ arg mini�i. In

effect, we choose that template Ti that minimizes the

average variation across pixels measured in terms of �i.

Low (high) values of the index of deformation indicate that

the warping functions are similar (dissimilar) to each other.

3.2 Eliminating Erroneous Correspondences

For each baseline fingerprint impression, it is important to
determine the set of minutiae points that are correctly paired
to form a correspondence. The average deformation model is
sensitive to the accuracy of the ridge curve correspondence,

which, in turn, depends on the minutiae correspondence. It is,
therefore, necessary to check the correctness of the minutiae

correspondences prior to obtaining the ridge curve corre-
spondences. Fig. 8a presents an example of two incorrect
minutiae correspondences which result in incorrect ridge

curve correspondences (Fig. 8b). These erroneous correspon-
dences have to be eliminated prior to computing the average

deformation model; failure to exclude such minutiae points
results in a warping model exhibiting spurious distortions.

For the given baseline fingerprint impression, minu-
tiae points that have a correspondence with at least ‘

(‘ ¼ 5) of the remaining L	 1 impressions are extracted.
We denote the set of all such minutiae points by
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Fig. 6b. (continued). (d) � ¼ 83:12. (e) � ¼ 94:34. (f) � ¼ 232:53.



M ¼ fmi; i ¼ 1; 2; . . . ; Kg. Each mi has a corresponding

minutiae point in at least ‘ of the L	 1 impressions. We

denote these pairings by ðmi; p1Þ; ðmi; p2Þ; . . . ; ðmi; p‘iÞ,
where ‘i is the total number of pairings. We next

develop a measure of reliability for minutiae point mi as

follows:

1. Sampled ridge point correspondences are obtained

for each ðmi; pjÞ, j ¼ 1; 2; . . . ; ni, based on which a TPS

deformation model, Fðmi;pjÞ is computed. The average

deformation model for the minutiae point mi is

given by

�FFmi
ðuÞ ¼ 1

‘i

X‘i
j¼1

Fðmi;pjÞðuÞ:

Here, the average deformation model is obtained in

a 10� 10 square region, say Smi
, centered at mi.

2. Let

D �FFmi
ðuÞ ¼ 1

‘i

X‘i
j¼1

ðFðmi;pjÞðuÞ 	 �FFmi
ðuÞÞ

� ðFðmi;pjÞðuÞ 	 �FFmi
ðuÞÞT

ð12Þ
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Fig. 7. The average deformation model (shown as deformations on a reference grid) of three different fingers. (a) � ¼ 46:68. (b) � ¼ 37:59.

(c) � ¼ 85:18.



denote the site-wise variability measure of the defor-
mations Fðmi;pjÞ around �FFmi

. The average variability is
measured by

Rmi
¼ 1

jSmi
j
XjSmi j
u¼1

traceðD �FFmi
ðuÞÞ

with small values of Rmi
indicating better reliability.

Correspondences pertaining to those minutiae
points with Rmi

values lower than the pth percentile
(e.g., p ¼ 60) are used to develop the average
deformation model for the template fingerprint.

For the incorrect minutiae correspondences in Fig. 8, the
value of R for the top minutiae point was 93.2 (the sixtieth
percentile value of R was 55:5 for this template), while the
lower minutiae point occurred in less than five correspond-
ing pairs and was, therefore, eliminated. Fig. 9a shows the
average deformation model that results for this template
when all correspondences are used (i.e., p ¼ 100); Fig. 9b
gives the deformation model for p ¼ 60.

4 EXPERIMENTAL RESULTS

In order to apply the TPS model to reliably estimate
fingerprint deformation, we need to have several impressions
of the same finger. Large number of impressions of a finger are
not available in standard fingerprint databases (e.g., FVC 2002
[30]). Therefore, fingerprint images of 50 fingers (correspond-
ing to five subjects) were acquired using the Identix sensor

(256� 255, 380 dpi) over a period of two weeks in our lab. The
subjects did not deliberately distort their fingerprints while
interacting with the sensor. There were 32 impressions
corresponding to every finger, resulting in a total of 1,600
impressions. One half of the impressions (L ¼ 16 for each
finger, resulting in 800 impressions) were used as templates to
compute the average deformation model for each finger,
while the remaining 800 impressions were used as query
images for testing. For each template image, T , the minutiae
set, MT , and the thinned image, RT , were extracted (Fig. 10).
The average deformation model of T , �FFT , was obtained based
on pairings with the remaining 15 impressions of the same
finger ((7) with � ¼ 0:1). The minutiae set MT was trans-
formed to the deformed set,MDT � �FFT ðMT Þusing �FFT . A total
of 800 sets (50� 16) of deformed minutiae points were thus
obtained. In order to test the matching performance of the
deformed minutiae sets and the utility of the index of
deformation, �, the following two experiments were con-
ducted. In both these experiments, the minutiae matcher
described in [29] was used to generate the matching
(similarity) score.

In the first experiment, the matching performance using
the average deformation model was evaluated. Every
template image, T , was compared with every query image,
Q, and two types of matching scores were generated for
each comparison: the matching score obtained by matching
1) MT with MQ and 2) MDT with MQ. The Receiver
Operating Characteristic (ROC) curve plotting the genuine
accept rate (GAR) against the false accept rate (FAR) at
various matching thresholds is presented in Fig. 11. An
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Fig. 8. (a) Examples of incorrect minutiae correspondences. (b) These result in erroneous ridge curve correspondences.



overall improvement is observed when the average defor-
mation model is used to distort MT prior to matching.

In the second experiment, the advantage of using the
index of deformation is demonstrated. The �-index of
deformation (with �ðDÞ ¼ trðDÞ) of every template image is
used to rank the templates according to their variability in
the distortion. The template images can now be split into
two sets: 1) impressions with the least � values for every
finger (the �-optimal templates) and 2) the remaining
impressions for every finger (the �-suboptimal templates).
We repeated the matching procedure outlined above using
these two template sets. The resulting ROC curve is shown
in Fig. 12. From the figure, it is clear that using �-optimal
templates results in better performance compared to using
�-suboptimal templates. Further, the �-suboptimal tem-
plates still yield better performance compared to the
nondistorted templates, thus demonstrating the importance
of the average deformable model.

The registration between the query and the template
minutiae sets is significantly improved when the average
deformation model based on ridge curves is applied prior
to the rigid transformation. The improved registration
allows our minutiae matcher to specify stricter bounding
boxes when the query and deformed template minutiae
points are compared without compromising the genuine
matching scores. The added advantage of specifying stricter

bounding boxes is that the number of false accepts is highly
reduced resulting in a better ROC curve.

5 SUMMARY AND FUTURE WORK

In this paper, we have developed a deformation model for

estimating the distortion effects in fingerprint impressions

based on ridge curve correspondence. The proposed model

was observed to result in a better performance compared to a

model based on minutiae pattern correspondence. Our

warping model samples the ridge curve and uses thin-plate

splines for estimating the nonlinear deformation. The average

deformation model of a finger is a compact description of the

intraclass variability due to nonlinear distortions. We have

also proposed an index of deformation, �, for selecting the

optimal average deformation model corresponding to a

finger by minimizing distortion variability. It was shown

that the �-optimal deformation models result in superior

matching performance compared to �-suboptimal models.
The subjects did not consciously distort their fingerprints

when interacting with the sensor and, hence, one cannot
predict the nature of the distortions present in the acquired
images before hand. The significance of the proposed
technique is its ability to compare multiple impressions of
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Fig. 9. Effect of eliminating unreliable minutiae correspondences on the average deformation model. (a) Template fingerprint, (b) average

deformation model with p ¼ 100, � ¼ 102:16, and (c) average deformation model with p ¼ 60, � ¼ 67:78.



a finger with a baseline impression, thereby determining
the nonlinear average distortion automatically. However,
the accuracy of the technique is largely defined by the
reliability of minutiae point correspondences generated by
the algorithm. Therefore, excessive deformations may result
in erroneous minutiae (and ridge) correspondences con-
founding the average deformation model. Furthermore, the
proposed model assumes that the elastic nature of the skin
can be approximated using thin-plate splines. It may be
instructive to use alternate models based on the Navier-
Stokes equation in order to describe the deformation [31].

Future work includes developing an incremental ap-
proach to updating the average deformation model, i.e.,
updating the current average deformation model of a finger
by using information presented by newly acquired finger-
print impressions. We have used a simple pixel-wise
averaging measure to compute the average deformation

model in this paper. This measure is sensitive to extreme

deformations born out by outliers; thus, we seek more robust

measures of describing the finger specific average deforma-

tion model. We are also working on developing ridge curve

correspondences between pairs of fingerprint impressions by

viewing the thinned images solely as a set of curves in R2.

ACKNOWLEDGMENTS

A preliminary version of this work appeared in [1].

REFERENCES

[1] A. Ross, S.C. Dass, and A.K. Jain, “Estimating Fingerprint
Deformation,” Proc. Int’l Conf. Biometric Authentication, pp. 249-
255, July 2004.

[2] A.M. Bazen, G.T.B. Verwaaijen, S.H. Gerez, L.P.J. Veelenturf, and
B.J. van der Zwaag, “A Correlation-Based Fingerprint Verification
System,” Proc. ProRISC2000 Workshop Circuits, Systems, and Signal
Processing, Nov. 2000.

ROSS ET AL.: FINGERPRINT WARPING USING RIDGE CURVE CORRESPONDENCES 29

Fig. 10. Improved alignment of template and query images using ridge

curve correspondences (right panel). The alignment using minutiae

correspondences is shown in the left panel. Both sets of alignment use

the TPS warping model.

Fig. 11. Improvement in matching performance when ridge curve
correspondences is used to develop the average deformation model.

Fig. 12. Matching performance when the � index of deformation is used
to select optimal templates. Both optimal and suboptimal templates
using ridge curve correspondences result in superior matching
performance compared to minutiae correspondences.



[3] D. Roberge, C. Soutar, and B. Vijaya Kumar, “High-Speed
Fingerprint Verification Using an Optical Correlator,” Proc. SPIE,
vol. 3386, pp. 123-133, 1998.
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