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We describe the marked point process models developed for fingerprint minutiae and the

details of the Bayesian methodology for inference on the model parameters using a Reversible

Jump MCMC method.

4. Spatial Point Processes with Dependent Marks for Fingerprint Minutiae. Let

xn ≡ { xi, i = 1, 2, · · · , n } denote the collection of n minutiae locations, and for each x ∈ xn,

the minutiae orientation wx denotes the corresponding mark, which takes values in (0, π]. The

distribution of minutiae in a fingerprint image is best described in terms of a hierarchical model

involving all random entities. Let P(λ, h) be a marked Poisson process with λ and h, respectively,

denoting the intensity measure and joint density function of marks. The hierarchical model for

(xn,wxn
) is given by

(θ,mθ) ≡ Φ ∼ P(λ1, h1), (1)

(x(k),w
(k)

x(k)) |Φ
ind
∼ P(λ2k, gk), for k = 1, 2, · · · ,K, and (2)

(xn,wxn
) =

K
⋃

k=1

(x(k),w
(k)

x(k)), (3)

where K is the number of elements in θ; in the above formulation, the intensity measure for θ is

the constant function

λ1(s) =

{

K0/area(S), if s ∈ S,

0, otherwise,

with S0 and K0, respectively, denoting a bounded rectangular region of R2 and a fixed (and

known) positive real number. The mark corresponding to θ is mθ ≡ (γ, σ2
1 , σ

2
2 , η, ρ, δ

2) with

density h1 in (2) defined by its component densities

γ ∼ G(αγ , βγ), σ2
1 ∼ IG(α1, β1), σ2

2 ∼ IG(α2, β2), (4)

η ∼ U(0, π), ρ ∼ U(ρmin, ρmax) and δ2 ∼ IG(αδ, βδ), (5)

independently of each other; in (4) and (5), G(α, β) and IG(α, β) are, respectively, the Gamma

and inverse Gamma distributions with shape and scale parameters given by α and β, and U(a, b)

is the uniform distribution from a to b. It is clear from the above specification that the γ and
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σ2
j , j = 1, 2, components of mθ should be positive: γ > 0, σ2

j > 0 for j = 1, 2. The rest of the

components are required to satisfy η ∈ (0, π], ρ ∈ (ρmin, ρmax), and δ2 > 0. The intensity measure

λ2k for x(k) in (2) is

λ2k(s) =

{

γkφ2( s | θk, σ
2
1k, σ

2
2k) if s ∈ S,

0, otherwise,

where φ2( s | θ, σ
2
1 , σ

2
2) is the bivariate normal density function with mean θ and diagonal covari-

ance matrix diag(σ2
1 , σ

2
2). The joint density function of marks, gk (conditional on x(k)) is given

by

gk(w | ηk, ρk, δ
2
k) = Vnk

(

w | ηk,
∑

k
(ρk, δ

2
k)
)

, (6)

where nk is the number of elements in x(k), Vnk
is the nk-variate wrapped normal distribution

on (0, π] with mean ηk = (η, η, · · · , η)
′

∈ Rnk and covariance matrix
∑

k(ρk, δ
2
k) = (σ∗

rs), r, s =

1, 2, · · · , nk with entries given by

σ∗

rs = δ2 exp(−ρ||xr − xs||),

where xr and xs are a pair of points from x(k) and || · || is the R2-Euclidean norm.

An alternative but equivalent formulation of the hierarchical model (1)-(3) can be described

with some additional notation. Denote the class label set cn ≡ { ci, i = 1, 2, · · · , n } with ci,

corresponding to xi ∈ xn, taking values in the set {1, 2, · · · ,K}. Also, let Bk ≡ { xi : ci = k },

for k = 1, 2, · · · ,K denote a partition of xn which induces a partition of (xn,wxn
) into K sets,

given by (xBk
,wBk

) for k = 1, 2, · · · ,K. The equivalent formulation of (1)-(3) is

(θ,mθ) ≡ Φ ∼ P(λ1, h1),

n |Φ ∼ pn = exp(−T )
T n

n!
, (7)

cn |n, Φ ∼

n
∏

i=1

[

γci D(θci , σ
2
1ci , σ

2
2ci)

T

]

, (8)

xn | cn, n, Φ ∼

n
∏

i=1

[

φ2(xi | θci , σ
2
1ci , σ

2
2ci)

D(θci , σ
2
1ci

, σ2
2ci

)

]

, and (9)

(wxn
|xn, cn, n, Φ ) ∼

K
∏

k=1

gk(wBk
| ηk, ρk, δ

2
k),

where T is defined as

T ≡

K
∑

k=1

γkD(θk, σ
2
1k, σ

2
2k),

with

D(θk, σ
2
1k, σ

2
2k) ≡

∫

S0

φ2( s |θk, σ
2
1k, σ

2
2k) ds, (10)
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and the density gk is as given in (6). The data augmentation technique for wrapped normal

distributions gives rise to the augmented density

(wxn
, txn

|xn, cn, n, Φ ) ∼

K
∏

k=1

φnk

(

wBk
+ πtBk

∣

∣

∣

∣

ηk,
∑

k
(ρk, δ

2
k)

)

(11)

where φd (x |µ,
∑

) is the d-variate normal density function with mean µ and covariance matrix
∑

and tBk
= { tx : x ∈ Bk }.

The hierarchical model specification of (7)-(9) and (11) yields the complete (or, augmented)

likelihood

ℓ(n, cn, xn, wxn
, txn

|Φ ) = pn × ℓ0(cn |n, Φ) × ℓ0(xn | cn, n, Φ)

× ℓ0(wxn
, txn

|xn, cn, n, Φ) (12)

where ℓ0(A,B, · · · |C,D, · · · ) denotes the density of random variables A,B, · · · conditional on

C,D, · · · given in (7)-(9) and (11). In (12), Φ = { (θk, γk, σ1k, σ2k, ηk, ρk, δk), k = 1, 2, · · · ,K }

denotes the collection of all unknown parameters: K denotes the number of clusters with cluster

k having (i) spatial mean θk, (ii) spatial variances σ2
jk for j = 1, 2, (iii) mean of marks ηk,

(iv) covariances between marks governed by the correlation and variance parameters ρk and δ2k,

respectively, and (v) γk denoting the intensity of the k-th cluster which determine the expected

total number of points in cluster k. For implementing a Bayesian framework of inference, the

prior we adopt on Φ is P as given in (1). The hyper-parameters in (4) and (5) will be assumed

to be fixed and known.

4.1. Posterior Inference. Posterior inference for the likelihood of the hierarchical model in

(12) is carried out based on a Markov Chain Monte Carlo (MCMC) algorithm. The MCMC

updating steps are (1) update K, and for fixed K,

(2) update (θk, σ
2
1k, σ

2
2k, ηk, ρk, δk), k = 1, 2, · · · ,K,

(3) update cn, and

(4) update txn
.

Out of the four updating steps above, only the update of (1) involves parameter spaces of varying

dimensions (the remaining updating steps (2)-(4) are regular Metropolis-Hastings (MH) steps).

To obtain posterior inference for such spaces of models, Green (1995) and Green and Richardson

(1997) developed the Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach for the

Bayesian inferential framework. Since their introduction, RJMCMC has been successfully used

to obtain posterior inference in many situations. We develop a Reversible Jump Markov Chain

Monte Carlo approach to explore the posterior distribution in updating step (1). The updating

steps are explained in detail in the Appendix.



4 LIM & DASS

0 1000 2000 3000 4000 5000 6000 7000
4

6

8

10

12

14

16

18

20

22

Iterations

V
ar

ia
nc

e 
T

er
m

s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

Iterations

V
ar

ia
nc

e 
T

er
m

s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35

40

45

Iterations

V
ar

ia
nc

e 
T

er
m

s

(a) (b) (c)

Fig 1. Convergence diagnostics. Panels (a), (b) and (c) show the plots of (V̂ ,Wc), (Wc,WmWc) and
(Bm, BmWc), respectively. A solid line represents the first entry and a dotted line represents the second en-
try. The x-axis in Panel (a) is taken from 0 to 7, 500 to show the initial over-dispersion of the chains. The two
lines in Panel (a) coincide all the way up to 50, 000 iterations.

The assessment of convergence of the RJMCMC is carried out based on the methodology of

Brooks and Guidici (1999, 2000). The diagnostics for assessing convergence utilize the following

six quantities: the overall variance, V̂ , the within chain variance, Wc, within model variance Wm,

within model within chain variance WmWc, the between model variance, Bm and the between

model within chain variance, BmWc. For each monitoring parameter, three figures are obtained:

(i) V̂ and Wc, (ii) Wm and WmWc, and (iii) Bm and BmWc versus the number of iterations.

The two plotted lines in each figure should be close to each other to indicate sufficient mixing.

Our choice of the monitoring parameter is the logarithm of the complete likelihood (12), namely,

log ℓ(n, cn, xn,wxn
, txn

|Φ ), based on the hierarchical model specified by (7)-(9) and (11).

5. Simulation: Convergence plots and tables. Simulation experiments with the spatial

domain S0 = [0, 100] × [0, 100] and the mark space of (0, π] is considered. The results of a

simulation experiment with the mark space of (0, 2π] is given in the main manuscript. Hyper-

parameters in (4) and (5) are set as follows: αγ and βγ are derived from E(γ) = 15 and V ar(γ) =

100. Similarly we set αj and βj so that E(σ2
j ) = 75 and V ar(σ2

j ) = 10, 000 for j = 1, 2. We set

αδ and βδ so that E(δ2) = 0.1 and V ar(δ2) = 1. Also, we set K0 = 3, (ρmin, ρmax) = (0.01, 5),

Kmin = 2 and Kmax = 5. We took the probabilities of selecting move types to be rm = rm′ = 0.5

corresponding to the moves (m,m′) = (K−split,K−merge) for K = Kmin + 1, · · · ,Kmax − 1.

Also, when K = Kmin, rm = 1 = 1 − rm′ and rm = 0 = 1 − rm′ for K = Kmax. We monitor

convergence of I = 5 chains with starting values that represent over-dispersion in the chains. The

RJMCMC converged after 40, 000 iterations (see Figure 1). Table 1 gives the associated statistical

inference for the unknown parameters; the true values are compared with the posterior means

as well as the 99% credible intervals based on the last 1, 000 values from each of the five chains.

Figure 2 shows the trace plots of V̂ versus Wc for the predictive distribution based on the five

chains. It is clear that convergence takes place more rapidly, i.e. by 7, 500 iterations.
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Parameter True Mean Sd CI Parameter True Mean Sd CI
θ11 30 33.29 1.82 [28.52, 38.27] θ21 40 40.99 8.64 [34.59, 82.01]
θ12 40 40.78 2.45 [31.19, 46.05] θ22 80 78.10 8.64 [37.07, 83.75]
θ13 70 71.16 1.84 [66.07, 76.52] θ23 50 51.15 1.41 [47.37, 55.23]
σ2

11
70 72.34 33.49 [34.38, 246.21] σ2

21
70 61.36 17.64 [31.03, 129.04]

σ2

12
70 98.68 29.09 [46.39, 200.46] σ2

22
70 56.97 19.30 [28.23, 141.19]

σ2

13
70 80.19 23.63 [46.71, 172.01] σ2

23
70 46.27 13.69 [21.77, 95.47]

η1 0.5 0.69 0.20 [0.40, 1.72] δ1 0.16 0.08 0.05 [0.04, 0.32]
η2 1.5 1.43 0.27 [0.54, 2.10] δ2 0.16 0.20 0.08 [0.05, 0.57]
η3 2.5 2.24 0.11 [1.83, 2.56] δ3 0.17 0.11 0.05 [0.05, 0.32]
ρ1 0.15 0.72 0.86 [0.05, 4.74] γ1 21 22.23 4.48 [12.32, 35.89]
ρ2 0.15 0.19 0.30 [0.03, 2.55] γ2 21 26.71 4.91 [15.37, 40.69]
ρ3 0.15 0.93 1.04 [0.07, 4.75] γ3 28 24.13 4.61 [13.56, 37.44]

Table 1

The results of posterior inference based on simulated data for the mark space, (0, π].
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Fig 2. Convergence diagnostics based on predictive characteristics. Panels (a), (b) and (c) show the plot of

(V̂ ,Wc), for the proportion of points in region 1, 3 and average marks for region 2, respectively. A solid line

represents V̂ and a dotted line represents Wc. The x-axis is taken from 0 to 7, 500 to show the initial over-
dispersed state. The two lines in each figure coincide all the way up to 50, 000 iterations.

APPENDIX A: THE RJMCMC ALGORITHM

We refer the reader to Green (1995) and Green and Richardson (1997) for an introduction

to the general RJMCMC approach. Based on the likelihood and the prior on Φ, the posterior

distribution for (Φ, cn, txn
) is given by (up to a proportionality constant)

π0(Φ, cn, txn
|xn,wxn

) ∝ ℓ(n, cn, xn, wxn
, txn

|Φ )× π0(Φ |Φ0)

where Φ0 is the collection of hyper-parameters. The collection of all possible values for (Φ, cn, txn
)

constitutes a model space, M say, with varying dimensionality. The posterior distribution is a

probability distribution on M given the observed data and can be inferred using RJMCMC.

While the RJMCMC methodology presented here is similar in principle to Richardson and Green

(1997), there are some new techniques that we utilize for the associated Bayesian computations.

First, candidates for the K-split move are chosen according to the outcome of a hierarchical
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clustering algorithm. This approach selects proposals that are highly favored by the observed

data, thus increasing the probability of acceptance of such proposals and allowing the chain to

mix faster. Second, the split in the angular space cannot be carried out using the linear equations

given in Richardson and Green (1997), which are suitable only for variables taking values on the

real (or subset of the real) line. A transformation τ of (0, π] which ensures that τ(0) = τ(π) is

proposed for the splitting of angular variables.

We impose an identifiability condition to associate a mixture component with its parameters.

We associate component 1 of the mixture with the smallest θ1k value, component 2 with the

second smallest value, and so on, where θk = (θ1k, θ2k), for k = 1, 2, · · · ,K. A re-labelling of the

θk’s gives

θ11 < θ12 < · · · < θ1K . (13)

A.1. Update K. The reversible pair of moves for updating K are K-split and K-merge.

Let x,y ∈ M with x = (Φ, cn, txn
) and y = (Φ∗, c∗n, t

∗

xn
), where the ∗s denote a possibly

different setting of the parameters. When the current state has k components, denote bk and

dk to be the probabilities of split and merge, respectively, (thus, bk = 1 − dk with dKmin = 0,

bKmin = 1, dKmax = 1 and bKmax = 0).

The K-merge move: The K-merge move changes the currentK toK−1 (that is,K∗ = K−1).

Two adjacent components, say k1 and k2 with k1 < k2 are randomly selected for merging into a

new component k∗. We merge (θk1 , γk1 , σ
2
1k1

, σ2
2k1

, ηk1 , ρk1 , δ
2
k1
) and (θk2 , γk2 , σ

2
1k2

, σ2
2k2

, ηk2 , ρk2 , δ
2
k2
)

into (θk∗ , γk∗ , σ2
1k∗ , σ2

2k∗ , ηk∗ , ρk∗ , δ2k∗) based on the following steps:

• Merge γk1 and γk2 into γk∗ by setting γk∗ = γk1 + γk2 .

• Set u1 = γk1/(γk1 + γk2). For the remaining parameters, a generic merging procedure is de-

scribed. Let ξk1 and ξk2 be merged to obtain ξk∗ in the following way:

τ(ξk∗) = u1τ(ξk1 ) + (1− u1)τ(ξk2 )

for some function τ . In the case of variables taking values on the real line, Richardson and Green

(1997) take τ to be the identity function. Thus, the merging of θjk1 and θjk2 to θjk∗ for j = 1, 2,

σ2
jk1

and σ2
jk2

to σ2
jk∗ for j = 1, 2, δ2k1

and δ2k2
to δ2k∗ , and ρk1 and ρk2 to ρk∗ can be carried out

with this choice of τ . However, since η is an angular variable, we choose τ(x) = min{ x, π − x }

so that τ(0) = τ(π). The non-monotonicity of τ in this case gives rise to two solutions for ηk∗ in

(??), say η
(1)
k∗ and η

(2)
k∗ , where without loss of generality, η

(1)
k∗ (respectively, η

(2)
k∗ ) is assumed to lie

inside (outside of) the line segment joining ηk1 and ηk2 . The angular distance between ηk1 and

ηk2 is defined as

d(ηk1 , ηk2) = min{|ηk1 − ηk2 |, π − |ηk1 − ηk2 |}.

We set

ηk∗ =

{

η
(1)
k∗ if d(ηk1 , ηk2) = |ηk1 − ηk2 |, and

η
(2)
k∗ otherwise.

(14)
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To obtain c∗n and t∗xn
, (xi, wxi

) for i = 1, · · · , n are relabeled so that Bk∗ = Bk1 ∪ Bk2 and

tBk∗
= tBk1

∪ tBk2
. For the K-merge move, the proposal density is given by

qm′(x,y) = (K − 1)−1

since K − 1 is the total number of adjacent pairs that can be merged together.

The K-split move: The K-split move changes the current K to K+1 (thus, K∗ = K+1). A

candidate component is chosen for splitting, say k, with probability 1/K. Next, (θk, γk, σ
2
1k, σ

2
2k, ηk, ρk, δ

2
k)

is split into two components, namely,

(θk1 , γk1 , σ
2
1k1

, σ2
2k1

, ηk1 , ρk1 , δ
2
k1
) and (θk2 , γk2 , σ

2
1k2

, σ2
2k2

, ηk2 , ρk2 , δ
2
k2
),

where k1 and k2 denote the two split components derived from k. First, γk is split into two parts

by generating a random variable u1 from F1 in (0, 1) and setting

γk1 = u1γk, and γk2 = (1 − u1)γk.

We postpone the discussion of the choice of F1 (as well as the proposal distributions Fj for

the random variable uj for j = 2, 3, · · · , 8 subsequently) until later. The choices are made so that

good candidates are generated and the RJMCMC mixes relatively quickly.

A generic split procedure: For splitting the remaining parameters, a split procedure for

the generic parameter ξk is described. We require to split ξk into two components ξk1 and ξk2

with the split components satisfying

ξL ≤ τ(ξk1 ), τ(ξk2 ) ≤ ξU , and τ(ξk) = u1τ(ξk1 ) + (1− u1)τ(ξk2 ) (15)

where ξL and ξU , respectively, are the lower and upper bounds of τ(ξk1 ) and τ(ξk2 ). The function

τ is taken as in the K-merge move.

The split can be carried out by generating a random variable u∗ ∼ F ∗(a∗, b∗) where F ∗ is a

density constrained on (a∗, b∗), and setting

ξk1 = u∗ and ξk2 = τ−1

(

τ(ξk)− u1 τ(u∗)

1− u1

)

(16)

from the second equality in (15). Note that the first requirement in (15) imposes a lower as well as

an upper bound for u∗ which we denote by a∗ and b∗, respectively. We consider first the splitting

of parameters where τ is the identity function.

• Split θ1k : Since θ1k, k = 1, 2, · · · ,K satisfy the identifiability constraint (13), we update θ1k

sequentially from k = 1, 2, · · · ,K. At the k-th step, the split components are given by θ1k1 and

θ1k2 satisfying the lower and upper bounds

θ1kL
≤ θ1k1 , θ1k2 ≤ θ1kR
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where

kL ≡ k − 1 and kR ≡ k + 1, and j1L ≡ Lj , and j1R ≡ Uj for j = 1, 2,

with (L1, L2) and (U1, U2), respectively, denoting the lower left-and upper right-hand corners of

the bounded rectangular region S0. For splitting, generate u2 ∼ F2(a2, b2) with a2 = max{θ1kL
, (θ1k−

(1− u1)θ1kR
)/u1} and b2 = θ1kR

.

• Split θ2k: θ2k is split by generating a random variable u3 from F3(a3, b3), where a3 =

max{L2, (θ2k − (1− u1)u2)/u1} and b3 = min{u2, (θ2k − (1− u1)L2)/u1}.

• Split σ2
jk for j = 1, 2: For splitting σ2

1k, we require u4 ∼ F4(a4, b4), where a4 = 0 and

b4 = σ2
1k/u1. σ

2
2k is split similarly via u5 ∼ F5(a5, b5) where a5 = 0 and b5 = σ2

2k/u1.

• Split δ2k: The parameter δ2k is split similarly as σ2
1k via u6 ∼ F6(a6, b6) with a6 = 0 and

b6 = δ2k/u1.

• Split ρk: ρk is split into two parts via u7 ∼ F7(a7, b7), where a7 = max{ρmin, (ρk − (1 −

u1)ρmax)/u1} and b7 = min{ρmax, (ρk − (1− u1)ρmin)/u1}.

• Split ηk: To split ηk, we consider τ(x) = min{x, π − x}. This split is carried out via u8 ∼

F8(a8, b8), where a8 = max{0, (τ(ηk) − (π/2)(1 − u1))/u1} and b8 = min{π/2, τ(ηk)/u1}. Two

solutions are obtained from (16), and the solution pair (u8, η
(1)
k ) and (u8, η

(2)
k ) that satisfies the

distance condition in (14) is selected. If both solution pairs are feasible, then one of them is

selected with probability 0.5 each. Let u9 be the random variable denoting whether η
(1)
k or η

(2)
k

is selected.

To complete the K-split proposal, we require to obtain the new labels c∗n and t∗xn
. Recall that

Bk = {xi : ci = k for i = 1, · · · , n} (17)

is the collection of all points with label k. The new labels for these points are obtained by randomly

assigning each xi ∈ Bk to either Bk1 or Bk2 according to the Bayes allocation probabilities

Qi(kj) =
γkj

φ2(xi | θkj
, σ2

1kj
, σ2

2kj
)

γk1φ2(xi | θk1 , σ
2
1k1

, σ2
2k1

) + γk2φ2(xi | θk2 , σ
2
1k2

, σ2
2k2

)

for j = 1, 2. It follows that the allocation probability for the K -split move is

PsplitAlloc =
∏

xi∈Bk

Qi(kij),

where kij are the realized values of kj for xi, that is, c
∗

i = kij . Once c∗n is obtained, t∗
xn

is obtained

by reallocating ti ∈ tBk
for i = 1, · · · , nk into either tBk1

or tBk2
based on the new labels c∗n.

The proposal density for the K -split move is given by

qm′(x,y) = (1/K)×

(

q0(x,u)

/

det

[

∂y

∂(x,u)

])

× PsplitAlloc,

where q0(x,u) is the density of u = (u1, u2, · · · , u8, u9) given x, and

det

[

∂y

∂(x,u)

]

=
γk

(1 − u1)7
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is the absolute value of the Jacobian of the transformation from (x,u) → y.

Choice of the densities Fj , j = 1, 2, · · · , 8: In order to propose good candidates for the K-

split move, we perform hierarchical clustering based on the location and orientation information.

The analysis yields two subgroups with labels 1 and 2, say. For the first cluster, we compute the

proportion of observations falling in this group, say p̂, location and orientation means, (µ̂x, µ̂y) and

µ̂m, and the corresponding variances, (σ̂2
x, σ̂

2
y) and σ̂2

m. The density F1 is taken to be beta(α1, β1)

where α1 and β1 are chosen so that the mean of F1 is p̂ and the variance is a small pre-specified

value that gives high concentration around p̂. For F2, we select the normal density with mean µ̂x

and a pre-specified standard deviation and restricted inside the interval (a2, b2). A similar choice

is made for F3 and F8. For the variance parameter σ2
1k, F4 is selected as the normal density with

mean σ̂2
x and a pre-specified standard deviation restricted inside the interval (a4, b4); F5 and F6

is chosen similarly. For F7, the uniform density on (a7, b7) is chosen.

To demonstrate the reversibility of the chain, assume without loss of generality that the move

from x to y is a move to a higher dimensional space, therefore, representing a K-split move. The

reverse move from y → x represents a K-merge move to a lower dimensional space. Assume that

the value of K corresponding to state x is k (then, it follows that the value of K for state y is

k+1). Reversibility implies and is implied by the fact that the ratio of the transition probabilities

qKsplit(x,y)

qKmerge(y,x)

is a well-defined number in (0,∞). Thus, for reversibility, the ratio cannot be 0, or ∞ or 0/0 form.

In other words, if there is a positive transition probability to move from state x to y, then there

should be also a positive probability to move from state y to x, and vice versa. The K-split move

explicitly describes how to move from a particular state x to y with corresponding transition

probability

qKsplit(x,y) = (1/k)×

(

q0(x,u)

/

det

[

∂y

∂(x,u)

])

× PsplitAlloc,

where q0(x,u) is the product density of the independent random variables uj ∼ Fj(aj , bj) for

j = 1, 2, · · · , 8, and

det

[

∂y

∂(x,u)

]

=
γk

(1 − u1)7

is the absolute value of the Jacobian of the transformation from (x,u) → y. The K-merge move

is now required to move from y to x with positive probability. This is indeed possible if the two

components chosen to merge are the very ones that were split in the first place. Executing the

steps in the K-merge move outlined above for y guarantees that we get back x. Since the value

of K = (k + 1) for y, the transition probability is

qKmerge(y,x) = 1/k.
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Thus, the ratio of qKsplit to qKmerge is a positive number.

A similar argument holds true for the K-merge move x → y. In this case, the evaluation of

qKsplit(y,x) which contains expressions of the densities Fj , j = 1, 2, · · · , 8 obtained by performing

a hierarchical clustering on y. Reversibility implies that qKsplit(y,x) is positive, which is true

since the support of Fj is on the entire interval (aj , bj) for j = 1, 2, · · · , 8.

A.2. Non-dimension changing moves. Update θk: For fixed K, the parameter θk ≡

(θ1k, θ2k), for k = 1, 2, · · · ,K will be updated via a MH algorithm subject to the restriction that

L1 < θ11 < · · · < θ1K < U1, and L2 < θ2k < U2. We update θk in the order determined by the

increasing order of variance parameters σ2
1k, k = 1, 2, · · · ,K. Let m1,m2, · · · ,mK be a permu-

tation of indices 1, 2, · · · ,K such that σ2
1m1

< σ2
1m2

< · · · < σ2
1mK

. At the k-th step, we update

(θ1mk
, θ2mk

) given the remaining parameters; at this point, (θ1ml
, θ2ml

) for l = 1, 2, · · · , (k − 1)

have been updated while (θ1ml
, θ2ml

) for l = (k + 1), (k + 2), · · · ,K have not. The following

proposal density is used for obtaining a candidate pair, (θ∗1mk
, θ∗2mk

):

q(θ∗1mk
, θ∗2mk

| · · · ) ∝ exp

(

− 1
2

∑2
j=1 nmk

(θ∗

jmk
−x̄jmk)

2

σ2
jmk

)

×

I(θ1mkL
≤ θ∗1mk

≤ θ1mkR
)× I(L2 ≤ θ∗2mk

≤ U2),
(18)

where x̄jmk
= 1

nmk

∑

xi∈Bmk

xji with xi ≡ (x1i, x2i), and nmk
is the number of elements in Bmk

;

in (18), mkL and mkR are the indices from {m1, · · · ,mk−1} such that θ1mkL
is the largest value

less than θ1mk
and θ1mkR

is the smallest value greater than θ1mk
. If there is no such index, replace

the lower and upper bounds by L1 or U1, accordingly. For the proposal density given by (18),

the acceptance probability is

α(θmk
, θ∗mk

) = min
{

1, exp
(

γmk
(D(θmk

, σ2
1mk

, σ2
2mk

)−D(θ∗mk
, σ2

1mk
, σ2

2mk
))
)}

,

where D is as defined in (10).

Update σ2
jk for j = 1, 2: For each k = 1, 2, · · · ,K, we consider the following proposal density

for a new σ2∗
jk for j = 1, 2 in a MH algorithm. The proposal density considered is

q(σ2∗
jk | · · · ) ∼ IG



αj + nk/2,

[

1/βj +
1

2

∑

xi∈Bk

(xji − θjk)
2

]−1


 ,

where xi = (x1i, x2i) and θk = (θ1k, θ2k). The acceptance probability is given by

α(σ2
jk , σ

2∗
jk ) = min

{

1, exp
(

γk(D(θk, σ
2
1k, σ

2
2k)−D(θk, σ

2∗
1k, σ

2∗
2k))

)}

,

where σ2∗
j+1k = σ2

j+1k for j + 1 mod 2.

Update ρk: The conditional posterior distribution of ρk given the remaining parameters is

given by

π(ρk | · · · ) ∝ det(Σk0)
−1/2 exp

(

−
1

2
(µk

′Σ−1
k µk)

)

, (19)
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where µk = wBk
+ π tBk

− ηk1nk
, Σk =

∑

Bk
(ρk, δk), Σk0 =

∑

Bk
(ρk, 1), and 1nk

is the nk × 1

vector with unit entries. To avoid computing the normalizing constant, we discretize a range of ρk,

(ρmin, ρmax), into subintervals, choose a subinterval with probabilities obtained from evaluating

(19) on each subinterval ρk, and generate ρk by considering a uniform distribution on the chosen

subinterval.

Updating γk, ηk and δ2k: These updates can be carried out via regular Gibbs sampler (with

acceptance probability 1). The conditional posterior distributions of each of the parameters given

the remaining parameters are given by:

• π(γk | · · · ) ∼ G(αγ + nk, 1/(β
−1
γ +D(θk, σ

2
1k, σ

2
2k))),

• π(ηk | · · · ) ∼ φ1

(

· |1′

nk
Σ−1

k (wxBk
+ π txBk

)/(1′

nk
Σ−1

k 1nk
) , (1′

nk
Σ−1

k 1nk
)−1

)

,

• π(δ2k | · · · ) ∼ IG(αδ + nk/2,
[

1/βδ + (1/2)(µk
′Σ−1

k0 µk)
]−1

),

where Σk, Σk0 and µk are as defined for updating ρk.

Update cn: The update of ci given c−i ≡ (c1, · · · , ci−1, ci+1, · · · , cn) and other parameters

can be carried out via a MH algorithm. The following density is used for proposing a new value

of c∗i :

P (c∗i = k | c−i, · · · ) ∝ γkφ2(xi | θk, σ
2
1k, σ

2
2k ).

The acceptance probability from using the above proposal density can be obtained as

α(ci, c
∗

i ) = min

{

1 ,

∏K
k=1 gB∗

k
(wB∗

k
| ηk, ρk, δk)

∏K
k=1 gBk

(wBk
| ηk, ρk, δk)

}

,

where B∗

k and Bk are as in (17) using c∗n ≡ (c1, · · · , ci−1, c
∗

i , ci+1, · · · , cn) and cn, respectively.

Update txn
: We sequentially update the collection of marks tBk

from k = 1, 2, · · · ,K. For

fixed k, the conditional posterior distribution of each ti ∈ Bk given the rest (namely, t−i ≡

(t1, · · · , ti−1, ti+1, · · · , tnk
)) is given by

π(ti | t−i, · · · ) ∝ φnk

(

xBk

∣

∣

∣ ηk,
∑

Bk

(ρk, δk)
)

,

where xBk
= wBk

+ π tBk
.

A.3. Updating Empty Components. The RJMCMC algorithm also incorporates the

updating of empty components into the chain, which is done with some modification to the earlier

updating K move types. Empty components can arise naturally when allocating the observations

into k1 and k2 components in the K−split move type. Instead of rejecting this proposal, we

incorporate it into the RJMCMC algorithm by introducing Empty-Add and Empty-Remove move

types which are reversible to each other. In the Empty-Add move, an empty k∗ component is

added with (θk∗ , γk∗ , σ1k∗ , σ2k∗ , ηk∗ , ρk∗ , δk∗) generated from the prior distribution. The proposal
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density corresponding to the Empty-Add move is

qm′(x,y) = π(θk∗)π(γk∗ |αγ , βγ)π(σ
2
1k∗ |α1, β1)π(σ

2
2k∗ |α2, β2)

×π(ηk∗)π(ρk∗)π(δ2k∗ |αδ, βδ),

where πs are prior densities for the corresponding parameters. In the Empty-Remove move, an

empty k∗ component is selected for removal and the corresponding proposal density is qm′(x,y) =

1/KE, where KE is the number of empty K-components prior to removal.
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