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Abstract

Biometric recognition, or biometrics, refers to the authentication of an individual based on

her/his biometric traits. Among the various biometric traits (e.g., face, iris, fingerprint, voice),

fingerprint-based authentication has the longest history, and has been successfully adopted in

both forensic and civilian applications. Advances in fingerprint capture technology have re-

sulted in new large scale civilian applications (e.g., US-VISIT program). However, these sys-

tems still encounter difficulties due to various noise factors present in operating environments.

The purpose of this article is to give an overview of fingerprint-based recognition and discuss

research opportunities for making these systems perform more effectively.

Keywords: Fingerprint feature extraction, fingerprint individuality, fusion, classification

and indexing.

1 Introduction

Biometric recognition, or biometrics, refers to the automatic authentication of a person based on

his/her physiological or behavioral characteristics (Jain et al. 1999, Maltoni et al. 2003). Biomet-

ric recognition offers many advantages over traditional PIN number or password and token-based

(e.g., ID cards) approaches; for example, a biometric trait cannot be easily transferred, forgotten

or lost, the rightful owner of the biometric template can be easily identified, and it is difficult to

duplicate a biometric trait. Some well-known examples of traits used in biometric recognition are
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Figure 1: Some examples of biometric traits: (a) fingerprint, (b) iris scan, (c) face scan, (d) signature,

(e) voice, (f) hand geometry, (g) retina, and (h) ear.

fingerprint, iris, face, signature, voice, hand geometry, retina, and ear (see Figure 1). A number

of commercial recognition systems based on these traits have been deployed and are currently in

use. Biometric technology has now become a viable and more reliable alternative to traditional au-

thentication systems in many government applications (e.g., US-VISIT program and the proposed

e-biometric passport which is capable of storing biometric information of the owner in a chip in-

side the passport). With increasing applications involving human-computer interactions, there is a

growing need for fast authentication techniques that are reliable and secure. Biometric recognition

is well positioned to meet the increasing demand for secure and robust systems.

There are several requirements that need to be met by a particular biometric trait when being

considered for use in an authentication system. These requirements are: (i) universality, which

means that each individual should possess the trait, (ii) distinctiveness, which means that the trait

for two different persons should be sufficiently different to distinguish between them, (iii) perma-

nence, which means that the trait characteristics should not change, or change minimally, over time,

and (iv) collectability, which means that the trait can be measured quantitatively. However, for prac-

tical biometric systems, there are other considerations that are important, namely, (i) whether the

performance and authentication rates of the system are at acceptable levels, measured in terms of

speed, recognition accuracy and robustness, in different operational environments, (ii) whether the

biometric trait will be widely accepted by the public for use in their daily lives, and (iii) whether

the system based on the trait can be easily attacked or spoofed. The main requirements of a practi-

cal biometric system are that it should have acceptable recognition performance rates, recognition

speed and cost. In addition, it should protect the user from privacy intrusions and be robust with
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Figure 2: Fingerprint, voice and face biometric based recognition in high-end mobile phones.

respect to various spoofing attacks.

Among all the biometric traits used for authentication, fingerprint-based recognition has the

longest history (almost 100 years) and has been successfully adopted not only in forensic applica-

tions, but in an increasing number of civilian applications (e.g., the US-VISIT program). The reason

behind this success is because fingerprints generally meet the requirements of a biometric trait dis-

cussed in the previous paragraph. Table 1 gives a comparison of commonly used biometric traits in

terms of these requirements. Due to the wide appeal of fingerprints, fingerprint-based authentication

systems continue to dominate the biometrics market by accounting for almost 52% of current au-

thentication systems based on biometric traits (Maltoni et al. 2003). The rapid evolution of mobile

commerce and banking (m-commerce and m-banking) services in recent years has placed new em-

phasis on user ID technology and created widespread deployment of biometrics in this field. Several

mobile manufacturers have incorporated fingerprint, voice and face biometrics into high-end mobile

phones (see Figure 2). New and miniaturized fingerprint sensors capable of being embedded in a

mobile phone have been developed to meet the demands of m-commerce and m-banking applica-

tions. In contrast to traditional two dimensional array sensors, these new one-dimensional line scan

sensors require the finger to be swiped in order to acquire a fingerprint impression for recognition.

A biometric system is essentially a pattern recognition system that recognizes an individual by

comparing the input biometric trait with a set of traits stored in a database (i.e., templates). The

templates are obtained during the enrollment stage where these traits along with an ID are collected

from users and stored in a database. An important issue in designing a biometric system is to

ascertain how recognition will be performed. The two modes of recognition are verification and

identification. In a verification system, recognition is performed by comparing the input biometric

characteristics with the characteristics of a claimed identity (1 to 1 match) stored in the database.

Thus, a verification system either accepts or rejects the claimed identity depending on whether the
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Table 1: Comparison of selected biometric technologies adapted from Maltoni et al. (2003). The

symbols H, M and L denote High, Medium and Low, respectively. UVSL = Universality, DSTC

= Distinctiveness, PRMN = Permanence, CLTB = Collectability, PRFM = Performance, ACPT =

Acceptability, and CRVN = Circumvention. So, fingerprint has medium universality, high distinc-

tiveness, high permanence, medium collectability, high performance, medium acceptability, and

medium circumvention.

Biometric Trait UVSL DSTC PRMN CLTB PRFM ACPT CRVN

DNA H H H L H L L

Face H L M H L H H

Fingerprint M H H M H M M

Hand Geometry M M M H M M M

Iris H H H M H L L

Signature L L L H L H H

Voice M L L M L H H

biometric characteristics of the input and that of the claimed identity are similar to each other or not.

In the identification mode, however, a claimed identity is not available. The system recognizes an

individual by performing an exhaustive search (1 to M matches) in the entire database of M stored

templates. Thus, in the identification mode, the system establishes an identity without the subject

having to provide one. Figure 3 shows the important processing tasks involved in the enrollment,

verification and identification stages of a fingerprint-based authentication system.

For a system operating in the verification mode, we are interested in accepting inputs (i.e.,

queries) which are “close” or “similar” to the template of the claimed identity, and rejecting those

that are “far” or “dissimilar”. Based on the inputQ and a claimed identityIc, we are interested in

testing the hypothesis

H0 : It = Ic vs. H1 : It 6= Ic, (1)

whereIt is the true identity of the user. In (1),H0 (respectively,H1) is the null (alternative) hypoth-

esis that the user is genuine (impostor). Based on the claimed identityIc, a templateT is retrieved

from the database. Subsequently, the testing in (1) is performed by a matcher which computes a

similarity measure,S(Q,T ), based onQ andT ; large (respectively, small) values ofS indicate

thatT andQ are close to (far from) each other. A threshold,λ, is specified so that all similarity

values lower (respectively, greater) thanλ lead to the rejection (acceptance) ofH0. Thus, decisions
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Figure 3: Schematic diagram showing the processing tasks involved in the enrollment, verification

and identification modes of a fingerprint-based authentication system
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Figure 4: Obtaining the ROC curve by varying the thresholdλ on the match scores. Panel (a) shows

the FRR and FAR corresponding to a thresholdλ1. λ2 is another threshold different fromλ1. Panel

(b) shows the ROC curve obtained whenλ varies. The values of(FAR,GAR) on the ROC curve

corresponding to the thresholdsλ1 andλ2 are shown.

5



of whether to accept or rejectH0 in the verification mode are prone to two types of errors: the

false reject rate (FRR), which is the probability of rejectingH0 when in fact the user is genuine,

and the false accept rate (FAR), which is the probability of acceptingH0 when in fact the user is

an impostor. The genuine accept rate (GAR), given by1 − FRR, is the probability that the user is

accepted given that he/she is genuine. Both the FRR (and hence GAR) and the FAR are functions

of the threshold valueλ (see Figure 4 (a)). The Receiver Operating Curve (ROC) is a graph that

expresses the relationship between the FAR versus GAR whenλ varies, that is,

ROC(λ) = (FAR(λ), GAR(λ)), (2)

and is commonly used to report the performance of a biometric authentication system (see Figures

4 (a) and (b)). Note that the ROC curve is a non-decreasing function of FAR with ROC = 0 when

FAR = 0, and ROC = 1 when FAR = 1. Two biometric systems can be compared in terms of their

ROC curves: System 1 is said to be better than system 2 in the FAR range[p0, p1] if their ROCs

satisfy

ROC1(p) ≥ ROC2(p) (3)

for all p ∈ [p0, p1] with strict inequality for at least one suchp. Another popular performance

measure is the equal error rate, or EER. The EER is defined as the common value of FAR(λ∗) and

FRR(λ∗) for the thresholdλ∗ which makes FAR(λ∗) equal to FRR(λ∗).

Although fingerprints can be argued to be one of the best biometric traits, the performance of

fingerprint based authentication systems in many cases does not meet the desired levels of accuracy.

For example, in the fingerprint verification competition, FVC 2002, the best performing algorithm

had an EER of 0.1% (Maio et al. 2002), whereas 2 years later in FVC 2004 (Maio et al. 2004), the

best performing algorithm had an EER of 2%. The drop in performance rates was caused by the fact

that the fingerprint database used in FVC 2004 was more challenging than that used in FVC 2002.

The drop in performance is also a reflection of real operating environments which are affected by

large intra-class and small inter-class variability, resulting in far from perfect performance of these

systems. Large intra-class variability refers to the situation when fingerprints from the same indi-

vidual look very different from one another. For example, the variability in placement of a finger on

the sensing surface gives rise to finger impressions that are rigid transformations (i.e., rotation and

translation) of one another in the 2-D plane and causes the intra-class variability to be large. Other

factors include uneven skin elasticity and pressure of the finger that give rise to non-linear distortions

in the sensed image (see Figure 5). Extraneous factors such as sensor noise, sensing environments,
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Figure 5: Eight different impressions of the same finger showing the intra-class variability due to

finger placement and non-linear distortions caused by skin elasticity.

(a) (b)

Figure 6: Illustrating small inter-class variability: Two fingerprint impressions with similar charac-

teristics from two different fingers.

and the condition of the finger itself (e.g., cuts on a finger) constitute sources of variability that ef-

fect the quality of the acquired impressions. It is well known that the fingerprint features lose their

ability to discriminate when the underling quality of the image is poor. Consequently, these noise

sources, too, have the effect of increasing the intra-class variability among multiple acquisitions of

fingerprints for the same individual. Small inter-class variability refers to the case when fingerprints

from different individuals look very similar to one another; see Figure 6 for an example.

It is important to note that these noisy input images cause fingerprint-based authentication sys-

tems to make mistakes and these mistakes can have serious consequences for the general public. In

the case of Mr. Brandon Mayfield (FBI Press Release 2004, Thompson and Cole 2005), a wrong fin-

gerprint match based on a latent lifted from the Madrid train bombing scene resulted in his wrongful

imprisonment for 19 days. Incidents such as this emphasize the need for research for further im-
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Figure 7: Two examples of fingerprint images showing the salient features used for authentication.

proving the performance of these authentication systems.

As illustrated in Figure 3, a fingerprint-based authentication system goes through several inter-

mediate processing tasks prior to deciding the outcome of the matching algorithm. The outcome of

each intermediate task and the final decision are affected by one or more sources of noise mentioned

above. In this paper, we give an overview of four major tasks of fingerprint-based authentication

systems, namely, feature extraction, indexing, individuality and fusion, and discuss methods that

have been developed to perform these tasks effectively. Fingerprint feature extraction, indexing,

individuality and fusion are discussed, respectively, in Sections 2, 3, 4 and 5. We point out the

current challenges in these four areas and discuss work that has been done to further enhance the

performance of fingerprint based recognition systems.

2 Fingerprint Feature Extraction

Two fingerprints images from the NIST Special Database 4 (NIST) are shown in Figure 7. These

images are of size512 × 512 (pixels2) with gray intensities at each pixel ranging from 0 (darkest)

to 255 (lightest). Note that there are alternating dark and light flow lines that traverse the entire fin-

gerprint area termed, respectively, as ridges and valleys. Occasionally, the ridges and valleys either

form patterns of very high curvature or meet at a point from three different directions. These points

are termed as singularities. Figures 7 (a) and (b) show all of the important characteristics, or finger-

print features, that are typically present in a fingerprint image. These features can be categorized

into two main groups, namely, global and local. The global features in a fingerprint image consist of

the information on ridge flow, and the location and type of singularities. A singularity of type “core”

is localized at the innermost point with the highest curvature of a sequence of alternating ridges and
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valleys, whereas the “delta” is localized at the confluence of three different ridge flow directions.

Local or fine fingerprint features arise due to anomalies in the ridge flow. The most common type

of anomaly, termed as minutiae, consists of breaks (endings) and bifurcations in the ridges. Thus,

information from a minutiae consists of its spatial location (where the break or bifurcation occurs),

type (either bifurcation or ending) and its direction (i.e., the direction of ridge flow at that minutiae

location). Most fingerprint based authentication systems use information extracted from minutiae

bifurcation and endings, as well as the ridge flow and singularities to assess the degree of similarity

between two fingerprints.

Information on the ridge flow is obtained via the directional field, that is, the set consisting of the

direction of flow of the ridges at each pixel (or a block of pixels) in the fingerprint image. Thus, the

ridge flow direction at every pixel consists of an angleθ indicating the direction of flow with respect

to the x-axis. Since opposite ridge flow directions are equivalent,θ is uniquely determined only

in [0, π]. Obtaining fast and reliable estimates of the directional field has been the focus of many

previous research efforts; they include methods based on neural networks (Wilson et al. 1994), filter-

based approaches (O’Gorman and Nickerson 1987), and gradient-based approaches (Rao 1990,

Hong et al. 1998, Jain et al. 1997, Ratha et al. 1995, Bazen and Gerez 2002). The extraction of the

directional field is prone to various noise factors. For example, cuts and bruises on the fingertip can

create disruptions in the ridge flow whereas low moisture content of the fingertip cause random ridge

breaks which distort the extraction process. The detection of singularities has also been addressed

in many previous studies. Finding regions of high curvature and subsequently classifying a feature

vector into either core, delta or a reject class, is the approach taken in Nakamura et al. (1982) and

Srinivasan and Murthy (1992). In Rao and Jain (1992), a geometric theory of differential equations

is used to derive signal-to-symbol representations in the flow field domain for cores and deltas. The

local energy of the directional field in a neighborhood of a block of pixels is used to measure how

closely it resembles a flow field around singularities in Perona (1998). In Jain et al. (2000), , a

ratio of sines of directional fields in two adjacent regions is used to detect singularities while Bazen

and Gerez (2002) uses a scheme for detecting singularities based on the Poincare index. A more

robust directional field and singularity extraction algorithm was obtained in Dass (2004) by eliciting

statistical models that account for the natural smoothness of spatial ridge flows. This approach is

described in greater detail below.

For the gray intensity imageI(x, y) over a rectangular domain, we wish to recover its directional

field. The fundamental image attributes for this purpose are the site-wise image intensity gradients
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Figure 8: An example of a fingerprint image block with gradient directions and magnitudes indi-

cated by arrow heads and lengths, respectively.

denoted byµs = ( ∂I
∂x , ∂I

∂y )
T

for each sites = (x, y). Also, let νs denote the normalized version

of µs so that||νs|| = 1. It is common in the image processing literature to analyze blocks of sites,

instead of individual sites, in order to remove noise and achieve faster processing speed. For a

blockB with image intensity gradientsµs, s ∈ B, our objective is to recover the principal gradient

direction of blockB, denoted by the unit vectorlB, which represents the dominant direction of the

µs, s ∈ B. OncelB is obtained, the directional field for blockB, DFB, is taken to be the unit vector

orthogonal tolB, namely,

DFB = l⊥B. (4)

The main challenge here is that gradientsµs with opposite signs should reinforce, and not

cancel, each other; see, for example, Figure 8. This criteria is satisfied if the distribution ofνs given

lB (hence, the likelihood oflB) has the form

`B( lB | νs, s ∈ B) =
∏

s∈B

C(τs) · exp{τsd(νs, ls)} , (5)

where

d(ν, l) = (νT l)2 (6)

measures the degree of similarity betweenν andl, τs denotes the precision, andC(τs) is the normal-

izing constant (independent oflB). For the collection of all blocks,B, the likelihood oflB, B ∈ B
is obtained via independence as

`( lB, B ∈ B) =
∏

B∈B
(`B( lB | νs, s ∈ B))wB =

∏

B∈B

∏

s∈B

(C(τs))wB · exp{wBτsd(νs, ls)} , (7)

wherewB is the weight given to blockB. Dass (2004) discusses the choices of (i)τs = ||µs||2

within each blockB and (ii) wB = coherence of blockB as a measure of influence of blockB in
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B. The implication of (i) is that gradients with larger magnitudes are more influential in the recovery

of lB in block B, whereas (ii) gives more weight to blocks with larger coherence (that is, when all

the µs point in the same direction, up to the± sign, as opposed to being randomly distributed).

Based on (7), the maximum likelihood estimate oflB, l̂B, can be shown to be the unit eigenvector

corresponding to the maximum eigenvalue of

AB =
∑

s∈B

τs νsν
T
s . (8)

Subsequently, the directional field estimate,̂DF s = l̂⊥B , is precisely the well-known Rao’s

estimate of the directional field reported in the literature (see, for example, Bazen and Gerez 2002,

and Rao 1990). Note that the weightswB do not influence this estimate of the directional field since

we are assuming that the blocks are independent of each other. The weightswB, however, will be

influential when we incorporate spatial dependence between neighboring blocks, and this will be

pursued subsequently.

One drawback of Rao’s estimator is that it is highly susceptible to noise factors, thus, requiring

several post-processing stages to satisfactorily smooth out the errors. To alleviate the problem with

Rao’s estimator, Dass (2004) incorporates spatial smoothness of the principal gradient directions in

neighboring blocks to achieve a more robust estimator of the directional field. More specifically, a

Markovian prior of the form

π(lB, B ∈ B) = C(α) · exp

{
λ

∑

B∼B′
wBB′ dα(lB, lB′)

}
(9)

is assumed on the collection{ lB, B ∈ B}, wheredα(l, m) = | lT m |α for a positive constantα,

the notation
∑

B∼B′ stands for the sum over all blocksB andB′ that are neighbors of each other

in a neighborhood structure specified in Dass (2004),wBB′ are non-negative weights measuring

the influence of the block pair(B,B′) in the overall summation, andλ measures the degree of

spatial smoothness with large (small) values ofλ indicating that neighboringlB values are similar

(dissimilar). Subsequently, the posterior distribution oflB, B ∈ B is given by the density

π(lB, B ∈ B |data) ∝ exp

{ ∑

B∈B
wB(lTBABlB) + λ

∑

B∼B′
wBB′ dα(lB, lB′)

}
. (10)

The Maximum-a-Posteriori (MAP) estimate oflB, B ∈ B is obtained by maximizing the posterior

(10) with respect tolB, B ∈ B. Details of the iterative procedure developed to find the MAP esti-

mate are reported in Dass (2004) together with an investigation into the properties of the extracted
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Figure 9: The directional field around singularities based on reference templates for (a) core and

(b) delta. The location of the singularity is indicated by a black dot in the center of each image.

field for different choices ofα, the block size and the smoothing parameterλ. Once the MAP

estimatelB,MAP is found, the estimate of the directional field is taken to be

DFB,MAP = l⊥B,MAP . (11)

The singularity detection algorithm of Dass (2004) uses reference parametric templates for the

core (C) and delta (D), and checks to see whether the extracted directional field around a point is

close to one of the templates. For a window of sizew×w centered at(0, 0), the parametric templates

are obtained using the equations

DF(x,y)(C) =




cos(θ1/2)

sin(θ1/2)


 and DF(x,y)(D) =




cos(θ2/2)

sin(θ2/2)


 , (12)

where(r1, θ1) and (r2, θ2) are the polar representations of(y,−x) and (−y,−x), respectively.

Figure 9 shows the reference parametric templates for the core and delta in panels (a) and (b),

respectively, for a window of size17 × 17. Now consider a singular point of typeS = {C, D}
centered atu0 = (x0, y0) and rotatedξ degrees with respect to the horizontal axis. In this case, the

parametric directional field vector is given by

DFu(S, ξ) ≡




cos(ξ) −sin(ξ)

sin(ξ) cos(ξ)


 ·DFu∗(S) (13)

for eachu = (x, y), whereu∗ = (x∗, y∗) with x∗ = (x − x0)cos(ξ) + (y − y0)sin(ξ) andy∗ =

−(x−x0)sin(ξ)+(y−y0)cos(ξ), andDFu∗(S) is as given in (12). In order to assess the closeness
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(a) (b) (c) (d)

Figure 10: Simultaneous directional field and singularity extraction: Panels (a) and (b) give the

original images whereas panels (c) and (d) give the extracted global features, respectively, for (a)

and (b). Note that the extracted directional field is not affected by the noisy region close to the delta

in panels (b) and (d) due to the imposed smoothness.

of the extracted directional field,DFu,MAP (see (11)), to that ofDFu(S, ξ) in a w × w window

Wu0 centered atu0, the function

f(S, ξ; u0) =
1

w2

∑

u∈Wu0

d(DFu,MAP , DFu(S, ξ)) (14)

is evaluated withd defined as in (6). Large values off indicate that the extracted fieldDFu,MAP

aroundu0 matches that ofDFu(S, ξ), and suggests the presence of a singularity atu0. However,

the rotation angleξ is not known in practice and has to be estimated. The estimate ofξ is taken to

be ξ̂ which maximizesf(S, ξ; u0) for eachS-template model, that is,

ξ̂ = arg maxξ f(S, ξ; u0) (15)

with

f̂(S; u0) = f(S, ξ̂; u0). (16)

The details pertaining to the estimation ofξ are given in Dass (2004). The value off̂(S; u0) repre-

sents the best value of similarity of the extracted directional field with the directional field specified

by theS-template model rotated at angleξ̂ with respect to the horizontal axis. The functionf̂(S; u0)

is evaluated for all blocks of sitesu0 in a fingerprint image. The maximum of̂f(C; u0) andf̂(D; u0)

is then determined, and compared to a pre-specified thresholdT0 where0 < T0 < 1. A singularity

is said to be present atu0 if this maximum is greater thanT0, with singularity type and orientation

taken to be the ones corresponding to the maximum. If the maximum is less thanT0, no singularity

is detected atu0.
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(a) (b) (c)

Figure 11: Fingerprint quality: (a) good quality, (b) medium quality, and (c) poor quality. White

boxes and the associated lines indicate locations and directions of detected minutiae. Poor quality

impressions yield higher rates of spurious detection as well as higher rates of missed true minutiae.

One advantage of the template based singularity extraction algorithm is that fewer number of

spurious singularities are detected compared to previous methods. In Dass (2004), the algorithm to

extract the smooth directional field (10) was combined with singularity detection (see equations (14-

16)) to obtain an algorithm that simultaneously extracts both the features. The additional advantage

of the dynamic updating of features is that the directional field can be molded based on current

singularity information to detect other singularities in the fingerprint impression. Two examples are

presented in Figure 10; note that noisy regions do not adversely effect the extracted field with the

addition of smoothness constraints on neighboring directional field values.

Robust detection of ridge ending and bifurcation type minutiae in a fingerprint is crucial since

most fingerprint matching algorithms utilize these two types of minutiae for authentication. Current

methods for minutiae detection utilize some kind of enhancement of the ridges followed by thinning

(i.e., reducing the ridge width to one pixel wide) and detection (Ratha et al. 1995). Non-linear

distortions of the finger caused by uneven fingertip pressure and non-uniform skin elasticity result

in spurious minutiae points being detected as well as true minutiae points being missed. Non-linear

distortions also have the effect of changing the type of a minutiae from a bifurcation to an ending or

vice versa. While current authentication systems do some degree of post-processing of the extracted

features, the problems with spurious minutiae, missed true minutiae as well as incorrect extraction of

minutiae type still exist. With poor quality images, these problems are further aggravated (see Figure

11). One approach to overcome the problems associated with incorrect feature extraction is to report

confidence measures associated with the extracted minutiae. Current algorithms do not report these

values, thus, making the contribution of a falsely detected feature in the authentication stage equal to

that of a true feature. Also, errors incurred in the feature extraction stage propagate to the subsequent
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(a) (b) (c) (d) (e)

Figure 12: Five major classes of fingerprints in the Henry system of classification: (a) left-loop, (b)

right-loop, (c) arch, (d) tented arch, and (e) whorl. Images are from the NIST database.

matching stage, and thus, significantly affects the overall performance of an authentication system.

3 Fingerprint Classification and Indexing

As mentioned earlier, identification of an individual is a more challenging problem compared to

verification since no claimed identity is provided. Thus, the system has to perform an exhaustive

search on databases to come up with a list of candidate identities (called the top M matches). In large

scale government and forensic applications, these databases consists of millions of fingerprints (for

example, the FBI database consists of approximately 50 million subjects and 500 million fingerprint

images (10 fingers/subject)).

Indexing of a fingerprint database refers to the partitioning of the database by means of as-

signing a label to each fingerprint, and grouping fingerprints with identical labels to form a class.

Effective indexing procedures reduce search time (and the resulting matching accuracy) during the

identification process as only an appropriate subset of the entire database is searched. There are two

main types of indexing approaches: (i) discrete classification, where fingerprints are partitioned into

pre-defined classes according to their macro features, and (ii) continuous classification, where each

fingerprint is represented by a similarity metric that measures its proximity to some pre-selected

class prototype. The Henry system (Henry 1900) is a well-known example of discrete classification

and is used in many forensic applications. While the Henry classification system has many classes

(∼ 17), almost 99% of the fingerprints belong to 5 major types, namely, right-loop, left-loop, whorl,

arch and tented arch. Figure 12 presents typical fingerprint images in the five major classes of the

Henry system. The four-class Henry system is derived from the five classes by combining the arch

and tented arch fingerprints into a single class, since these two classes are rather difficult to discrim-
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Table 2: A comparison of classification accuracies (in %) of several fingerprint classification meth-

ods in the literature. Reject rates are also given in percentages.

Method No. of 4-class 5-class Reject Rate

fingerprints problem problem

Cappelli et al. 1, 204 - 87.1a 0.0

Chang & Fan 2, 000 - 94.8 5.1

Chong et al. 89 - 96.6b 0.0

Hong & Jain 4, 000 92.3 87.5 0.0

Jain et al 4, 000 94.8 90.0 0.0

Karu & Jain 4, 000 91.4 85.4 0.0

Wilson et al 4, 000 - 94.0c 10.0

Dass & Jain 4, 000 94.4 - 0.0

a using the natural distribution (based on the following percentages for the 5 classes: 31.7%, 33.8%, 27.9%,

3.7% and 2.9% for the right-loop, left-loop, whorl, arch and tented arch classes, respectively) of fingerprints

b based on the 5 classes - double loop, whorl, left-loop, right-loop and arch

c using the natural distribution of fingerprints; equal distribution of each class yields accuracies of84− 88%.

inate. There have been a significant body of work on automatic classification of fingerprints into

the Henry system (see, for example, Cappelli et al. 1999, Chang and Fan 2002, Chong et al. 1997,

Hong and Jain 1999, and Karu and Jain 1996). These approaches can be grouped into five main

categories: (i) approaches based on singular points (Hong and Jain 1999, Karu and Jain 1996), (ii)

structure-based (Cappelli et al. 1999, Chang and Fan 2002, Chong et al. 1997), (iii) frequency-

based (Jain et al. 2000), (iv) syntactic or grammar-based (Moayer and Fu 1975, 1976a,b), and (v)

approaches based on mathematical models (Dass and Jain 2004). Hybrid methods combine at least

two approaches in (i-v) to arrive at a fingerprint classification algorithm (see, for example, Chang

and Fan (2002), Chong et al. (1997), Dass and Jain (2004)). Table 2 compares the classification

accuracies obtained by several fingerprint classification methods reported in the literature.

Classifying fingerprints into the Henry system is extremely difficult; the best reported accuracy

is only 94.8% (at 5.1% reject rate) for the 5-class problem (see Chang and Fan (2002)) in Table 2).

The difficulty in classifying fingerprints into the Henry system is inherent in the class definitions

themselves; sometimes, even human experts assign more than one class label to the same finger-

print because of the ambiguity among the classes (see Figure 13). Another drawback of the Henry
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(a) (b)

Figure 13: Ambiguous assignment of class in the Henry system: (a) either right-loop or tented arch,

and (b) either left-loop or tented arch.

system is that fingerprints are unevenly distributed among the 5 classes: 31.7%, 33.8%, 27.9%,

3.7% and 2.9% for right-loop, left-loop, whorl, arch and tented arch, respectively, making them

very inefficient for indexing since most searches will be conducted in the first three classes.

In a continuous fingerprint classification scheme, there are no fixed classes as in the discrete

case. The main idea of a continuous classification scheme is to compute the similarity of an input

image to a set of prototypes. Then, a search is performed on those fingerprints that have similarity

values close (determined by a threshold) to the computed values. This procedure significantly re-

duces the number of fingerprints that have to be searched since only the subset of the fingerprints that

have similarity measures close to the computed values is considered. There are several advantages

of continuous classification over discrete schemes: first, the reduction in search time is significant

since only a subset of relevant fingerprints is searched (i.e., images having similarity values close

to the input fingerprint), and (ii) the continuous classification scheme overcomes the difficulties

associated with the ambiguity between classes in the Henry system. A number of continuous classi-

fication schemes have been developed. In Cappelli et al. (1999), a continuous classification scheme

was developed based on partitioning the directional field into several homogeneous regions with

respect to the image ridge flow. However, the class prototypes chosen in Cappelli et al. (1999)

strongly relate to the basic classes of the Henry system. Other indexing approaches not based on

ridge flows were reported in Bhanu and Tan (2003) and Germain et al. (1997). In these approaches,

minutiae triplets were generated for an input image and the features extracted based on the triplets

were used for indexing. The performance of an indexing scheme is measured in term of the retrieval

accuracy - the probability that the top M matches include the person who provided the input. In

Bhanu and Tan (2003), an overall retrieval accuracy of 86.5% was achieved for the top (M = 1)
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match. An important point to remember is that retrieval accuracies degrade drastically as a function

of image quality since extraction of features as well as the computation of the similarity measures

are affected by noise.

4 The Individuality of Fingerprints

Expert testimony based on forensic evidence (such as handwriting, fingerprint, hair, bite marks,

etc.) is delivered in a courtroom by comparing salient features of a latent print lifted from a crime

scene with those taken from the defendant. A reasonably high degree of match between the salient

features lead the experts to testify irrefutably that the owner of the latent print and the defendant are

one and the same person. For decades, the testimonies provided by forensic individualization ex-

perts were almost never excluded from these cases, and on cross-examination, the foundations and

basis of this testimony were rarely questioned. Central to establishing an identity based on foren-

sic evidence is the assumption of discernible uniqueness; salient features of different individuals

are observably different, and therefore, when two prints share many common features, the experts

conclude that the owner of the two different prints is one and the same person. The assumption of

discernible uniqueness (Saks and Koehler 2005), although lacking sound theoretical and empirical

foundations, allow forensic experts to offer unquestionable proof towards the defendant’s guilt, and

to make matters worse, these experts are never questioned on the uncertainty associated with their

testimonials (that is, how frequently would an observable match between a pair of prints lead to

errors in the identification of individuals). Thus, discernible uniqueness precludes the opportunity

to establish error rates which would be known from collecting population samples, analyzing the

inherent feature variability, and reporting the corresponding probability of two different persons

sharing a set of common features.

A significant break from this trend occurred in the case of Daubert vs. Merrell Dow Pharma-

ceuticals (1993) where the U.S. Supreme Court ruled that in order for expert forensic testimony to

be allowed in a court case, it had to be subject to three main criteria of scientific validation, that

is, whether the particular tool or methodology in question (i) has been tested, (ii) has been subject

to peer-review, and (iii) possesses known error rates. Following Daubert, fingerprint identification

was first challenged in the case of U.S. v. Byron Mitchell (1999) under the fundamental premise

that the uniqueness of fingerprints had not been objectively tested and matching error rates were un-

known. Based on the outcome of U.S. v. Byron Mitchell (1999), fingerprint based identification has
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Figure 14: Minutiae features consisting of the location,s, and direction,θ, for a typical fingerprint

image (b): (a)s and θ for a ridge bifurcation and ending. (c) two subregions of (b) in which

orientations that are spatially close tend to be very similar. The minutiae location is indicated by a

square and the direction by a line emanating from the square.

been challenged in more than 20 court cases in the United States (for example, U.S. v. Llera Plaza

(2002a,b) and U.S. v. Crisp (2003); Cole (2006) gives additional court cases). As recently as De-

cember 2005, the Massachusetts Supreme Judicial Court barred key fingerprint evidence obtained

from several latent prints in the case of Terry L. Patterson (Saltzman 2005a,b).

The above court rulings demonstrate both the awareness and the need to develop measures that

reflect the confidence in a match when fingerprint evidence is presented. Fingerprint individuality

deals with the problem of quantifying the extent of uniqueness of a fingerprint. How similar should

two fingerprints be before we can conclude with high confidence that they are from the same fin-

ger? What are the measures of fingerprint individuality that reflect the extent of uncertainty in the

observed match?

The main challenge in studying fingerprint individuality is to develop models that adequately

describe the variability of fingerprint features in a target population. These models can, in turn,

be used to derive the probability of a random match between two different fingerprints picked ar-

bitrarily from the target population. Eliciting candidate models for representing the variability of

fingerprint features is not an easy task due to the complex nature of this variability. Candidate

models should satisfy two important requirements, namely, (i) flexibility, that is, the models can

represent a wide range of distributional characteristics of fingerprint features in the population, and

(ii) associated confidence measures can be easily obtained from these models.

There have been some studies, although not many compared to other topics in fingerprints,
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reported on fingerprint individuality. Pankanti et al. (2002) assumed a uniform distribution as the

model on minutiae locations and directions; Figure 14 illustrates how the location and direction

of a minutiae are determined. The uniform distribution was used to derive the probability of a

random correspondence (PRC) between a pair of fingerprints. The PRC measures the likelihood

of observing a certain degree of match or similarity between a pair of arbitrary fingerprints. More

specifically, ifQ andT denote a pair of fingerprints withm andn minutiae, respectively, the PRC

is given by

PRC(w) = P (Exactlyw minutiae match|m, n), (17)

where the probability in (17) is computed assuming that them (respectively,n) minutiae inQ

(respectively,T ) are distributed uniformly and independently of each other.

The uniform model on fingerprint minutiae has several drawbacks. It is well known that finger-

print minutiae form clusters (see, for example, Stoney (1986)). Further, minutiae locations in dif-

ferent regions of the fingerprint domain are observed to be associated with different region-specific

minutiae directions. Also, minutiae that are spatially close tend to have similar direction values

to each other. Figure 14 gives an illustration of these facts. Empirical observations such as these

need to be taken into account when eliciting reliable statistical models on fingerprint features. For

the reasons mentioned above, Pankanti’s model underestimates the true probability of a fingerprint

match. To alleviate the problem with the uniform distribution, a family of finite mixture models

was developed to represent minutiae clusters in Dass et al. (2006). The mixture model on minutiae

location,s, and direction,θ, has the form

f(s, θ|ΘG) =
G∑

g=1

τgf
L
g (s|µg,Σg) · fD

g (θ|νg, κg, pg), (18)

whereG is the total number of components; for theg-th component,fL
g (s |µg, Σg) is the distri-

bution of minutiae locations withµg andΣg representing the measures of center and dispersion,

respectively, forfL
g . The densityfD

g (θ|νg, κg, pg) represents the distribution of minutiae directions

with centerνg, precisionκg and mixing probabilitiespg. While any density function onR2 is a

potential model forfL
g , eliciting a candidate forfD

g requires more thought. Minutiae directions

tend to have either similar or opposite directions to the local ridge orientation flow (see Figure 14)

and we require our model to satisfy this condition. One possible choice forfD
g is

fD
g (θ|νg, κg, pg) = pgf

O
g ( θ | νg, κg) + (1− pg)fO

g ( θ − π | νg, κg), (19)

wherefO
g is the density for the ridge flow orientation for theg-th cluster. The densityfD

g in (19)
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can be interpreted as follows: for the ridge flowω distributed asfO
g , minutiae directions that are

eitherω or ω + π have probabilitiespg and1− pg, respectively. In Dass et al. (2006) , the density

fL
g was taken to be a bivariate Gaussian density with meanµg and covariance matrixΣg, whereas

fO
g was taken to be the Von-Mises density (see Mardia (1972))

fO
g ( θ | νg, κg) =

2
I0(κg)

exp{κg cos2(θ − νg)}, (20)

with I0(κg) defined as

I0(κg) =
∫ 2π

0
exp{κg cos(θ − νg)} dθ. (21)

In (20),νg andκg represent the mean angle and the precision (inverse of the variance) of the Von-

Mises distribution, respectively.

Parameter estimation is carried out using the EM algorithm for mixtures (Dempster et al. 1977);

for fixedG, the missing component for thej-th minutiae location and direction pair(Xj , Dj) is its

class label,cj ∈ {1, 2, . . . , G}, for j = 1, 2, . . . , N . The transformation

ωj =





Dj if Dj ∈ [0, π)

Dj − π if Dj ∈ [π, 2π)
(22)

converts the minutiae directions into orientations which take values in[0, π). The corresponding

distribution for each(Xj , ωj) then becomes

G∑

g=1

τg fL
g (Xj |µg, Σg) · fO

g (ωj | νg, κg ), (23)

wherefO
g (ωj | νg, κg ) is as given in (20). Note that the expression in (23) is now in the standard

form for mixture models (see, for example, Section 2.7 of MacLachlan and Krishnan (1997)), and

can be solved using general formulas for the E- and M-steps. To find the optimal number of clus-

ters,G∗, we first estimate the model parameters for different values ofG using the EM algorithm

described above, and then selectG∗ using the BIC criteria. The approach outlined here extends the

methodology of Fraley and Raftery (2002) by including angular variables in the mixture modeling.

The BIC criteria is defined as

BIC(G) = 2 ∗
N∑

j=1

logf(Xj , Dj |ΘG)− |ΘG| log(N), (24)

whereΘG = {(µg,Σg, νg, κg, pg, τg), g = 1, 2, . . . , G} denotes the set of all unknown parameters,

and |ΘG| is the cardinality ofΘG. The value ofG∗ is selected as the value ofG that maximizes

BIC(G).
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(mQ,mT , w) Mixture model Pankanti’s model

(26, 26, 12) 6.8× 10−10 2.4× 10−15

(36, 36, 12) 6.5× 10−7 1.0× 10−10

(46, 46, 12) 2.0× 10−5 3.9× 10−8

Table 3: A comparison between fingerprint individuality estimates.

In addition to the mixture models developed to represent (i) the minutiae variability in differ-

ent fingers, Dass et al. (2006) also develops stochastic models for two other sources of minutiae

variability, namely, (ii) the variability due to local perturbations arising from non-linear distortion

effects in multiple impressions of a finger, and (iii) the variability due to the size of partial prints

(or the area of finger region captured) in multiple acquisitions of a finger. For a fingerprint database

with F fingers, the compound stochastic model is fit to each fingerf , f = 1, 2, . . . , F . For each

finger f , the stochastic models are then used to generateH synthetic sets of query (respectively,

template) minutiae withm (respectively,n) minutiae. We denote the simulated query (respectively,

template) minutiae sets byFQ(f, h), h = 1, 2, . . . ,H (respectively,FT (f, h), h = 1, 2, . . . ,H).

The matcherM of Ross et al. (2005) is used to determine the number of minutiae matches for each

impostor pair of query and template minutiae sets (i.e., betweenFQ(f, h) andFT (f ′, h′) where

f 6= f ′ andh, h′ = 1, 2, . . . , H). The value of the PRC in (17) is estimated using

p(w) =

H∑

h=1

H∑

h′=1

F∑

f=1

F∑

f ′=1, f ′ 6=f

Iw{(f, h), (f ′, h′)}

F (F − 1)H2
(25)

for integersw ≤ w0, whereIw{(f, h), (f ′, h′)} is 1 if M(FQ(f, h),FT (f ′, h′)) equalsw, and0,

otherwise. For values ofw > w0, an extrapolation scheme based onp(w) for w ≤ w0 is developed;

see Dass et al. (2006) for further details on this estimation and extrapolation procedure.

The PRC corresponding to the FBI’s “12-point match” criteria (i.e., declare the two prints come

from one and the same person if the number of minutiae matches is 12 or more) can be obtained by

summing (17) overw values greater than or equal to12. Table 3 gives the fingerprint individuality

estimates derived from the mixture as well as Pankanti’s models for the “12-point match criteria”

based on FVC 2002 DB1 database (see Dass et al. (2006) for more details). Note that the estimates

based on the mixture models are orders of magnitude higher compared to Pankanti et al. (2002) due

to common clustering tendencies of minutiae in different fingerprints.

Basic questions related to fingerprint individuality still remain unanswered. For example, we
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have assumed that all the detected minutiae in a fingerprint are true. This, of course, is not a valid

assumption for medium to poor quality images. One topic of investigation would be to see how the

PRCs deteriorate as a function of the quality of the underlying input image. More specifically, given

an input with a certain image quality, what is the best estimate of PRC (corresponding to the lowest

uncertainty in the observed match) that can be reported? Research in these areas will enhance the

scientific basis of presenting fingerprint evidence in courts.

5 Multi-biometric Fusion

The best performing fingerprint authentication algorithm (among the 41 algorithms evaluated) in

the FVC 2004 (Maio et al. 2004) fingerprint verification competition had an equal error rate (EER)

of 2%. In general, biometric systems based on fingerprint evidence alone (unimodal systems) suf-

fer from limitations such as the lack of uniqueness, non-universality and noisy data (Jain and Ross

2004) resulting in sub-optimal performance. In contrast, multimodal biometric systems combine

information from its component modalities (e.g., multiple fingers or fingerprint and face) to arrive

at a decision (Ross and Jain 2003). Several studies (Bigun et al. 1997, Kittler et al. 1998, Lam and

Suen 1995, and Wang et al. 2003) have demonstrated that by consolidating information from mul-

tiple sources, better recognition performance can be achieved compared to the unimodal systems.

In a multimodal biometric system, integration can be done at (i) feature level, (ii) matching score

level, or (iii) decision level. However, to achieve the best results, it is necessary to devise methods

for optimally combining information from these multiple sources.

Compared to fusion at the feature and decision levels, consolidation of information at the match-

ing score level is the most useful and feasible for biometric systems. Biometric feature spaces are

often high dimensional and not compatible with each other for combination (for example, finger-

print minutiae and PCA for face (Moon and Phillips 2001)) while decision level fusion has very

limited information available for useful consolidation. There are several challenges involved in fus-

ing matching scores as well: Scores from different matchers may not be compatible; for example,

the two face matchers in the NIST-BSSR1 database generate scores in the intervals[−1, 1] and

[0, 100]. Further, the scores of different matchers can be either dissimilarity or similarity measures,

and they may follow different probability distributions. Another issue is that the accuracy of the

matchers may be quite different and the matching scores may be correlated.

A popular approach to fusion at the matching score level is based on score normalization (Ross
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Figure 15: Improvement in authentication performance using the fusion rule based on Gaussian

copula functions: Figures show the ROC curves for the fusion and individual biometric systems

based on the (a) NIST-BSSR1 and (b) WVU databases.

and Jain 2003, Jain et al. 2005). In a score normalization scheme, matching scores from the different

sources are transformed to a common domain by changing the location and scale parameters of the

individual score distributions. In a good normalization scheme, it is required that the estimates of the

location and scale parameters be robust as well as efficient: Robustness refers to the property where

the estimator of interest is not affected by outliers, whereas efficiency relates to the closeness of the

estimator to the true value (see Huber (1981), for example). Once robust and efficient estimators are

determined, score normalization then fuses the (normalized) scores using a variety of combination

rules. While there are many score normalization techniques, the challenge is to find a procedure

that is both robust and efficient. Typical transformations involved in score normalization are of the

form:

s′ =
s− µ

σ
, (26)

whereµ andσ, respectively, are the location and scale parameters, ands ands′ are, respectively,

the original and transformed scores. Different normalization rules arise by making different choices

for µ andσ: The min-max rule is derived by takingµ to be the minimum score, andσ to be the

range, the z-score results from takingµ to be the mean andσ to be the standard deviation, whereas

a robust version of the z-score is derived by takingµ to be the median andσ to be the mean absolute

deviation. The tanh estimators based on Hampel et al. (1986) are robust and highly efficient. This

normalization rule is given by

s′ =
1
2

{
tanh

(
0.01

(
s− µGH

σGH

))
+ 1

}
, (27)

whereµGH andσGH are the mean and standard deviation estimators corresponding to the genuine
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score distribution given by the Hampel estimators. The Hampel estimators are based on an influence

function which reduces the influence of points at the tails of the matching score distributions; see

Jain et al. (2005) for details. Other score normalization techniques use the double sigmoid function;

see Cappelli et al. (2000) for details.

Subsequently, fusion of the normalized scores is based on several different rules: simple and

weighted sum of scores, the maximum, minimum and product rules (Kittler et al. 1998 and Jain et

al. 2005). Snelick et al. (2003) conducted a study of the different score normalization techniques

and concluded that the max-min rule followed by the sum fusion rule performed the best based on

the experimental results on their database. In Jain et al. (2005), a more systematic study of the

different normalization techniques was conducted to ascertain their performance based on a multi-

modal database consisting of the fingerprint, face and hand-geometry modalities. It was found that

the weighted sum rule performed the best among all combination rules. An important component

of the analysis presented in Jain et al. (2005) is to use a non-parametric technique for estimating the

density of the matching score distributions. This has the added advantage that it is not necessary to

assume each matching score distribution has a Gaussian distribution.

The disadvantage of a score normalization scheme is that the selection of optimal weights for

the score combination is carried out on a case-by-case basis. This can be very challenging. Another

approach that was investigated is to fuse information automatically at the matching score level based

on likelihood functions Dass et al. (2005). One challenge with the likelihood function framework,

as in score normalization, is that it is not easy to specify complete parametric distributions for

matching scores. Matching score distributions tend to be highly non-Gaussian and moreover, consist

of discrete components. The method of fusion outlined in Dass et al. (2005) uses copula functions

(Nelsen 1999, Cherubini et al. 2004) and has several desirable properties. First, no parametric

form is assumed for distributions on matching scores. Thus, this approach is applicable in a variety

of contexts. Second, the correlation between different biometric matchers is accounted for by the

copula. Previous studies assumed that different matchers are independent of each other (see Griffin

(2004)), and consequently, could not be applied to highly correlated data (for example, matching

scores from two different fingerprint matchers applied on the same fingerprint database). Finally,

the copula approach automatically assigns optimal weights to different matchers during fusion, and

subsequently, bypasses the need to determine fusion weights on a case-by-case basis.

Fusion using the algorithm outlined in Dass et al. (2005) shows that the likelihood-based frame-

work consistently achieves high performance rates. Figure 15 presents results on two multimodal
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Table 4: Summary of multibiometric databases;K denotes the number of matchers used for each

database

Database Biometric Traits K No. of users

NIST-Multimodal Fingerprint (Two fingers) 4 517

Face (Two different matchers)

WVU-Multimodal Fingerprint, Iris 2 320

databases, (a) NIST-BSSR1 and (b) West Virginia University (WVU). The NIST Biometric Scores

Set - Release I (NIST-BSSR1) is a multimodal database where matching scores were obtained using

two fingerprint (on two index fingers) and two face matchers for517 users. The West Virginia Uni-

versity multimodal database (WVU-Multimodal) consists of320 subjects with five samples each of

fingerprint and iris modalities. More details of the two databases are given in Dass et al. (2005);

also, Table 4 provides summary information for the two databases. Compared to the best single

modality, the likelihood-based fusion gives an improvement of 14.2% and 9.1% in the genuine ac-

ceptance rate (GAR), respectively, for the NIST and WVU databases at the false acceptance rate

(FAR) level of 0.1%.

6 Recent Advances in Commercial Systems

Several advances in fingerprint recognition technology have been made by commercial vendors.

Until recently, the three main methods for acquiring fingerprint impressions have been the “ink-

technique”, and acquisitions based on optical and solid state sensors (Maltoni et al. 2003). In the

ink-technique, the subject’s finger is coated with black ink and rolled over a paper card. The card

is then scanned to produce a fingerprint impression. The advent of optical “live-scan” sensors gave

rise to digital fingerprint impressions. These sensors are based on the Total Internal Reflection (TIR)

principle, measuring the reflectivity of light of the sensing surface when a fingertip is placed on it.

Solid state sensors use silicon based capacitive sensors to convert information in the fingertip surface

into electrical signals. To date, several new sensing technologies have emerged. The Multispectral

Fingerprint Imaging (MSI) technique has been introduced by Lumidigm, Inc. (Rowe et al. 2005).

This device scans various skin layers by using different wavelengths of light. Fingerprint images

acquired using the MSI technology are significantly better quality for wet and dry fingers. Another

new fingerprint sensing technology which is based on a multi-camera system has been introduced
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by TBS, Inc. (Parziale and Diaz-Santana 2006). The “touchless” TBS sensor avoids contact of

the fingertip to any sensing surface, thereby reducing deformations due to skin elasticity during the

acquisition process. A touchless fingerprint sensing device is also available from Mitsubishi.

The resolution of a digital image, measured in terms of the number of dots or pixels per inch

(dpi or ppi), is an important characteristic of the image. Images in the resolution range of 250-500

dpi are effective in recovering fingerprint minutiae and ridge flow information, but ineffective for

detecting finer features. For this reason, higher resolution sensors are currently being developed.

Although solid state sensors still cannot achieve this high resolution due to the cost factor, several

optical sensors with resolution 1000 dpi are commercially available. Optical sensors with resolution

range of 4000-7000 dpi are currently being developed.

One advantage of such high level resolution sensors is that finer fingerprint features (consisting

of sweat pores, ridge contours, incipient ridges, scars; see Jain et al. (2006a,b)) can be observed

and extracted. These finer features are grouped as Level 3 features in a hierarchy where Levels 1

and 2 consists of the ridge flow information and the minutiae, respectively (Kryszczuk et al. 2004,

Roddy and Stosz 1997, and Jain et al. 2006a,b). Several studies incorporating Level 3 features have

reported performance improvement in recognition systems; see, for example, Jain et al. (2006a,b),

and Stosz and Alyea (1994).

Current commercial systems also incorporate preventive measures against spoof (liveliness) at-

tacks. This is a security threat where the fingerprint system can be tricked into accepting an artificial

input (called a gummy fingerprint). This kind of attack was famously described by Matsumoto who

used a gelatin material (similar to that contained in candies) to spoof a variety of sensors (Rowe et

al. 2005). With the advent of new sensor technology, research has been carried out on developing

methods for preventing spoof attacks based on the multispectral sensors (Nixon and Rowe 2005).

Another approach is based on discriminating the extent of distortion present in real fingerprint ac-

quisitions compared to false ones, and has been reported in Antonelli et al. (2006) and Chen et al.

(2005). Commercial vendors have also developed methods for enhancing template security based

on fingerprint vaults and watermark encryption strategies; see, for example, Uludag et al. (2004),

and Jain and Uludag (2003) and the references therein. Smart cards with in-built sensors, feature ex-

tractor, matcher, and template storage chips from makers such as Privaris, Inc. have been proposed

to curb credit card theft and identity fraud (Jain and Pankanti 2006).

Other commercial advances have been aimed at developing quantitative measures for the quality

of fingerprint images (Chen et al. 2005). One goal is to incorporate quality measures in a fusion
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framework since authentication is severely affected by the quality of the underlying biometric. This

is an important point to be considered as it has practical consequences. In real environments, one

cannot expect that all input biometrics corresponding to an individual will be of the best quality.

In that case, a fusion framework where low quality images will automatically be assigned lower

weights will be of great interest and importance. Developing methodology for validating the per-

formance of fingerprint systems claimed by system vendors is also gaining interest. The challenge

here is to derive tests and confidence statements to either validate or reject claims on the system

performance (Dass et al. 2006). Other concerns of commercial systems include ergonomics (user-

friendliness of the system), throughput (number of users recognized per unit of time) and system

cost.

7 Summary and Conclusion

We have attempted to give a brief overview of fingerprint-based recognition and discuss current

challenges faced in making these systems perform more effectively. Four important aspects of

fingerprint-based recognition as well as recent advances in commercial systems have been dis-

cussed. There are many problems and challenges faced by fingerprint recognition systems today.

In spite of current challenges, new applications (deployment of fingerprint recognition systems in

Disney theme parks, inside mobile phones, flash drives and memory sticks) continue to appear,

strongly suggesting that this type of authentication is here to stay. Statistics can play a pivotal role

in this area by providing insight into the stochastic processes (signal as well as noise) involved in

the development of effective methodology and algorithms for recognition.
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