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Abstract We consider the nonparametric regression model with long memory data
that are not necessarily Gaussian and provide an asymptotic expansion for the mean
integrated squared error (MISE) of nonlinear wavelet-based mean regression func-
tion estimators. We show this MISE expansion, when the underlying mean regres-
sion function is only piecewise smooth, is the same as analogous expansion for
the kernel estimators. However, for the kernel estimators, this MISE expansion
generally fails if an additional smoothness assumption is absent.
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1 Introduction

Consider nonparametric regression

Yk = g(xk)+ εk, k = 1, 2, . . . , n, (1)

where xk = k/n ∈ [0, 1], ε1, . . . , εn are observational errors with mean 0 and
g is an unknown function to be estimated. Many authors have investigated var-
ious aspects of this model, under the assumptions that ε1, . . . , εn, . . . are i.i.d.
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errors or a stationary process with short-range dependence such as classic ARMA
processes (see, e.g., Hart, 1991; Tran et al. 1996; Truong and Patil, 2001); or a
stationary Gaussian sequence with long-range dependence (see, e.g., Csörgö and
Mielniczuk, 1995; Wang, 1996; Johnstone and Silverman, 1997; Johnstone, 1999);
or a correlated and heteroscedastic noise sequence (Kovac and Silverman, 2000); or
a correlated and nonstationary noise sequence (von Sachs and Macgibbon, 2000),
just to mention a few. Regression models with long memory data are more appro-
priate for various phenomena in many fields which include agronomy, astronomy,
economics, environmental sciences, geosciences, hydrology and signal and image
processing. Moreover, many times series encountered in practice do not exhibit
characteristics of Gaussian processes. For example, some economic time series,
especially price series, are non-Gaussian to the extreme. Hence it is of interest to
consider the regression model (1) with long-range dependent errors {εn} that are
not necessarily Gaussian.

Let {εk, k ≥ 1} be a stationary process with mean 0 and constant variance.
Recall that {εk, k ≥ 1} is said to have long-range dependence or long memory, if∑∞

k=1 |ρ(k)| = ∞, where ρ(k) = E (ε1ε1+k) is the autocovariance function of
{εk}. This is the case if there exists H ∈ (0, 1) such that

ρ(k) = k−HL(k), (2)

where L(x) is a slowly varying function at ∞, i.e., for all a > 0,

lim
x→∞

L(ax)

L(x)
= 1.

See Bingham, Goldie and Teugels (1987) for more information on slowly varying
functions.

The literature on long-range dependence is very extensive, see, e.g., the mono-
graph of Beran (1994) and the references cited therein. In particular, several authors
have studied the kernel estimators of the regression function g with long-range
dependent errors. For example, Hall and Hart (1990) considered the model (1)
with stationary errors for which ρ(n) ∼ C n−H as n → ∞ and established the
convergence rates of mean regression function estimators. Csörgö and Mielniczuk
(1995) have studied the weak convergence of the finite dimensional distributions
and the suitably renormalized maximal deviations of the kernel estimators of g in
(1) with long-range dependent Gaussian errors. Robinson (1997) has established
the central limit theorems for the kernel estimators of g in (1) when the errors form
a stationary martingale difference sequence. They all require that the regression
function g is continuously differentiable.

This paper is concerned with the asymptotic properties of wavelet-based estima-
tors of mean regression function with long memory errors. In recent years, wavelet
methods in nonparametric curve estimation have become a well-known and power-
ful technique. We refer to the monograph by Härdle, Kerkyacharian and Tsybakov
(1998) for a systematic discussion of wavelets and their applications in statistics.
The major advantage of the wavelet method is its adaptability to the degree of
smoothness of the underlying unknown curve. These wavelet estimators typically
achieve the optimal convergence rates over exceptionally large function spaces. For
more information and related references, see Donoho, Johnstone, Kerkyacharian
and Picard (1995); Donoho, et al. (1996) and Donoho and Johnstone (1998). Hall
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and Patil (1995, 1996a,b) also have demonstrated explicitly the extraordinary local
adaptability of wavelet estimators in handling discontinuities. They showed that
discontinuities of the unknown curve have a negligible effect on performance of
nonlinear wavelet curve estimators.All of the above works are under the assumption
that the errors are independent.

For correlated noise, Wang (1996), Johnstone and Silverman (1997) and John-
stone (1999) have examined the asymptotic properties of wavelet-based estimators
of mean regression function with long memory Gaussian noise. They have shown
that these estimators achieve minimax rates over wide range of function spaces.
In this paper we consider a different approach by following the framework of Hall
and Patil (1995). We focus on a fixed target function g in (1), rather than describe
performance uniformly over large classes of g’s, to identify more clearly the ways
in which the choice of threshold affects the performance of a wavelet-based curve
estimator (see Hall and Patil, 1996a,b). These results may be generalized to large
classes of functions.

Specifically, we provide an asymptotic expansion for the mean integrated square
error (MISE) of nonlinear wavelet-based mean regression function estimators with
long memory data that are not necessarily Gaussian. More explicitly, we assume in
(1) that εk = G(ξk), where {ξk, k ≥ 1} is a stationary Gaussian sequence with mean
0 and variance 1 and G is a function such that EG(ξk) = 0 and EG2(ξk) < ∞.
Under the assumption that the underlying mean regression function g is only piece-
wise smooth, we show that the MISE expansion is of the same form as the analogous
expansion for the kernel estimators. However, for the kernel estimators, this MISE
expansion generally fails if the additional smoothness assumption is absent.

The rest of this paper is organized as follows. In the next section, we give
some basic elements of the wavelet theory, provide nonlinear wavelet-based mean
regression function estimators and recall some basic properties of the Hermite
polynomials. The main results are described in Sect. 3, while their proofs are given
in Sect. 4. Throughout we will use C to denote a positive and finite constant whose
value may change from line to line. Specific constants are denoted by C0, C1, C2
and so on.

2 Notations and estimators

This section contains some facts about wavelets that will be used in the sequel.
Let φ(x) and ψ(x) be the father and mother wavelets, having the following prop-
erties: φ and ψ are bounded and compactly supported;

∫
φ2 = ∫

ψ2 = 1, νk ≡∫
ykψ(y) dy = 0 for 0 ≤ k ≤ r − 1 and νr = ∫

yrψ(y) dy �= 0. Define

φj (x) = p1/2φ(px − j), ψij (x) = p
1/2
i ψ(pix − j), x ∈ R

for arbitrary integers p > 0, j ∈ Z and pi = p2i , i ≥ 0. Then the system{
φj (x), ψij (x), j ∈ Z, i ≥ 0

}
satisfies

∫

φj1φj2 = δj1j2 ,

∫

ψi1j1ψi2j2 = δi1i2δj1j2 ,

∫

φj1ψij2 = 0, (3)
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where δij denotes the Kronecker delta (i.e., δij = 1 , if i = j ; and δij = 0,
otherwise) and is an orthonormal basis for the space L2(R). For more informa-
tion on wavelets, see Daubechies (1992) or Härdle, Kerkyacharian and Tsybakov
(1998).

In our regression model (1), the mean function g is supported on the unit interval
[0, 1], thus we can select an index set� ⊂ Z and modify some ofψij (x), i, j ∈ Z,
such that

{
ψij (x), i, j ∈ �} forms a complete orthonormal basis for L2[0, 1]. We

refer to Cohen, Daubechies and Vial (1993) for more details on wavelets on the
interval. Hence, without loss of generality, we may and will assume that φ and
ψ are compactly supported on [0, 1]. We also assume that both φ and ψ satisfy a
uniform Hölder condition of exponent 1/2, i.e.,

|ψ(x)− ψ(y)| ≤ C|x − y|1/2, for all x, y ∈ [0, 1]. (4)

Daubechies (1992, Chap. 6) provides examples of wavelets satisfying these con-
ditions.

For every function g in L2([0, 1]), we have the following wavelet expansion:

g(x) =
p−1∑

j=0

bjφj (x)+
∞∑

i=0

pi−1∑

j=0

bijψij (x), x ∈ [0, 1], (5)

where

bj =
∫

gφj , bij =
∫

gψij

are the wavelet coefficients of the function g and the series in (5) converges in
L2([0, 1]).

We propose a nonlinear wavelet estimator for g(x):

ĝ(x) =
p−1∑

j=0

b̂jφj (x)+
q−1∑

i=0

pi−1∑

j=0

b̂ij I
(|̂bij | > δi

)
ψij (x), (6)

where δi > 0 is a level-dependent “threshold”, q ≥ 1 is another smoothing param-
eter and the wavelet coefficients b̂j and b̂ij are defined as follows:

b̂j = 1

n

n∑

k=1

Ykφj (xk), b̂ij = 1

n

n∑

k=1

Ykψij (xk). (7)

Let {ξk, k ≥ 1} be a stationary sequence of Gaussian random variables with
mean zero and unit variance. We assume that

r(k) =̂ E (ξ1ξ1+k) ∼ C0k
−α, as k → ∞, (8)

where α ∈ (0, 1) and C0 > 0 is a constant and ak ∼ bk means that ak/bk → 1
as k → ∞. Here we have taken the slowing varying function L in (2) to be the
constant C0 to simplify the presentations of our results. With a little modification,
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one can show that Theorems 3.1 and 3.2 still hold under the more general assump-
tion (2). A typical example of stationary Gaussian sequences satisfying (8) is the
fractional Gaussian noise:

ξk = BH(k + 1)− BH(k), (k = 0, 1, 2, . . . ),

where BH = {
BH(t), t ∈ R

}
is a real-valued fractional Brownian motion, that is

BH is a centered Gaussian process with BH(0) = 0 and

E
(
BH(s)BH (t)

) = 1

2

(|s|2α + |t |2α − |t − s|2α) , ∀s, t ∈ R.

In this case, it is easy to verify that if H �= 1/2, then r(k) ∼ H(2H − 1)k2H−2 as
k → ∞. Hence the fractional Gaussian noise satisfies (8) with α = 2−2H and has
long-range dependence if and only ifH ∈ (1/2, 1). See Samorodnitsky and Taqqu
(1994, Sect. 7.2) for more information on fractional Brownian motion and frac-
tional Gaussian noise. Long-range dependent stationary Gaussian sequences can
also be constructed as moving averages of i.i.d. standard normal random variables;
see, e.g., Beran (1994).

For an integer m ≥ 1, if the index α in (8) satisfies 0 < αm < 1, then, using
the notation of Taqqu (1975, 1977), we write {ξk, k ≥ 1} ∈ (m)(α, C0).

Now we recall the notion of Hermite rank from Taqqu (1975, 1977). Let ξ be
an N(0, 1) random variable and define

G = {
G : EG(ξ) = 0, EG2(ξ) < ∞}

.

Then G is a subspace of the Hilbert space

L2

(

R,
1√
2π

e− x2

2

)

=̂
⎧
⎨

⎩
G :

1√
2π

∫

R

G2(x) e− x2

2 dx < ∞
⎫
⎬

⎭
.

It is well known (see, e.g., Rozanov, 1967) that the Hermite polynomials

Hk(x) = (−1)ke
x2

2
dk

dxk
e− x2

2 (k ≥ 0),

form a complete orthogonal system of functions of L2
(
R, 1√

2π
e− x2

2

)
and they

satisfy the identity

E [Hk(ξ)H�(ξ)] = δk� k!, (9)

where ξ is a standard normal random variable. The first few Hermite polynomials
are H0(x) ≡ 1, H1(x) = x,H2(x) = x2 − 1 and H3(x) = x3 − 3x.

Every function G ∈ G can be expanded in terms of the Hermite polynomials

G(x) =
∞∑

k=0

J (k)

k!
Hk(x),

where J (k) = E (G(ξ)Hk(ξ)) ,∀k ≥ 0, and the above series converges in L2
(
R, 1√

2π
e− x2

2

)
. It is clear from (9) that EG2(ξ) = ∑∞

k=0
J 2(k)

k! < ∞.
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For every G ∈ G, the Hermite rank of G is defined by

m
G

= min {k ≥ 0 : J (k) �= 0} .
Since J (0) = EG(ξ) = 0, we havem

G
≥ 1 for allG ∈ G. When no confusion can

arise, we will omit the subscript G and simply write the Hermite rank of G as m.
As examples, we mention that for every integer k ≥ 0,G(x) = x2k+1 has

Hermite rank 1; and the function G(x) = x2k − E(ξ 2k) has Hermite rank 2. The
Hermite polynomial Hk(x) has Hermite rank k.

We will need the class of functions

Gm = {G ∈ G : Ghas Hermit rank m} .
For every G ∈ Gm and {ξn, n ≥ 1} ∈ (m)(α, C0), let εn = G(ξn) for n ≥ 1. Then
{εn, n ≥ 1} is a stationary sequence. In order to verify its long-range dependence,
we make use of the following formula

E
[
Hk(ξ1)H�(ξ1+n)

] = δk� k! r(n)k (10)

(see Rozanov, 1967, p. 183) to get

E (ε1ε1+n) =
∞∑

q=m

J 2(q)

q!
rq(n)

∼ J 2(m)

m!
rm(n), as n → ∞, (11)

where the last statement follows from (8); see also Taqqu (1975, p. 293). Hence
{εn, n ≥ 1} is long-range dependent with index mα. Note that in this paper, we
assume 0 < mα < 1. The case of mα ≥ 1 requires different methods and will be
dealt elsewhere.

3 Main results

Throughout this paper, we will assume the following conditions [denoted by (SP)]
are satisfied

(1) The errors {εk, k ≥ 1} in (1) are given by εk = G(ξk), where G ∈ Gm and
{ξk, k ≥ 1} ∈ (m)(α, C0).

(2) The smoothing parameters p, q, and δi are functions of n. We assume that
p → ∞, q → ∞ as n → ∞, and for every i = 1, 2, . . . , q − 1,

piδ
2
i → 0, p2r+1

i δ2
i → ∞, δ2

i ≥ C1(4e)m(ln n)m+1

mmnmαp1−mα
i

,

where

C1 = C0J
2(m)

m!

∫∫

|x − y|mαψ(x)ψ(y) dx dy. (12)
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Observe that, since 0 < mα < 1, the Fourier transform of the function s �→ |s|−mα
and the Plancherel’s theorem yield

∫∫

|x − y|−mαψ(x)ψ(y)dxdy = Cmα

∫

R

1

|u|1−mα
∣
∣ψ̂(u)

∣
∣2 du > 0,

whereCmα > 0 is a constant depending onmα only and ψ̂ is the Fourier transform
of ψ . Hence C1 is a positive and finite constant.

Theorem 3.1 If, in addition to the conditions on φ and ψ stated in Sect. 2 and the
condition (SP), we assume that the r-th derivative g(r) is continuous and bounded.
Then, as n → ∞,

E

∣
∣
∣
∣

∫

(ĝ − g)2 −
{

C2
(
n−1p

)mα + p−2rκ2
(
1 − 2−2r

)−1
∫

g(r)
2

}∣
∣
∣
∣

= o
((
n−1p

)mα + p−2r
)
, (13)

where κ = (r!)−1νr and C2 is a positive and finite constant defined by

C2 = C0J
2(m)

m!

∫∫

|x − y|mαφ(x)φ(y) dx dy. (14)

Remark 3.1 Because of the long-range dependence, our choice of the thresholds
must be level-dependent and depend on the unknown long memory parameter α
and Hermite rank m. Hence, our result is mainly of theoretical significance and
these parameters are assumed to be known constants. In practice, we need first to
estimate these parameters. Wang (1996, p480) and Johnstone and Silverman (1997,
p340) provide simple methods to estimate the long memory parameter α. Delbeke
and Van Assche (1998) and Abry and Veitch (1998) also provide wavelet-based,
statistically and computationally efficient estimators of α based on the wavelet
coefficients and show they are unbiased, consistent and has asymptotically a nor-
mal distribution. Thus, we assume that the parameter α is estimated and treated as
known. An alternative way of choosing the threshold is the following: from Lemma
4.2 in the next section, the threshold in (SP) satisfy δ2

i ≥ σ 2
i (2e)

m(ln n)m+1m−m,

where σ 2
i = var

(
b̂ij

)
= C1n

−mαp−1+mα
i . This noise variance σ 2

i at each level i

can be estimated from the data, for example, the robust median absolute deviation
estimator σ̂i = MAD{b̂ij , j = 0, 1, . . . , pi − 1}/0.6745. Hence, we can also treat
σ 2
i as known (see Johnstone and Silverman, 1997 for more details).

In Theorem 3.1, we have assumed that the mean regression function g is r-
times continuously differentiable for simplicity and convenience of the exposition.
However, if g(r) is only piecewise continuous, Theorem 3.1 still holds, as given in
the following:

Theorem 3.2 In addition to the conditions on φ andψ stated in Sect. 2, we assume
that the r-th derivative g(r) is only piecewise smooth, i.e., there exist points x0 =
0 < x1 < x2 < · · · < xN < 1 = xN+1 such that the first r derivatives of g
exist and are bounded and continuous on (xi, xi+1) for 0 ≤ i ≤ N , with left- and
right-hand limits. In particular, g itself may be only piecewise continuous. Also
assume that condition (SP) holds and p2r+mα

q n−2rmα → ∞. Then (13) still holds.
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Remark 3.2 Truong and Patil (2001) have considered wavelet estimation of mean
regression function µ(x) = E (Y0|X0 = x) based on stationary sequences of ran-
dom variables (Xi, Yi) , i = 0, ±1, ±2, . . . . They constructed wavelet estimator
of µ through µ̂ = ĝ/f̂ , where f̂ and ĝ are wavelet estimators of density func-
tion of X0 and g(x) = ∫

yh(y, x)dy, where h(y, x) is the joint density function
of (Y0, X0). One of results in Truong and Patil (2001) is that they derived esti-
mator’s MISE formulae

∫
E
(
µ̂− µ

)2 ∼ k1 n
−1p + k2 p

−2r , where k1, k2 are
constants. Since these stationary sequences are short range dependent, its MISE is
analogous to those of Hall and Patil (1995, 1996a,b) for the independent case.
However, in our case for long range dependence data, the MISE formulae is
∫

E
(
ĝ − g

)2 ∼ k3
(
n−1p

)mα + k2 p
−2r , which depends on long memory param-

eter α and Hermite rank of G, and thus it is different from those of Hall and Patil
(1995, 1996a,b). Wang (1996) and Johnstone and Silverman (1997) considered
wavelet estimator of mean regression function with long memory Gaussian error
and derived the minimax convergence rate n−2rα/(2r+α). In our paper, we consid-
ered that random error is a nonlinear function of Gaussian error. For the Gaussian
error special case, the Hermite rank of G is 1 (i.e., m = 1). In this case, if our
smoothing parameter p is chosen of size nα/(2r+α), then the convergence rate of
our MISE is n−2rα/(2r+α), which is the same as those in Wang (1996) and Johnstone
and Silverman (1997).

Remark 3.3 Hall and Hart (1990) considered kernel estimator in fixed-design non-
parametric regression when error is Gaussian long memory process, giving a similar
asymptotic expansion for MISE. Robinson (1997) considered kernel nonparametric
regression estimator when error is long memory moving average, providing a cen-
tral limit theorem and a similar asymptotic expansion for MISE as well. However,
they all assume that the regression function g is continuously differentiable. Our
result is stronger than the traditional asymptotic expansion for MISE. In particular,
(13) implies a wavelet version of the MISE expansion:

E

∫

(ĝ − g)2 ∼ C2
(
n−1p

)mα + p−2rκ2
(
1 − 2−2r

)−1
∫

g(r)
2
, as n → ∞.

For kernel estimators, the above expansion usually fails without the assumption
that g is r-times continuously differentiable.

4 Proofs

Observing that the orthogonality (3) implies

∫

(ĝ − g)2 =
p−1∑

j=0

(
b̂j − bj

)2 +
q−1∑

i=0

pi−1∑

j=0

(
b̂ij − bij

)2
I
(|̂bij | > δi

)

+
q−1∑

i=0

pi−1∑

j=0

b2
ij I

(|̂bij | ≤ δi
)+

∞∑

i=q

pi−1∑

j=0

b2
ij , (15)

we will break the proofs of Theorem 3.1 into several parts. The basic ideas of our
proofs are similar to those of Theorems 2.1 and 2.2 in Hall and Patil (1995). The
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difference is that we consider the errors {εk, k ≥ 1} to be long memory stationary
noise here, instead of i.i.d. random variables in their paper. As is always the case of
going from i.i.d. to long-range dependence, several technical difficulties have to be
overcome. We will use different methods than those in Hall and Patil (1995). The
importance of the results and techniques of Taqqu (1975, 1977), Fox and Taqqu
(1985) to our proofs will be clear.

We start by collecting and proving some lemmas. Denote

dj =̂E (b̂j
) = 1

n

n∑

k=1

g(xk)φj (xk),

and

dij =̂E (b̂ij
) = 1

n

n∑

k=1

g(xk)ψij (xk).

The following lemma will be used for proving Lemmas 4.4 and 4.5.

Lemma 4.1 Suppose the function g in (1) is continuously differentiable on [0, 1]
and the wavelets φ and ψ satisfy the uniform Hölder conditions (4). Then

sup
j

|dj − bj | = O
(
n−1/2

)
(16)

and

sup
j

|dij − bij | = O
(
n−1/2

)
. (17)

Proof We only prove (16). The proof of (17) is similar.
First we write

dj = p1/2

n

n∑

k=1

g

(
k

n

)

φ

(
pk

n
− j

)

.

For fixed n, p and j , we note that

0 ≤ pk

n
− j ≤ 1 if and only if

nj

p
≤ k ≤ n(j + 1)

p
.

Let mj = 
 nj
p

�, where 
x� denotes the smallest integer that is at least x. Since φ
has its support in [0, 1], we see that

dj = p1/2

n

mj+1∑

k=mj+1

g

(
k

n

)

φ

(
pk

n
− j

)
(
let k = mj + �

)

= p1/2

n


n/p�∑

�=1

g

(
�

n
+ j

p

)

φ

(
p�

n

) (

let t� = p�

n

)

= 1

p1/2


n/p�∑

�=1

g

(
t� + j

p

)

φ (t�)
p

n
. (18)
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Similarly, by a simple change of variables, we have

bj =
1∫

0

g(x)φj (x)dx

= p1/2

(j+1)/p∫

j/p

g(x) φ(px − j) dx (let t = px − j)

= 1

p1/2

1∫

0

g

(
t + j

p

)

φ(t) dt. (19)

Combining (18) and (19), we have

|dj − bj | = 1

p1/2


n/p�∑

�=1

p(�+1)
n∫

p�

n

[

g

(
t� + j

p

)

φ (t�)− g

(
t + j

p

)

φ(t)

]

dt

= J1 + J2, (20)

where

J1 = 1

p1/2


n/p�∑

�=1

p(�+1)
n∫

p�

n

[

g

(
t� + j

p

)

− g

(
t+j
p

)]

φ (t�) dt

and

J2 = 1

p1/2


n/p�∑

�=1

p(�+1)
n∫

p�

n

g

(
t+j
p

)

[φ (t�)− φ(t)] dt.

For J1, we use the differentiability of g (in fact, it is enough if g is a Lipschitz
function on [0, 1]) and the boundedness of φ to get

J1 ≤ 1

p1/2
· C
n

≤ C n−1/2, (21)

where C is a constant. For J2, we use the boundedness of g and the uniform
1/2-Hólder condition (4) for φ to derive

J2 ≤ 1

p1/2
· C

(p

n

)1/2
= C n−1/2. (22)

It is clear that (16) follows from (21) and (22).
The key lemma for the proof of Theorem 3.1 is the following Lemmas 4.3 and

4.4. To prove Lemma 4.3, we will make use of the following maximal inequality
from Kôno (1983); see also Móricz (1976). ��
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Lemma 4.2 Let {Xn, n ≥ 1} be a sequence of random variables. Assume that for
integers c ≥ 0 and n ≥ 1, the partial sums Sc, n = ∑c+n

j=c+1Xj satisfy the following
moment conditions:

(i) For γ ≥ 1, there exist nonnegative numbers
{
hc, n, c ≥ 0, n ≥ 1

}
such that

E
[∣
∣Sc, n

∣
∣γ
] ≤ hc, n for all c and n.

(ii) For all integers c ≥ 0, k, j ≥ 1,

hc, j + hc+j, k ≤ hc, j+k.

Then

E

[

max
1≤k≤n

∣
∣Sc, k

∣
∣γ
]

≤ (log 2n)γ hc, n. (23)

For every j = 0, 1, 2, . . . , denote

s∗j,n =̂ b̂j − E
(
b̂j
) = 1

n

n∑

k=1

G(ξk)φj (xk),

sj,n =̂ J (m)

m!

1

n

n∑

k=1

Hm(ξk)φj (xk),

s∗ij,n =̂ b̂ij − E
(
b̂ij
) = 1

n

n∑

k=1

G(ξk)ψij (xk),

sij,n =̂ J (m)

m!

1

n

n∑

k=1

Hm(ξk)ψij (xk).

Consider their second moments:

σ ∗2
j, n = E

(|s∗j, n|2
)
, σ 2

j, n = E
(|sj,n|2

)
,

σ ∗2
ij, n = E

(|s∗ij, n|2
)
, σ 2

ij, n = E
(|sij, n|2

)
.

Using again the formula (10) for E
[
Hk(ξ1)H�(ξ1+n)

]
, we can derive

σ 2
j, n = J 2(m)

m!

1

n2

n∑

k=1

n∑

�=1

r(k − �)mφj (xk) φj (x�)

= J 2(m)

m!

p

n2

n/p−1∑

k=1

n/p−1∑

�=1

r(k − �)mφ

(
pk

n

)

φ

(
p�

n

)

∼ C2 p
−1

(p

n

)mα
as n → ∞, (24)

where C2 is the constant in (14).
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On the other hand, it follows from (30) below that we also have

σ ∗2
j, n = 1

n2

n∑

k=1

n∑

�=1

∞∑

q=m

J 2(q)

q!
r(k − �)qφj (xk) φj (x�)

∼ C2 p
−1

(p

n

)mα
as n → ∞. (25)

Similar relations hold for σ 2
ij, n and σ ∗2

ij, n as well. For example, we mention that for
fixed i, j ,

σ 2
ij, n = J 2(m)

m!

1

n2

n∑

k=1

n∑

�=1

r(k − �)mψij (xk) ψij (x�)

∼ C1 p
−1
i

(pi

n

)mα
as n → ∞, (26)

where C1 is the constant in (12).
The following lemma is more than we actually need in this paper. We believe

it will be useful elsewhere.

Lemma 4.3 [Reduction Principal] Let G ∈ Gm and {ξn, n ≥ 1} ∈ (m)(α, C0).
Then for all integers i, j ≥ 0,

lim
n→∞ max

1≤k≤n
|s∗j, k − sj, k|

σj, n
= 0 a.s. (27)

lim
n→∞ max

1≤k≤n
|s∗ij, k − sij, k|

σij, n
= 0 a.s. (28)

Proof We only prove (27), the proof of (28) follows from the same argument. Note
that the orthogonality of {Hk(x)} implies that

E
(|s∗j, n − sj, n|2

) = E
(|s∗j, n|2

)− E
(|sj, n|2

)

= 1

n2

n∑

k=1

n∑

�=1

∞∑

q=m+1

J 2(q)

q!
r(k − �)qφj (xk) φj (x�).

(29)

Define

hc, j =̂ 1

n2

c+j∑

k=c+1

c+j∑

�=c+1

∞∑

q=m+1

J 2(q)

q!
|r(k − �)|q ∣∣φj (xk)

∣
∣
∣
∣φj (x�)

∣
∣ .

Then for all integers k, n ≥ 1 we have h0, k + hk, n ≤ h0, k+n. Moreover, (29)
implies that

E
(|s∗j, n − sj, n|2

) ≤ h0, n.

Thus the two assumptions of Lemma 4.2 are satisfied with c = 0.
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Let 0 < ε < ε′ < 1 be fixed and small. Then (8) implies that for n large and
all |k| ≥ nε

′
, we have |r(k)| ≤ n−αε. It follows that

h0,n = 1

n2

⎡

⎣
n∑

k=1

∑

|k−�|≤nε′

∞∑

q=m+1

J 2(q)

q!
|r(k − �)|q ∣∣φj (xk)

∣
∣
∣
∣φj (x�)

∣
∣

+
n∑

k=1

∑

|k−�|>nε′

∞∑

q=m+1

J 2(q)

q!
|r(k − �)|q ∣∣φj (xk)

∣
∣
∣
∣φj (x�)

∣
∣

⎤

⎦

≤ C

n2

[

n1+ε′ + n−αε
n∑

k=1

n∑

�=1

J 2(m)

m!
|r(k − �)|m ∣∣φj (xk)

∣
∣
∣
∣φj (x�)

∣
∣

]

.

(30)

Similar to (24), we derive that

1

n2

n∑

k=1

n∑

�=1

J 2(m)

m!
|r(k − �)|m ∣∣φj (xk)

∣
∣
∣
∣φj (x�)

∣
∣ ∼ C3 p

−1
(p

n

)mα
(31)

as n → ∞, where C3 is the positive and finite constant defined by

C3 = C0 J
2(m)

m!

∫ ∫

|x − y|mα|φ(x)||φ(y)
∣
∣
∣
∣ dx dy.

This and (24) imply that the left hand side of (31) is comparable with σ 2
j, n, i.e.,

1

n2

n∑

k=1

n∑

�=1

J 2(m)

m!
|r(k − �)|m ∣∣φj (xk)

∣
∣
∣
∣φj (x�)

∣
∣ � σ 2

j, n. (32)

here an � bn means that an/bn is bounded above and below by positive and finite
constants as n → ∞. It follows from (30) and (32) that for n large enough

h0, n ≤ C n−ησ 2
j, n, (33)

where η = min {αε, 1 −mα − ε} > 0. Hence by Lemma 4.2 with c = 0, we see
that for any q ≥ 1

E

(

max
1≤n≤2q

∣
∣s∗j, n − sj, n

∣
∣2
)

≤ (q + 1)2h0,2q ≤ Cq22−ηq/2 σ 2
j, 2q .

Hence,

∞∑

q=1

E

⎡

⎢
⎣

max1≤n≤2q

∣
∣
∣s∗j, n − sj, n

∣
∣
∣
2

σ 2
j, 2q

⎤

⎥
⎦ < ∞.

This implies that

lim
q→∞

max1≤n≤2q

∣
∣
∣s∗j, n − sj, n

∣
∣
∣

σj, 2q
= 0 a.s. (34)
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Since the sequence {G(ξk)} is stationary, we also have

lim
q→∞

max2q≤n≤2q+1

∣
∣
∣s∗j, n − s∗j, 2q − sj, n + sj, 2q

∣
∣
∣

σj, 2q
= 0 a.s. (35)

Therefore, (27) follows from (32), (34), (35) and a standard monotonicity argument.
��
Lemma 4.4 Under the assumptions of Theorem 3.1,

S1 =̂E
∣
∣
∣
∣
∣
∣

p−1∑

j=0

(
b̂j − bj

)2 − C2
(
n−1p

)mα

∣
∣
∣
∣
∣
∣
= o

(
(n−1p)mα

)
.

Proof We first consider the behavior of
∑p−1

j=0

(
b̂j − Eb̂j

)2
.

Note that

b̂j − Eb̂j = 1

n

n∑

k=1

G(ξk)φj (xk) = s∗j, n.

It follows from the triangle inequality and the Cauchy–Schwarz inequality that

E

∣
∣
∣
∣
∣

p−1∑

j=0

(
b̂j−Eb̂j

)2−C2
(
n−1p

)mα
∣
∣
∣
∣
∣
≤E

∣
∣
∣
∣
∣

p−1∑

j=0
s2
j,n−C2

(
n−1p

)mα
∣
∣
∣
∣
∣

+2

[
p−1∑

j=0
E(s2

j, n)

]1/2 [
p−1∑

j=0
E
(
s∗j, n−sj, n

)2
]1/2

+
p−1∑

j=0
E
(
s∗j, n−sj, n

)2
.

(36)

By (the proof of) Lemma 4.3, the last two terms in (36) are of the ordero
(
(n−1p)mα

)
.

We claim that

E

∣
∣
∣
∣
∣
∣

p−1∑

j=0

s2
j,n − C2

(
n−1p

)mα

∣
∣
∣
∣
∣
∣
= o

(
(n−1p)mα

)
. (37)

To prove this, put Qn = ∑p−1
j=0 s

2
j,n and µn = E(Qn). Then by (24) we have

µn = C2
(
n−1p

)mα + o
(
(n−1p)mα

)
.

Thus, the left hand side of (37) is at most

S11 = E1/2(Qn − µn)
2 + o

(
(n−1p)mα

)
. (38)

Note that Qn is a quadratic form of the stationary sequence {G(ξk), k ≥ 1} with
long-range dependence. In order to evaluate its variance, we apply the “diagram
formula” for multiple Wiener-Itô-Dobrushin integrals, which gives a convenient
way to calculate the expectation of the products of Gaussian random variables or
multiple Wiener-Itô-Dobrushin integrals. See Major (1981, Sect. 5), or (Fox and
Taqqu, 1985, Sect. 3) for more information.
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Since {ξk, k ≥ 1} is a stationary Gaussian process with mean 0 and variance
1, it follows from the S. Bochner theorem that its covariance function r(k) has the
following spectral representation

r(k) =
∫

[−π,π ]

eikyF (dy), ∀ k ∈ Z,

where F is a Borel probability measure on [−π, π ] which is called the spectral
measure of {ξk, k ≥ 1}. LetZF be the corresponding random spectral measure, i.e.
the complex-valued Gaussian scattered measure such thatE(ZF (A))2 = F(A) for
all Borel set A ⊂ [−π, π ]. Then for all k ≥ 1

ξk =
∫

[−π,π ]

eikydZF (y).

It follows from Theorem 4.2 of Major (1981) that

Hm(ξk) =
′′∫

[−π, π ]m

eik(y1+···+ym) dZF (y1) · · · dZF (ym), (39)

where
∫ ′′ is the multiple Wiener-Itô-Dobrushin integral. Such a representation

and multiple Wiener-Itô-Dobrushin integrals played important rôles in Fox and
Taqqu (1985), who investigated the limiting processes of the quadratic forms
∑
nt�

k=1

∑
nt�
�=1 Hm(ξk)Hm(ξ�). In particular, by applying the “Diagram Formula”,

(Fox and Taqqu, 1985, Lemma 3.4) showed

Hm(ξk)Hm(ξ�) = m! r(k − �)m

+
m∑

h=1

[

(m−h)!
(
m

h

)2

r(k−�)m−h Kh(k, �)

]

, (40)

where

Kh(k, �) =
′′∫

[−π, π ]2h

eik(y1+···+yh)+i�(yh+1+···+y2h) dZF (y1) · · · dZF (y2h).

(41)

In order to express Qn − µn in terms of the multiple Wiener-Itô-Dobrushin
integrals Kh(k, �), we denote

ak� = J 2(m)

(m!)2
pn−2

p−1∑

j=0

φ(pxk − j)φ(px� − j).
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Similar to the proof of Lemma 3.5 in Fox and Taqqu (1985), we see that (40)
implies

Qn − µn =
n∑

k=1

n∑

�=1

ak,� [Hm(ξk)Hm(ξ�)− E (Hm(ξk)Hm(ξ�))]

=
n∑

k=1

n∑

�=1

ak, �

m∑

i=1

(m− i)!

(
m

i

)2

r(k − �)m−iKi(k, �)

=
m∑

i=1

(m− i)!

(
m

i

)2 n∑

k=1

n∑

�=1

ak, � r(k − �)m−iKi(k, �).

By the Cauchy–Schwarz inequality, we have

E (Qn−µn)2 ≤m
m∑

i=1

((m− i)!)2
(
m

i

)4

E

[
n∑

k=1

n∑

�=1

ak, � r(k−�)m−iKi(k, �)

]2

.

(42)

Let 1 ≤ i ≤ m be fixed. We note that

E

[
n∑

k=1

n∑

�=1

ak,� r(k − �)m−iKi(k, �)

]2

=
n∑

k1=1

n∑

�1=1

n∑

k2=1

n∑

�2=1

ak1, �1 ak2, �2 r(k1 − �1)
m−i r(k2 − �2)

m−iE [Ki(k1, �1)Ki(k2, �2)] . (43)

Lemma 3.6 of Fox and Taqqu (1985) states that

E [Ki (k1, �1)Ki(k2, �2)]

=
i∑

q=0

(i!)2
(
i

q

)2

r (k1 − k2)
q r (�1 − �2)

q r (�1 − k2)
i−q r (k1 − �2)

i−q .

It follows that (43) is a sum of the terms (i!)2
(
i

q

)2
Tq(q = 0, . . . , i), where

Tq =
n∑

k1=1

n∑

�1=1

n∑

k2=1

n∑

�2=1

ak1, �1 ak2, �2 r (k1 − �1)
m−i r (k2 − �2)

m−i

×r (k1−k2)
q r (�1−�2)

q r (�1−k2)
i−q r (k1−�2)

i−q . (44)
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Some elementary calculations similar to those in Lemmas 4.4 show that Tq can be
written as

J 4(m)

(m!)4
p2

n4

p−1∑

j1=0

p−1∑

j2=0

∑

k1

∑

�1

∑

k2

∑

�2

φ

(
pk1

n
− j1

)

φ

(
p�1

n
− j1

)

×φ
(
pk2

n
− j2

)

φ

(
p�2

n
− j2

)

× r (k1 − �1)
m−i r (k2 − �2)

m−i

×r (k1 − k2)
q r (�1 − �2)

q r (�1 − k2)
i−q r (k1 − �2)

i−q

≤ C
(p

n

)2mα
p−2

p−1∑

j1=0

p−1∑

j2=0

∫∫∫∫

|x1 − y1|−(m−i)α|x2 − y2|−(m−i)α

× |x1 − x2 − (j1 − j2)|−qα |y1 − y2 − (j1 − j2)|−qα
× |y1 − x2 − (j1 − j2)|−(i−q)α
× |x1 − y2 − (j1 − j2)|−(i−q)α φ(x1)φ(y1)φ(x2)φ(y2)dx1dy1dx2dy2

(45)

for all n large enough.
Let k = j1 − j2. We will make use of the following inequality:
∫∫∫∫

|x1 − y1|−(m−i)α|x2 − y2|−(m−i)α|x1 − x2 − k|−qα |y1 − y2 − k|−qα

× |y1 − x2 − k|−(i−q)α |x1 − y2 − k|−(i−q)α
×φ(x1)φ(y1)φ(x2)φ(y2)dx1dy1dx2dy2

≤ C k−2αi, ∀ k ≥ 1. (46)

We only need to verify this for k ≥ 2. It follows from the easy fact that |y1−y2−k| ≥
k − 1 ≥ k/2 for all y1, y2 ∈ [0, 1] and all k ≥ 2.

By changing the order of summation in (45) and applying (46), we derive

|Tq | ≤ C
(p

n

)2mα
p−2

p−1∑

k=1

(p − k) k−2iα

≤ C
(p

n

)2mα
p−2iα. (47)

Combining (38), (42)–(47), we have established (37).
The rest of the proof of Lemma 4.4 is quite standard. Using the triangle inequal-

ity and the Cauchy–Schwarz inequality, we can obtain

S1 ≤ E1/2 (Qn − µn)
2 +

p−1∑

j=0

(
dj − bj

)2

+2

⎡

⎣
p−1∑

j=0

E
(
b̂j − dj

)2
p−1∑

j=0

(
dj − bj

)2

⎤

⎦

1/2

+ o
(
(n−1p)mα

)

= S11 + S12 + S13 + o
(
(n−1p)mα

)
. (48)



L. Li and Y. Xiao

It follows from (16) in Lemma 4.1 that

sup
j

|dj − bj | = O(n−1/2).

Thus,

S12 = O(n−1p) = o
(
(n−1p)mα

)
,

S13 = O
(
(n−1p)1/2µ1/2

n

) = o
(
(n−1p)mα

)
. (49)

The proof of Lemma 4.4 is finished. ��
Now we turn to the second sum in (15).

Lemma 4.5 Under the assumption of Theorem 3.1,

S2 =̂
q−1∑

i=0

pi−1∑

j=0

E
{(
b̂ij − bij

)2
I (|̂bij | > δi)

}
= o

(
(n−1p)mα + p−2r

)
.

Proof The way of breaking S2 into several parts is analogous to that in the proof of
Theorem 2.1 of Hall and Patil (1995, p. 916–918). However, we have to overcome
some complications caused by the fact that the errors {G(ξk), k ≥ 1} are long-range
dependent and are, in general, non-Gaussian. Let λ and β denote positive numbers
satisfying 2λ+ β = 1, and set

S ′
21 =

q−1∑

i=0

pi−1∑

j=0

E
{(
b̂ij − bij

)2
}
I (|bij | > λδi),

S ′
22 =

q−1∑

i=0

pi−1∑

j=0

E
{
( b̂ij − bij )

2I
(|̂bij − bij | > (λ+ β)δi

)}
.

The triangle inequality implies S2 ≤ S ′
21 + S ′

22. Replacing bij in the above expres-
sions with dij = E(̂bij ), we define

S21 =
q−1∑

i=0

pi−1∑

j=0

E
{(
b̂ij − dij

)2
}
I
(|bij | > λδi

)
, (50)

S22 =
q−1∑

i=0

pi−1∑

j=0

E
{(
b̂ij − dij

)2
I
(|̂bij − dij | > (λ+ β)δi

)}
. (51)

Using (17) in Lemma 4.1 and the fact nδ2
i → ∞ we can show that S21 and S22 are

the leading terms of S ′
21 and S ′

22 and S ′
21 = O(S21) and S ′

22 = O(S22) [the argu-
ments are the same as (36) and (48) above]. Hence, in order to prove the Lemma,
it suffices to prove

S21 = o
((
n−1p

)mα + p−2r
)

and S22 = o
((
n−1p

)mα)
, (52)
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respectively. Since the mean regression function g is r-times continuously differen-
tiable, by using the Taylor expansion of g and the moment condition on the mother
wavelet, we have

bij = p
−1/2
i

∫

ψ(y)

[
r−1∑

v=0

1

v!

(
y

pi

)v
g(v)

(
j

pi

)

+ 1

(r − 1)!

(
y

pi

)r 1∫

0

(1 − t)r−1g(r)
(
j + ty

pi

)

dt

⎤

⎦ dy

= κp
−(r+1/2)
i

(
gij + ηij

)
, (53)

where

gij = g(r)
(
j

pi

)

and sup0≤j≤pi−1; 0≤i≤q−1|ηij | → 0.

Hence, we have |bij | ≤ Cp
−(r+1/2)
i . Similar to (26), we have that for all i, j ,

E
(
b̂ij − dij

)2 ≤ Cp−1
i

(
n−1pi

)mα
. (54)

It follows from (50) and (54) that

S21 ≤
q−1∑

i=0

C(n−1pi)
mαI

(
pi ≤ Cδ

−2/(2r+1)
i

)

= C
(
n−1p

)mα
q−1∑

i=0

2mαi I
(
pi ≤ Cδ

−2/(2r+1)
i

)
. (55)

Note that pi ≤ Cδ
−2/(2r+1)
i implies (p2i )2r+1 ≤ Cnmαp1−mα(ln n)−m 2(1−mα)i , we

have

2(2r+mα)i ≤ C
nmαp−(2r+mα)

(ln n)m
.

There are only finitely many i’s satisfying this inequality. We denote the largest
such i by t . Since by (SP), n/(p2q) → ∞, it follows from (55) that

S21 ≤ C
(
n−1p

)mα
t∑

i=0

2mαi

≤ C
(
n−1p

)mα
2tmα

≤ C
(
n−1p

)mα
[
nmαp−(2r+mα)

(ln n)m

] mα
2r+mα

= Cn− 2rmα
2r+mα (ln n)−

m2α
2r+mα

= o
(
n− 2rmα

2r+mα
)

= o
((
n−1p

)mα + p−2r
)
. (56)
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In order to estimate S22, we have to use a different truncation than that in
Lemma 4.4. Recall that the condition of smoothing parameters p and q implies
q = O(ln n). Thus, there exists a constant C4 > 0 such that q ≤ C4 log2 n. We
choose an integer τ ≥ 2 such that τη > C4 [recall η = min{αε, 1 −mα− ε}] and
split b̂ij − dij as:

b̂ij − dij = 1

n

n∑

k=1

m+τ−1∑

q=m

J (q)

q!
Hq(ξk)ψij (xk)+ 1

n

n∑

k=1

∞∑

q=m+τ

J (q)

q!
Hq(ξk)ψij (xk)

=̂ tij,n + t∗ij,n. (57)

The triangle inequality implies

S22 ≤ 2
q−1∑

i=0

pi−1∑

j=0

E
{[
t2ij, n + (

t∗ij, n
)2
]
I (|̂bij − dij | > (λ+ β)δi)

}

≤ 2
q−1∑

i=0

pi−1∑

j=0

{
E
[
t2ij, nI

(|tij, n| > βδi
)]+ E

[
t2ij, nI

(|t∗ij, n| > λδi
)]

+E (t∗ij, n
)2
}

=̂ 2(S23 + S24 + S25).

Applying the Cauchy–Schwarz inequality to S23, we derive

S23 ≤
q−1∑

i=0

pi−1∑

j=0

E1/2
(
t4ij, n

)
P 1/2

(|tij, n| > βδi
)
. (58)

By using (39), we write tij, n as a sum of the q-tuple Wiener-Itô-Dobrushin integrals:

tij, n =
m+τ−1∑

q=m

′′∫

[−π,π ]q

J (q)

q!

1

n

n∑

k=1

eik(y1+···+yq)ψij (xk)dZF (y1) . . . dZF (yq).

(59)

Denote the above integrands by fq
(
y1, . . . , yq

)
(q = m, . . . , m + τ − 1). It is

clear that every fq satisfies the following conditions:

(1) fq
(−y1, . . . ,−yq

) = fq(y1, . . . , yq) ;
(2) ‖fq‖2

F = ∫ |fq(y1, . . . , yq)|2 dF(y1) . . . dF(yq) < ∞;
(3) For every permutation π of {1, 2, . . . , q},

fq
(
yπ(1), . . . , yπ(q)

) = fq(y1, . . . , yq).

In the notation of Major (1981, p. 22–23), we have fq ∈ H
q

F . Hence, by apply-
ing Corollary 5.6 in Major (1981, p. 53) together with an estimate of the constant
C(q,N) in Major (1981, p. 69) to each q-tuple Wiener-Itô-Dobrushin integral
IF (fq) in (59), we deduce that for all integer N ≥ 1,

E
[
IF (fq)

2N
] ≤ (2N)qN

[
IF (fq)

2
]N
. (60)
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It follows Jensen’s inequality and (60) that

E
[
(tij, n)

2N
] = E

⎡

⎣

(
m+τ−1∑

q=m
IF (fq)

)2N
⎤

⎦

≤ τ 2N−1
m+τ−1∑

q=m
E
[
IF (fq)

2N
]

≤ τ 2N−1
m+τ−1∑

q=m
(2N)qN

[
IF (fq)

2
]N

∼ CN1 τ
2N−1

m+τ−1∑

q=m
(2N)qN

[
p−1
i

(pi

n

)qα]N
, as n → ∞,

where the last inequality follows from (26). Hence for all positive integers N such
that

N
(pi

n

)α
≤ 1

4
, (61)

we have

E
[
(tij, n)

2N
] ≤ (2N)mNτ 2N

[
σij,n

]2N
. (62)

Let � = |tij, n|/σij,n, then by (62), we derive that for all integers N satisfying
(61),

E
(
�2N

) ≤ (2N)mN τ 2N.

For any u > 0, we take

N = 1

2e

(u

τ

)2/m
. (63)

A simple argument using Chebyshev’s inequality shows that, as long as the N
defined in (63) satisfies (61), we have

P(� > u) ≤ (2N)mN τ 2N

u2N

= exp

(

−m

2e

(u

τ

)2/m
)

. (64)

Now let

u = βδi

σij,n
.

Then it is easy to verify that for all n large enough, the N defined in (63) satisfies
(61). It follows from (64) that

P
(|tij, n| > βδi

) ≤ exp

(

−m

2e
σ

−2/m
ij,n

(
βδi

τ

)2/m
)

.
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By the choice of δi , we derive that for some ε > 0,

P
(|tij, n| > βδi

) ≤ exp
(−2β(2/m) ln n

) = n−2β(2/m) . (65)

Combining (58), (61) and (65), we obtain

S23 ≤ C

q−1∑

i=0

pi−1∑

j=0

p−1
i

(
n−1pi

)mα
n−β(2/m)

= C
(
n−1pq

)mα
n−β(2/m)

= o
(
n− 2rmα

2r+mα
)

= o
((
n−1p

)mα + p−2r
)
, (66)

the third equality follows from n−1pq → 0 and choose β < 1 so close to 1.
To estimate S24, we note that

S24 ≤
q−1∑

i=0

pi−1∑

j=0

E1/2
(
t4ij, n

)
P 1/2

(|t∗ij, n| > λδi
)
. (67)

The same argument as in proof of Lemma 4.3 [cf. (33)] gives that

E
[(
t∗ij, n

)2
]

≤ Cn−τη · σ 2
ij, n.

Thus, Chebyshev’s inequality implies that

P
(|t∗ij, n| > λδi

) ≤ Cn−τη.

Hence, similar to (66), we have

S24 ≤ C
(
n−1p

)mα · n−τη
q−1∑

i=0

2mαi

≤ C
(
n−1p

)mα · n−τη · 2qmα

= o
(
(n−1p)mα

)
, (68)

the last equality follows from our choice of τ which implies n−τη · 2qmα → 0.
In the same way, we have

S25 ≤ C
(
n−1p

)mα · n−τη · 2qmα

= o
(
(n−1p)mα

)
. (69)

Combining the estimates on S21 and S22 together, we obtain (52). This finishes the
proof of Lemma 4.5. ��
Lemma 4.6 Under the assumption of Theorem 3.1,

S3 =̂E
∣
∣
∣
∣
∣
∣

q−1∑

i=0

pi−1∑

j=0

b2
ij I

(|̂bij | ≤ δi
)− p−2rκ2

(
1 − 2−2r

)−1
∫

g(r)
2

∣
∣
∣
∣
∣
∣
= o

(
p−2r

)
.
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Proof Let ε > 0, and define

S30 =
q−1∑

i=0

pi−1∑

j=0

b2
ij I

(|̂bij | ≤ δi
)
,

S31 =
q−1∑

i=0

pi−1∑

j=0

b2
ij I

(|bij | ≤ (1 + ε)δi
)
,

S32 =
q−1∑

i=0

pi−1∑

j=0

b2
ij I

(|bij | ≤ (1 − ε)δi
)
,

� =
q−1∑

i=0

pi−1∑

j=0

b2
ij I

(|̂bij − bij | > εδi
)
.

Then the triangle inequality implies

S32 −� ≤ S30 ≤ S31 +�. (70)

Using the Eq. (53) for bij and the assumption p2r+1
i δ2

i → ∞ in (SP), we see that
I {|bij | ≤ (1 + ε)δi} = I {|bij | ≤ (1 − ε)δi} = 1 for n sufficiently large, and

S31 = S32 = p−2rκ2
(
1 − 2−2r

)−1
∫

g(r)
2 + o(p−2r ). (71)

For more details, see Hall and Patil (1995, p. 920). On the other hand, applying the
argument analogous to that for S22, we have

E� =
q−1∑

i=0

pi−1∑

j=0

b2
ijP

(|̂bij − bij | > εδi
) ≤ Cn−ε2/m

q−1∑

i=0

pi−1∑

j=0

b2
ij = o

(
p−2r

)
.

Combining (70) and (71), we have proved the lemma. ��
Lemma 4.7 Under the assumption of Theorem 3.1,

S4 ≡
∞∑

i=q

pi−1∑

j=0

b2
ij = o(p−2r ).

Proof The proof follows from the bij ’s Taylor expansion (53) and q → ∞.
We are now in the position to give the proof of the Theorems 3.1 and 3.2. ��

Proof of the Theorem 3.1 By using (15), we have

E

∣
∣
∣
∣

∫

(ĝ − g)2 −
{

C2(n
−1p)mα + p−2rκ2(1 − 2−2r )−1

∫

g(r)
2

}∣
∣
∣
∣

≤ S1 + S2 + S3 + S4.

Hence the proof follows from Lemmas 4.2 to 4.5.
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Proof of the Theorem 3.2 We use the same notation as in Hall and Patil (1995).
Notice that, by the orthogonality properties of φ and ψ ,

∫

(ĝ − g)2 = Iq(Z,Z, . . . ),

where Z denotes the corresponding set of integers (for instance,Ψi = {0, 1, . . . , pi
− 1}) and

Iq(Ψ,Ψ0, Ψ1, . . . ) =
∑

j∈Ψ

(
b̂j − bj

)2 +
q−1∑

i=0

∑

j∈Ψi

(
b̂ij − bij

)2
I
(|̂bij | > δi

)

+
q−1∑

i=0

∑

j∈Ψi
b2
ij I

(|̂bij | ≤ δi
)+

∞∑

i=q

∑

j∈Ψi
b2
ij

=
∑

j∈Ψ

(
b̂j−dj

)2 +
∑

j∈Ψ

(
dj − bj

)2+2
∑

j∈Ψ

(
b̂j − dj

) (
dj − bj

)

+
q−1∑

i=0

∑

j∈Ψi

(
b̂ij − dij

)2
I
(|̂bij | > δi

)

+
q−1∑

i=0

∑

j∈Ψi

(
dij − bij

)2
I
(|̂bij | > δi

)

+2
q−1∑

i=0

∑

j∈Ψi

(
b̂ij − dij

)
(dij − bij )I

(|̂bij | > δi
)

+
q−1∑

i=0

∑

j∈Ψi
b2
ij I

(|̂bij | ≤ δi
)+

∞∑

i=q

∑

j∈Ψi
b2
ij

=: I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

From Lemma 4.1, it is easy to see I2 = o
(
(n−1p)mα

)
and E(I5) = O (E(I4)).

We will show below that E(I1) = O
(
(n−1p)mα

)
and E(I4) = o

(
n−2rmα/(2r+mα)),

whether g is smooth or only piecewise smooth. Hence, applying the Cauchy-Sch-
warz inequality, we can show E(I3) and E(I6) are of the order o

((
n−1p

)mα)
and

o
(
n−2rmα/(2r+mα)), which is negligible compared to the main terms of MISE.
So, we focus on terms I1, I4, I7 and I8. When g is only piecewise smooth, let

� denotes the finite set of points where g(s) has discontinuities for some 0 ≤ s ≤ r .
Suppose supp φ ⊆ (0, 1), supp ψ ⊆ (0, 1) and let

K = {k : k ∈ (px, px + 1) for some x ∈ �} ,
Ki = {k : k ∈ (pix, pix + 1) for some x ∈ �} .

Also let K
c,Kc

i denote their complements. Then, unless j ∈ Ki , bij and b̂ij are con-
structed entirely from an integral over or an average of data values from an interval
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where g(r) exists and is bounded. Also, unless j ∈ K, bj and b̂j are constructed
solely from such regions. Thus we may write

Iq (Ψ,Ψ0, Ψ1, . . . ) = I1(K)+ I2 + I3 + I4 (K0,K1,K2, . . . )+ I5 + I6

+I7 (K0,K1,K2, . . . )+ I8 (K0,K1,K2, . . . )

+I1
(
K
c
)+ I4

(
K
c
0,K

c
1,K

c
2, . . .

)

+I7
(
K
c
0,K

c
1,K

c
2, . . .

)+ I8
(
K
c
0,K

c
1,K

c
2, . . .

)
,

(72)

where

I1(K) =
∑

j∈K

(
b̂j − dj

)2
, I1

(
K
c
) =

∑

j∈Kc

(
b̂j − dj

)2
,

I4 (K0,K1,K2, . . . ) =
q−1∑

i=0

∑

j∈Ki

(
b̂ij − dij

)2
I
(|̂bij | > δi

)
,

I4
(
K
c
0,K

c
1,K

c
2, . . .

) =
q−1∑

i=0

∑

j∈K
c
i

(
b̂ij − dij

)2
I
(|̂bij | > δi

)
,

the rest of the terms are defined similarly. However, for our compactly supported
waveletsφ andψ , both K and Ki have no more than 3(#�) elements for each i. Con-
sidering q = O(ln n), we can show I1(K), I4 (K0,K1,K2, . . . ), and I7 (K0,K1,
K2, . . . ) are of the lower order o

(
(n−1p)mα

)
. Thus it is negligible compared to the

main terms of MISE. Although bij is only of the order p−1/2
i when g is not r-times

smooth, based on theorem’s additional assumption p2r+mα
q n−2rmα → ∞, we read-

ily see that I8 (K0,K1,K2, . . . ) = o
(
n−2rmα/(2r+mα)). By tracing the whole proof

of Theorem 3.1 carefully, noticing that when the error εk = Hm(ξk), there is no
need to have terms S24 and S25 in Lemma 4.5 (Hence we don’t need assumption
q = o(ln n), which is contradicted with assumption p2r+mα

q n−2rmα → ∞). There-
fore, we will see the rest of the terms of the right hand side of (72) have precisely
the asymptotic properties claimed for

∫
(ĝ − g)2 in Theorem 3.2.
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Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A. (1998). Wavelets, approximation and
statistical applications. Lecture notes in statistics, vol. 129. Berlin Heidelberg New York:
Springer.

Hart, J. D. (1991). Kernel regression estimation with time series errors. Journal of the Royal
Statistical Society. Series B. Methodological 53, 173–187.

Johnstone, I. M. (1999). Wavelet threshold estimators for correlated data and inverse problems:
Adaptivity results. Statistica Sinica 9, 51–83.

Johnstone, I. M., Silverman, B. W. (1997). Wavelet threshold estimators for data with correlated
noise. Journal of the Royal Statistical Society. Series B. Methodological 59, 319–351.
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