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DIMENSION RESULTS FOR GAUSSIAN VECTOR FIELDS
AND INDEX-a STABLE FIELDS!

By Ymmin X1a0
Wuhan University

The Hausdorff dimension and packing dimension of the image and
graph of Gaussian vector fields and index-a stable fields are obtained
under general conditions which allow for different local behavior of the
components and for dependence among them. These results correct some
errors in print. The condition for an index-a stable field to have k-multiple
points are considered and in the case of Nk > (¢ — )I%_;a;, the Haus-
dorff dimension of the set of k-multiple times is given.

1. Introduction. In this paper, we study the Hausdorff dimension and
packing dimension of various random sets arising from Gaussian vector fields
and their natural generalization, index-a stable fields. There has been con-
siderable interest in the Hausdorff dimension and packing dimension of the
image, graph, level sets and multiple points of Gaussian fields, including
fractional Brownian motion (see [1]-[3], [7], [9], [15], [19] and references
therein). Recently, Nolan [12] considered the sample path properties of stable
fields and obtained the Hausdorff dimension of the image, graph and level
sets for classes of index-a stable fields. His result generalized Cuzick’s
Theorem 1 [2]. However, there are flaws in their results and in Theorem 8.4.1
in [1].

In Section 2, we find the Hausdorff dimension of the image X(E) = {X(¢),
t € E} and graph Gr X(E) = {(¢, X(¢)), t € E} of index-a Gaussian fields,
where E C R” is an arbitrary compact set. This result corrects Theorem 1 in
[2], Theorem 8.4.1 in [1] and generalizes a theorem of Kahane [9]. We also
obtain the packing dimension of X([0,1]") and Gr X([0, 1]V).

In Section 3, we prove an analogous result for index-a stable fields which
corrects Theorem 4.1 of [12].

Kono [10], Goldman [7] and Testard [16] studied the existence of k-multi-
ple points for fractional Brownian motion. Weber [18] obtained the Hausdorff
dimension of the 2-multiple times. Xiao [21],[22] found the Hausdorff dimen-
sion and packing dimension of k-multiple points and extended Weber’s result
to the restriction of fractional Brownian motion on disjoint compact sets in
RY. Cuzick [3] proved analogous results for more general (N, d) Gaussian
fields. In Section 4, we generalize these results to certain locally nondeter-
ministic (LND) index-a stable fields.
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' Key words and phrases. Gaussian vector fields, stable fields, Hausdorff dimension, packing
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274 Y. XTAO

2. Index-a Gaussian vector fields. Let X(¢) = (X,(¢),..., X,;(¢)) be a
Révalued mean zero Gaussian vector field on RY. We assume that the
coordinate fields X;,..., X, have stationary increments. Denote

2
o?(t) = E(X;(t) - X;(0)) .
If for each j = 1,2,..., d, there exists 0 < a; < 1 such that

a; = sup{a > 0, Tim [¢"5;(2) = 0}
[t]-0
- inf{a >0, lim [¢"%;(¢) = +oo},
[t|-0

we call X(¢) an index-a Gaussian field for @ = (a5, ..., a;). For simplicity,
we shall assume that all o,(¢) are bounded away from zero on I} =[—1, 11¥
for ¢t bounded away from the origin. To avoid degeneracies, we make the
following restriction on the type of dependence allowed between the coordi-

nate fields X,..., X;: there exists a constant & > 0 such that
d
(2.1) detcov( X(¢) — X(s)) = e[ o?(t - s),
j=1

where cov(Y') denotes the covariance matrix of the random vector Y. This
condition will be satisfied if the coordinate fields are independent. A specific
example of index-a Gaussian fields that we consider is fractional Brownian
motion.

Recall briefly the definition of Hausdorff dimension and packing dimen-
sion. For each a > 0, E € RY, the a-dimensional Hausdorff measure of E is
defined by

(22) s*—-m(E)= ;intl)inf{Z(Zri)a, Ec UB(x;,r),r < 8},

where B(x;, r;) denotes the open ball of radius r; centered at x;, s* — m is a
metric outer measure and all Borel sets are measurable. The Hausdorff
dimension of E is defined by

dim E =inf{a > 0, s* — m(E) = 0}
=sup{a>0,s*—m(E) = +x}.

In [15], Taylor and Tricot defined another set function s* — P(E) in which
economical coverings are replaced by disjoint packings,

s*—P(E) = %i})rz)sup{Z(zri)a, B(x;,r;) aredisjoint, x € E, r; < 6}.

l

s® — P is not an outer measure because it fails to be countably subadditive.
However, s — P is a premeasure, so we can obtain a metric outer measure
, on R" by ‘

% — p(E) = inf{Zs"‘ -P(E),Ec U E}
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s* — p(E) is called the a-dimensional packing measure of E. The packing
dimension of E is

Dim E = inf{a > 0, s* — p(E) = 0}
=sup{a > 0,s* — p(E) = +}.
It is known [15] that s* — m(E) < s* — p(E) for any E c RY, so
(2.3) 0<dimE <DimE <N
For each ¢ > 0 and bounded set E c RY, let
M(e, E) = smallest number of balls of radius ¢ need to cover E,

. log M(¢,E)
6(E) = liminf ————— |
£—-0 —log &
log M(¢,E)
A(E) =1 —_—
T

4 and A are called the upper and lower entropy indices of Kolmogorov. Tricot
[17] proved that

(2.4) Dim(E) = A(E) = inf{sup AE),Ec U E}

An excellent general reference on Hausdorff dimension and packing dimen-
sion is [4].

We use c;,cy,..., or ¢ to denote unimportant constants; they may be
different from line to line.

We first prove some lemmas. Lemma 2.1 is a generalization of Lemma 8.2.1
in [1] and Theorem 6 in [9], Chapter 10. Lemma 2.1 and Lemma 2.3 show
that Theorem 1 in [2] and Theorem 4.1 in [12] are incorrect.

LEMMA 2.1. LetE C RYbe a compact set, f = (fi,..., fy): E = R? satisfy
a uniform Holder condition of order a = (a;,..., a;) on E, thatis,V x,y € E,

(2.5) lfi(x) —fi(y) <clx—y%  j=1,2,...,d,
wherec > 0,0 < a; <1(j = 1,...,d) are constants. If

a; < ay < - < ay,
then

a;

dim E + £/_y(a; — a;) .
(2.6) dim f(E) < min{d; ,1<j=<d},

dim E + ¥/_,(a; — a;)
dim Gr f(E) < min ,

a;

(@ ,
' l1<j<d;dimE + Z(l—ai)}.
. i=1
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Proor. Clearly dim f(E) <d, dim f(E) < dim Gr f(E), we only prove
(2.7). Take any y > dim E. Then by (2.2), for each & > 0, there exists a
sequence of balls {B;} with diam B, < §, such that

(2.8) Ec UB,, ) (diamB))"< +x.
l l

By t2.5), each f(B,) can be covered by a rectangle C, of sides c(diam B,)*(i =
,...,d). For each fixed 1 < j < d, C, can be covered by O((diam B,)¥*-(«i~))
cubes C;, of edge (diam B,)%. Since

Grf(E)yc U UB,xCy, diam(B, X C;;) < c,(diam B;)™
l k

by (2.8), we have

Y (diam( B, x C,,))"* Ei- oy~ /e
Lk

< ¢, ¥ (diam B))T-1%~ %) (diam B,)?* F- 1=
l

=c, Y. (diam B;)”
< 4o,
This proves that
(29) dimGrf(E) < min| 22 E* G -

a;

On the other hand, each rectangle C; can be covered by
O((diam B,)*-««~D) cubes C}, of edge diam B;, and Gr f(E) c U, U ,B, X
Cii»

)y (dlam(Bl X Cy )7+E.-,(1 a)
Lk

<cy Y (diam B;)”
1
< +oo,
Hence,
d
(2.10) dimGrf(E) <dimE + Y (1 - o).

i=1
From (2.9) and (2.10) we prove (2.6) and (2.7). O

By using (2.4) and an argument in [19], we can prove the following packing
dimension analog.
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LEMMA 2.2. Under the conditions of Lemma 2.1, we have

Dim E + Z{=1( a,l - ai)

a;

(2.11) Dim f(E) smin{d; 1 sjsd},

DimE + Zi_(a;, — o;
Dim Gr f(E) Smin{ 19 a),

a;

(2.12) )
l1<j<d;DimE+ ) (1- ai)}.
i=1

REMARK. From the proof of Lemma 2.1, it is easy to show that if f
satisfies a uniform Hélder condition of every order 8 < a, that is, for every
B=(By,...,By) With 0 < B; < a;, j=1,...,d, (2,5) holds, then @2.6), 2.7,
(2.11), and (2.12) are still valid.

By a simple calculation, we can prove the following lemma.

ZkLEMMAh 28. If 0=qy<a;<ay,< " <a; and I'ja; <dimE <
i-1¢;, then

A =min{d; ,j=1,...,d

a;

a

andk —1< A<k . IfdimE > X¢ ,o;, then A =d.
Now we prove the main result of this section.

THEOREM 2.1. Let X(¢t) be an (N, d) Gaussian field of index a with
coordinates so arranged that the a satisfy

O=ay<a; < -+ <ay<1

and let E ¢ R" be a compact set. If for any (s,t) € E X E (2.1) holds, then
with probability 1,

dim E + IJ_y(a; — o
min{d; (e ),lsjsd

a;

(2.13) dim E + Zf-’\;l( o, — a;)

= ak

d, . if dim E > Z:'i=1ai’

dim X(E)

if Zf:(}al < dim E < ):Llai,
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dim E + E{=1(aj - ai)

dimGr X(E) = min{

@
d
(2.14) l<j<d;dmE+ ¥ (1-q)
i=1
dim X(E), if dim X(E) <d,
" |dim E + Z% (1 - @), ifdim X(E) =d.

ProoF. By Theorem 8.3.2 in [1], X(¢) satisfies almost surely a uniform
Hélder condition of order B for every B with0 < B; < a; (i=1,...,d) on E.
The right-hand sides of (2.13) and (2.14) serve as a.s. upper bounds to
dim X(E) and dim Gr X(E), respectively, is an immediate consequence of
Lemma 2.1 and its remark. We need only to show that they also serve as
lower bounds almost surely.

Consider X(E). If dim E = 0, there is nothing to prove. We assume L*~]a;
< dim E < X%, ;. Then by Lemma 2.3, £ — 1 < A < k. By standard capacity
arguments, it is sufficient to show that for any £ — 1 < y < A, there exists a
positive measure ¢ on E, such that

(2.15) [E[EE(IX(t) - X(s)I7")o(dt)o(ds) < +.

Let
_X() ~X(s)
o;(t — )
By (2.1), we have det cov(Y(¢, s)) > &:
E(1X(¢) - X(s)I"7)

d ) -v/2
2.16) '[Rd[igl(xim(t -3)) ]
y 1 [ 1
(27)%? /det cov(Y) s )

where X' is the transpose of X = (x,,...,x,). Take B; (j =1,...,d) with
B; > a; for a; <1, B; =1 when o; = 1 and

Yi(t,s)

¢ . J=1,...d

Xeov(Y) ' X' |dxy -+ dxg,

k
(217) B <By< - <Py, VB <dmE+ Y (B —B).

i=1
Then there exist § > 0, c; > 0 such that for |¢] < 6,
(2.18) oi(t) 2 cltl®”  (j=1,...,d).
It is known that for any d X d real symmetric matrix B, there is a constant
¢, > 0, such that for every X € R?,
(2.19) | XBX'| < ¢, XX'.
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Since cov(Y') is positive definite with rank d, there is a d X d invertible
matrix A such that cov(Y)™! = AA'. Then by (2.19) with B = A"1(A")"1, we
have

1
(2.20) Xeov(Y)'X > —XX'.
4

By (2.16)-(2.20), we have for |t — s| < 6,
E(1X(t) - X(s)I™7)

d 9 -v/2
saof | £ (st 7]

(2.:21) x exp( = (xf + - +x4)/2¢,) du; - dxg
= cslt — sI_w‘fRd[xf ¥ (xlt — slPmY 4 e
+ (e =) "
X exp(—(x} + -+ +x3)/2¢,) dx; -+ dxy
The integral in (2.21) is convergent since y < d. Using the fact that

e e 2y Y/2 —y+1
(2.22) j (y2 +a?) "*dy =c(y)a" "1, fory>1,
0

+ —v/2
[ (*+a?) "2 exp(—y”) dy

=cy(y)a "1 + ¢5(y), for0<y<1,p>0,

where c,(y), c,(y) and c4(y) are positive constants depending only on v,
A = B means that there is a constant ¢ > 0 such that ¢c™! <A/B <c. We
first integrate out x, to obtain that (2.21) is less than a constant times

- —B.\2 g 2] (r-1/2
It — s wl,[qu[(xZIt — s|Pe B;) 4 oo +(xd|t — g|Pa ﬁl) ]

(2.24)

(2.23)

2+ o+l
=% |dx, - dxy.

X exp(— 20
4

Then iterate this argument for dx,,..., dx,_,. We find that (2.24) is less than
a constant times
It — s|—731—(7‘ IXBz—BD— —(y—k+1XBr—Bi-1)

d 9 —(y-k+1)/2
de , 2+ ) (xilt —sIBi—B*) ]
Ra-k*1 izk+1
Ifx?
Xexp|— p ot dxg
Cy
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< 66|t _ sl‘?ﬁl‘(?‘— 1N B—B1)— = —(y—k+1XBr—Br-1)

d 9 —(y—k)/2
X/ [ Y (x,-lt—slp"_ﬁ")] +c(y)
R\ |i=k+1
¢, %2
Xexp| — hrlti dx;,.q * dxy
Cy

— k —B.
< C7|t — s YBr+Zi-1( B B

Since y8, — X*_ (B, — B;) < dim E, there is a positive measure o on E with
o(dt)o(ds)
fEfE” _ g|™Be B (BB

< +®

Thus we have (2.15). If dim E > T¢_,;, the same computation shows that
(2.15) holds for any vy < d. Therefore, (2.13) holds.

To find dim Gr X(E), we first consider the case dim X(E) < d. Since
dim Gr X(E) > dim X(E), it follows from Lemma 2.1 and (2.13) that
dim Gr X(E) = dim X(E) a.s. In the case of dim X(E) = d, which implies
that dim E > ©¢_,a;, the dimension of the graph can be larger. Similar
manipulation as above shows that for any d < y<dim E + X% ,(1 — o),
there exists a positive measure p on E such that

[E[EE([u — sl +1X(2) - X()*] ") u(dt) w(ds) < +oo.
Therefore,

d
dimGrX(E) >dimE + ) (1-«;) as.
i=1

This completes the proof of (2.14). O

If dim E > T%_,e;, then dim X(E) = d. In [20], we proved that X(E) a.s.
has positive Lebesgue measure and moreover if X is locally nondeterministic
on E, then as in [6] and [14], we can show that X(¢) almost surely has
continuous local time a(x, E). This implies that X(E) a.s. has interior points.

If E =[0,1]", then by Lemma 2.2 and (2.3) we have following theorem, in
which the statements for Hausdorff dimension correct Theorem 1 in [2] and
Theorem 8.4.1 in [1].

THEOREM 2.2. Let X(t) be an (N, d) Gaussian field as in Theorem 2.1. If
(2.1) holds for all s,t € [0, 1]1Y, then with probability 1,

dim X([0,1]") = Dim X([0,1]")
N+ Zij=1(aj - ;)

a;

= min{ d; y1<j=<dy,
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dim Gr X([0,1]") = Dim Gr X([0,1]")

N+X_(a —q d
ey ),1sjsd;N+ Y (1-a)}.

a; i=1

= min

3. Index-a stable fields. A real-valued random variable X is called
symmetric p-stable (0 < p < 2) of parameter o if for any A € R,

(3.1) Eexp(iAX) = exp(—o?|A?P).

Denote [ X|l, = o. Then ||X|l, =[—log E exp(iX)]'/?. This is a norm (p
quasinorm if 0 < p < 1) on the space of symmetric p-stable random vari-
ables. If p = 2, X is a Gaussian variable and ||V |3 = 1 Var(X).

Let 0 <p < 2 and T c R”. A real-valued random field X = (X(¢),t € T)
is called an (N, 1, p) stable field if every finite linear combination X}_; &; X(¢,)
is a symmetric p-stable random variable, that is,

p)
P

It is known that for any such process there is a measure space (M, .#, m) and
a collection {k(¢,-), t € T} c LP(M, .#, m) such that

(3.2) Eexp(i '—i1an(tj)) = exp(— ﬁ:lan(tj)

(3.3) X(t) = [R(t,u)W(du),
where W is the p-stable noise generated by m and

Zn: a; X(t;) zn: a;k(t,*)
j=1 j=1

P L?

Conversely, given any measure space (M,.#,m), 0 <p <2 and {k(¢,),
t € T} c LP(M, .#, m), one can define a p-stable process X(¢) by (3.3) (see [8]
for details).

Nolan [12],[13] generalized the concept of local nondeterminism (LND) to
stable processes and fields. We alter slightly the definition of LND to study
the existence of multiple points for index-a fields.

We say that ¢,,...,¢, € T are ordered if ¢, < --- <t¢,, when T CR, or

lt, — tj_ll < Itj —tlfor 1 <i <j<m,when TcR", N> 1, and we write

J
b <ty < <t

An (N, 1, p) stable field X is locally nondeterministic (LND) on T' if:

L IIX@®l, >0, forall £ € T.
2. 1X() — X()ll, > 0, for all ¢, s € T sufficiently close.
3. For any m > 1, there is a ¢,, > 0 such that
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c,;l(nalxmnz + B lla(X(8) —x<t,_1))n£)
I-2

(3.4) <[ayx(ty) + éal(xm) ~ X(t_1))

< cm(llalx(tl)”g + i lla,(X(2,) _X(tl—l))”II;)
-2

for all ay,...,a,, € R and all ordered ¢,,...,t,, € T.

Let X(¢) = (Xy(2),..., X,(¢)) (t € R") be a stable field with values in R<.
Each component X; (t) is an index-a;(N, 1, p;) symmetric stable field [12].
X(t) is called an index-a (N, d, p) stable field, where a = (ay,..., a3), p =
(p1s-..5 pg)- We assume X(¢) has stationary increments throughout the rest
of the paper and we shall need the following conditions:

(H,) X(¢) satisfies a uniform Hélder condition of every order B < a =
(ay,..., @;) on any cube T c RY.

(H,) For each B > a, simultaneously for all components j = 1,...,d,

|h1® = o(I1X;(t + k) — X;(t)ll,;) ash — 0.

(H,;) X(¢) has characteristic function locally approximately indepen-
dently components, that is, for all m > 1, there is a ¢ = ¢(d, m) > 0, such
that for all u,,...,u,, € R? and all ty,...,t, €T,

d m m
I_IlEexp ic™! Z u,; X;(t;) ) sEexp(i Y (u,,X(t,)))
Jj= 1= -1
(3.5) 4 o
< HEexp(ic Y ulej(tl)).
Jj=1 =1

An (N, d, p) stable field is LND if each component is LND and (3.5) holds.

REMARK. We refer to [11] and references therein for examples of stable
processes satisfying (H,)

THEOREM 3.1. Let X(t) be an (N, d, p) stable field with stationary incre-
ments that satisfies (H,), (H,) and (H,) for some o= (ay,..., az) with
0 ="a0 < al < - < ad'
Tizen for any compact set E c RY, almost surely,

dimE+E{=1(aJ_ ai) .
(3.6) dim X(E) = min{d; ,1<j<d},

a;
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d
dimGr X(E) = min{dim E + ) (1 - «;);
i=1
dim E + T/_y(e; — a;)

a;

(3.7)

,1<j<dj.

Proor. By (H,) and Lemma 2.1, the right-hand sides of (3.6) and (3.7) are
upper bounds for dim X(E) and dim Gr X(E), respectively. The lower bound
for dim X(E) follows from standard capacity arguments as in the proof of
Theorem 2.1. We just make minor adjustments. First we note that if F is any
d-dimensional distribution function with characteristic function ¢, then for
each y > 0,

27/2—1r(1)f le_’F(dx)
2 )/gd
(3.8) J .
=(27)" w ldu[ exp(—|x|*/2)¢d(ux) dx.

@m) [ uf exp(|xl/2)¢(ux)
This equality is obtained by replacing ¢ in the right side of (3.8) by its
expression as a Fourier integral and then performing a routine calculation.
Assume T' le; < dim E < T_,a;, take B,,..., B; to satisfy (2.17) and, as
It — s| sufficiently small,
(3.9) IX;(t) — X;(s)llp, = clt — s|P.
By (3.5),

E(expix, X(t) — X(s)?)

d
< JI:[IEexp[icxj(Xj(t) - Xj(s))]

d
(3.10) - Ulexp( —llex;(X;(2) — X;(s))lIE)

d
< exp(— Y lex;lt — sIB"I”f)-
=1

Thus for 0'< y < min{d, (dim E + £_ (e, — @,))/a,},
E(1X(t) - X(s)I"7)
x> &

4+
< ng;) uy’lduj;idexp(“‘?‘ - Z |ij|t - sleuIPj) dx, - dxg
j=1

d + |yl
- — o| Bi|Pi -d-1 -
= cgj;zdexp( - j=§ 1Ich-It s| I"’) dy, dydj; u? exp( " du

d
=cwf Jy" exp( - T leylt - sl‘*flpf) dy
R4 Jj=1
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d
= cyolt —sI” E”‘B’f Y (x)le - sl®)’
j=1

‘|—(d—7)/2

d
i
Xexp| — Y lex;] J) dx, - dxg
—-(d-y)/2
= clolt — S' EJ‘IBJ+(d ‘Y)ﬁdf x + Z ( t — s'ﬁd Bz) ]

d
X exp(— Y lclepf) dx; - dx,.
=1

By using (2.22) and (2.23), we integrate out dx,,...,dx,_, iteratively and
the above integral is less than a constant times

d-1 2 -(d-1-7v)/2
—yd . — —B.
't _ sl Lj-1Bj+(d ‘Y)ﬁdf [ z (xilt _ slﬁd B;) ]
L

d-1
- Z |clepj) dxd_l A dxl.

Jj=1

X exp

The rest of the proof follows Theorem 2.1. O

REMARK. If E = [0, 1]V, Theorem 3.1 and Lemma 2.2 give the Hausdorff
and packing dimensions for X([0, 1]"¥) and Gr X([0, 1]V), which correct Theo-
rem 4.1 in [12].

In the case of dim E > Z;Llaj, dim X(E) = d a.s., we prove a stronger
result.

THEOREM 3.2. Under the hypothesis of Theorem 3.1, if dim E > X¢ G1a
then X(E) a.s. has positive Lebesgue measurs.

Proor. Take B; > o; (j = 1,..., d) satisfying

d
Bi< - <B;, dimE> } B,

j=1
Then there is a positive Borel measure o on E such that
o(dt)o(ds)
(3.11) / fE — s

Let u be the image of o under the mapping ¢ — X(¢). Then the Fourier
transform of u is

A(u) = [ exp(iu, X(t))) o (dt).
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By (3.5) and (3.11), we have

Ef |a(u) du
=fRdj;ngEexp(i(u,X(t) - X(s)))o(dt)o(ds) du

d
_ _sBj Pj o S
</ fRdexp( Ll sl )du (d1)o (ds)

o(dt)o(ds
—cuf [ (_)E(B_)
E’E |t — s|==1Fi
< 4o,
that is, & € L2(R?) a.s. This implies that X(¢) a.s. has a square integrable
local time and X(E) a.s. has positive Lebesgue measure. O

As in [20], under the conditions of Theorem 3.1, with the added assumption
that X is LND on E, if dim E < £%_, a;, then Leby(X(E)) = 0 a.s. and for
every u € R,

P(X Y (u) NE + Q) =0.
If dim E > ):;L ,@;, then for every u € R¢,
P(XY(u) NE + Q) > 0.

4. Multiple points of index-a stable fields. The existence of k-multi-
ple points was shown by Kono [10] and Goldman [7] for fractional Brownian
motion and by Cuzick [3] for general LND index-a Gaussian fields. In [18],
Weber obtained the Hausdorff dimension of k-multiple times for fractional
Brownian motion. In this section, we generalize these results to stable fields.

Let X(¢) = (X,(2),..., X,(¢)) be an (N, d, p) stable field on R". x € R? is
called a k-multiple point of X(¢) if there are distinct ¢,,...,¢, € RN such
that

X(t) = = = X(t,) = x.
Denote by L, the set of £-multiple points and M, the set of £-multiple times,
that is,
Mk = {(tl’ ey tk) (S RNk, tl’ ceey tk distinct, X(tl) = = X(tk)}'
Let P,,..., P, be disjoint closed cubes in R, P =[1}_,P,,
M k( P ) = M k N P .

We define a (EN,(k — 1)d) stable field Y(#) by
Y(Z) = (X(ty) — X(t1), X(t3) — X(22),---, X(t,) — X(8,-1))

(i = (tl,... N tk))‘

-t

Then M,(P) = Y-1(0) N P.
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LEMMA 4.1. Let X(¢t) be a LND (N, d, p) stable field on compact T c RN
and p(i,%) be the density of Y(f). Then there is a constant c(k,p) > 0
depending only on k and p, such that for any distinct t,,...,t, € T,

(4.1) p(i,%) < c(k,p)J(Z,),
where

d & -1
J(t,) = JI=_[1 mI;I2”Xj(t7r(m)) - Xj(t,,(,,,_l))llp,-]

and 7 is a permutation of {1,2,..., k} such that t_,,..., ¢, 4, are ordered.

PrROOF. By making a change of variables in the Fourier inverse formula,
we have

p(f, E) < (277,)—(k—1)d

k
xf Eexpli ¥ (u,,,X(¢t,) — X(t,_1))| da
R(k—l)d m=2

(4.2) G

k
X.[R(k—l)dE eXp(imE=2<wm, X(tﬂ(m)) - X(t‘ﬂ(m—l))>) dﬁ’

where

k
w,, = Z (un(l)—uw(l)+1)’ m 21""k’uk+1=0'
l=m

and the mapping (u,,..., ;) = (w,,...,w,) is nonsingular. By LND of X(¢)
on T, the integrand in (4.2) is dominated by

exp{-—c ) ( r ||wmj(Xj(t7r(M)) _"Xj(t‘rr(m—l)))”m) j}'

Jj=1\m=2

Make a change of variables: v,,; = w, | X(¢, ) — Xt m-1)lp, for j=
1,...,d, m=2,...,k. Noting that J(,) is precisely the Jacobian of the
transformation w — 7, we get (4.1). O

THEOREM 4.1. Let X(t) be an (N, d, p) stable field on U?_,P, that is
LND and satisfies (H,). If Nk < (k — I)E}LIaj, then with probability 1,
M,(P)=3.

PrROOF. By using Lemma 4.1, Theorem 4.1 can be proven in the same way
as Theorem 2 in [2]. O

THEOREM 4.2. Let X(t) be an (N, d, p) stable field on U¥F_,P, that is
LND and satisfies (H,) and (H,). If Nk > (k — DL}, a;, then with positive
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probability, X(t) has k-multiple points and

(4.3) P|dim M,(P) = Nk — (k - 1) i o
Jj=1

Proor. By Lemma 4.1 and (H,), similar to the proof of Theorem 3 in [21],
we can prove

d
dim M,(P) <Nk — (k—-1) ), @;
j=1
To complete the proof, we need only to show that with positive probability,

k
j=1
For this purpose, it is sufficient to show that for any 0 < y < Nk — (k —
1)}:.5‘-’= 1@, we can construct a positive measure u on M, »(P) such that

f f r(dt) u(ds)
p/p |t —5|”
The similar methods were used by Kahane [9], Adler [1], Weber [18], Testard
[16] and Xiao [19].

Let .#] be the space of all nonnegative measures on RM* with finite y
energy. It is known [1] that .#; is a complete metric space under the metric

p(dE) u( ds)
Il ll, = [Rm[m TR

We define a sequence of random positive measures w, on the Borel sets of
RNk by

(4.5) < 4o

p.(B, 0) = [POB%(Z,(H) di,

where for éach n>1,
1 k& d i
$u(F, 0) = [ =Y Y lun? + i@, Y(E))| da

Rt s 2 j=1

¢,(f) = 0 is a continuous function ([5], Chapter 15) and ¢,(¢) tend to zero
outside any neighborhood of Y~1(0) as n — +, that is,

(4.6) ,}ijrgofpﬂ(f)g(f) dt =0

for any continuous function g that vanishes in a neighborhood of Y~1(0).
By a lemma of Testard [16], which simplifies the arguments in [9] and [1],
if there are constants ¢;3 > 0, ¢;4, > 0 such that

(4.7) E(lpl) 215, E(lp,)?) < ey,
(4.8) E(ll polly) < +oo,
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where || p,nll = p,(P), then there is a subsequence of { u,}, say { i, }, such that
Hyp, = 1 in /f;’ and pu is strictly positive with probability greater than or
equal to ¢%/2c,,. Moreover by (4.6), u has its support in M,(P) almost
surely. This will give (4.5).
The last points to prove are (4.7) and (4.8). Let S(%) be the set of all
permutations of {1,2, ..., &}, for 7w € S(&),
r,= {i € P, t, 1y tr) are ordered}.

Then
E(ll ,ll) = EjP¢,,(z) di

(49) - T[S (-%i 5 a7 )

reS(k) m=2 j=1
x E exp(i{%,Y(%))) duds.
By LND and the proof of Lemma 4.1,
Eexp(i{@,Y (%))

k
=E’exp(l Z <wm’X(t1r(m)) _X(tﬂ(m—l))>)
m=2

2

> exp{—c Y ( Y 10, ( X (Brimy) —Xj(tn(m—n))”m) J

Jj=1\m=2

where the mapping (u,,...,u;) = (w,,...,w,) is nonsingular. Hence the
integral in (4.9) is more than a constant times

s p-zzm,}

m=2 j=1

d d Pj
{ _Z 2 1400(%(tm) = X (Ercn )l ) } d dt
]. dt
an 2“ l/n + “X (t'lr(m)) X; (tﬂ'(m 1))”1'1)
f di
> .
o 0 T o T (1 + 1t my) = X (Brim-1) 1))

This is the required positive constant:

“ #n”z _/.,/../;e(k 1)d.’;3<k b

k d
X exp _}{ 22 .Zl(l“}nﬂpj + lu1™)
m=2 j=

(4.10)

x Eexpi(<@', Y(F')) + (@2, Y(£%))) du' du® di* df2.
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Since P,,..., P, are disjoint compact cubes,
r&i;l(djst(Pi,ﬂ)) >s>0,

where dist(P;, P)) is the distance between P, and P;. We may assume that the
diameters of P; (i =1,...,k) are so small that for any t},t2€ P, (i =

1,..., k), there is a permutation 7 € S(%) such that

tfr(i)<t,l,(i+1), i=1,...,k—-1,1,1=1,2.
Furthermore we can find £ permutations p,,..., p, of {1,2} such that

p1(1) Pi(2) pa(1) Pr(2)
(4.11) trl) Sty <they < e <P

and the integral in (4.10) is a finite sum of the integrals over I'(w, py,..., py),
where

T(m,p1s..., pp) = {(2',2%) € P X P, (3, %?) satisfies (4.11)}.

For simplicity, we assume that =, p,,..., p, are all identities.
We write

M

. (s X(0h) - X(th )

I=1m=2
(4.12) 2
= X X(on, X(th) - X(ti7),
m=11=1
where
Vg = U + Ut Up & Up i1, uj=ujp, =0 (I1=1,2)
tr?zétri—l, ti):O'

For each ¢ = 1,2,..., k, the transformation
(@,%) >V, = (vh,(m,l) € c,)
is nonsingular with Jacobian |J| = 1, where
C,={(m,)l<m<k,l=1,2,(m,l) + (q,2),(m,l) # (1,1)}.

By (4.11), (4.12) and LND, we have

Eexp(iZ {‘, (ub, X(t5) —X(t,ln_l)>)

I=1m=2

(vk, X(th) —X(t,’,;l)))

M

k
=Eexp|i )

m=11=1
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owfie £ £ ot (x4) - x5

m=11=1

d
<I1E
d 3 2 pj
< Mlow|-( £, Z e (500 -5, |

m=11=1

B d 1 »;
1o 3( T et -xem) |
(m,lecC,

Then by the generalized Hélder’s inequality,

[fnBoni S £ () - x| av

l m

< L1/ ]

g=1 Jj=1
(4.14)

»; 1/k
Xexp{—( )y Ilcv,’n,.(Xj(t,’n)—Xj(t,ln‘l))ll,,j) }dﬁldii2]

(m,DecC,

kR d 1
~eull U( gec 1X(4) — X,(e5 DIEF

Now take B; (j = 1,..., d) satisfying

d
B;>a;, Nk>(k-1)Y B,

j=1
Then by (H,), as |t — s| sufficiently small,
(4.15) 1X;(¢) — X;(s)llp, 21t =% (j=1,2,...,d).
By (4.14) and (4.15), the integral in (4.10) can be bounded by a constant times

di! di?

(e o]
f.[ ]._.[k |t2 tl I((k I)Zj=1ﬁj)/k < e

This proves (4.7).
For any 0 < y< Nk — (k — l)E 1@, we can choose B; > a; satisfying
y <Nk — (k — DL, B; and (4. 15). Then we have

1t2

Blalo) = [ [ B8 () 6()

di! di?
<c
17// PII:_ 12 — L v+ (k= DEL 1B/ k

< +©,
Hence, with positive probability [independent of B; (j = 1,...,d)],

dim M,(P) > Nk — (k — 1) i B;.

Jj=1
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This completes the proof of the theorem. O

REMARK. In [18] and [19] we obtained the Hausdorff dimension and
packing dimension of L, for fractional Brownian motion. For index-a stable
fields, the problem is open.

Acknowledgment. The author would like to thank the referee for valu-
able suggestions.
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