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Abstract

Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brownian sheet with index
H = (H1, . . . , HN ) ∈ (0, 1)N . The uniform and local asymptotic properties of BH are
proved by using wavelets methods. The Hausdorff and packing dimensions of the range
BH([0, 1]N ), the graph GrBH([0, 1]N ) and the level set are determined.
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1 Introduction

For a given vector H = (H1, . . . , HN ) (0 < Hj < 1 for j = 1, . . . , N), a 1-dimensional
fractional Brownian sheet BH

0 = {BH
0 (t), t ∈ RN} with Hurst index H is a real-valued,

centered Gaussian random field with covariance function given by

E
[
BH

0 (s)BH
0 (t)

]
=

N∏

j=1

1
2

(
|sj |2Hj + |tj |2Hj − |sj − tj |2Hj

)
, s, t ∈ RN . (1.1)

It follows from (1.1) that BH
0 is an anisotropic Gaussian random field and BH

0 (t) = 0 a.s. for
every t ∈ RN with at least one zero coordinate. Moreover, BH

0 has the following invariance
properties:

∗Research partially supported by NSF grant DMS-0103939.
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(i) BH
0 is self-similar in the sense that for all constants c > 0,

{
BH

0 (ct), t ∈ RN
}

d=
{

c
∑N

j=1 HjBH
0 (t), t ∈ RN

}
. (1.2)

(ii) Let WH = {WH(t), t ∈ RN} be the Gaussian random field defined by

WH(t) =

{ ∏N
j=1 |tj |2Hj BH

0 (t−1
1 , . . . , t−1

N ) if tj 6= 0 for all j

0 otherwise.
(1.3)

Then, WH d= BH
0 .

In the above, d= means equality in the finite dimensional distributions.
Fractional Brownian sheet has the following stochastic integral representation

BH
0 (t) = κ−1

H

∫ t1

−∞
· · ·

∫ tN

−∞
g(t, s)W (ds), (1.4)

where W = {W (s), s ∈ RN} is the standard real-valued Brownian sheet and

g(t, s) =
N∏

j=1

[(
(tj − sj)+

)Hj−1/2 − (
(−sj)+

)Hj−1/2
]

with s+ = max{s, 0}, and where κH is the normalizing constant given by

κ2
H

=
∫ 1

−∞
· · ·

∫ 1

−∞

[ N∏

j=1

g2(〈1〉, s)
]2

ds

so that E
[
(BH

0 (t))2
]

=
∏N

j=1

∣∣tj
∣∣2Hj for all t ∈ RN . Here 〈1〉 = (1, 1, . . . , 1) ∈ RN .

Let BH
1 , . . . , BH

d be d independent copies of BH
0 . Then the (N, d)-fractional Brownian

sheet with Hurst index H = (H1, . . . , HN ) is the Gaussian random field BH = {BH(t) : t ∈
RN} with values in Rd defined by

BH(t) = (BH
1 (t), . . . , BH

d (t)), t ∈ RN . (1.5)

Note that if N = 1, then BH is a fractional Brownian motion in Rd with Hurst index
H1 ∈ (0, 1); if N > 1 and H1 = · · · = HN = 1/2, then BH is the (N, d)-Brownian sheet.
Hence BH can be regarded as a natural generalization of one parameter fractional Brownian
motion in Rd to (N, d) Gaussian random fields, as well as a generalization of the Brownian
sheet. Another well known generalization is the multiparameter fractional Brownian motion
X = {X(t), t ∈ RN}, which is a centered Gaussian random field with covariance function

E[Xi(s)Xj(t)] =
1
2
δij

(
|s|2H1 + |t|2H1 − |s− t|2H1

)
, ∀s, t ∈ RN , (1.6)
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where 0 < H1 < 1 is a constant and δij = 1 if i = j and 0 if i 6= j, and where | · | denotes the
Euclidean norm in RN .

Fractional Brownian sheets arise naturally in many areas, including in stochastic partial
differential equations [cf. Øksendal and Zhang (2000), Hu, Øksendal and Zhang (2000)] and in
studies of most visited sites of symmetric Markov processes [cf. Eisenbaum and Khoshnevisan
(2001)].

Recently, many authors have studied various properties of the fractional Brownian sheets.
For example, Dunker (2000) has studied the small ball probability of an (N, 1)-fractional
Brownian sheet. For the special class of fractional Brownian sheets such that there is a unique
minimum among H1, . . . , HN , Mason and Shi (2001) have obtained the exact rate for the small
ball probability and have computed the Hausdorff dimension of some exceptional sets related
to the oscillation of their sample paths. Belinski and Linde (2002) give a different proof of
the small ball probability result of Mason and Shi (2001) and have also obtained a sharp
estimate for the small ball probability in the case of N = 2 and H1 = H2. More generally, by
using different kinds of s-numbers Kühn and Linde (2002) have determined the rate, up to a
logarithmic factor, for the small ball probability and the optimality of series representations
for the fractional Brownian sheet BH with an arbitrary index H = (H1, . . . , HN ) ∈ (0, 1)N .
Ayache and Taqqu (2003) have derived optimal wavelet series expansions for the fractional
Brownian sheet BH ; see also Dzhaparidze and van Zanten (2003) for other optimal infinite
series expansions. Xiao and Zhang (2002) have proved a sufficient condition for the joint
continuity of the local times of an (N, d)-fractional Brownian sheet BH . Kamont (1996) and
Ayache (2002) have studied the box-dimension and the Hausdorff dimension of the graph set
of an (N, 1)-fractional Brownian sheet BH using wavelet methods.

The main objective of this paper is to further investigate the asymptotic and fractal
properties of the (N, d)-fractional Brownian sheet BH . We are particularly interested in
describing the anisotropic nature of BH in terms of the Hurst index H = (H1, . . . , HN ) ∈
(0, 1)N . We should mention that several authors have been interested in applying anisotropic
Gaussian random fields to stochastic modelling; see, for example, Bonami and Estrade (2003)
for bone structure modelling and Benson et al. (2004) for modelling aquifer structure in
hydrology. We hope that the results and techniques in this paper will be helpful for studying
more general anisotropic Gaussian random fields.

The rest of this paper is organized as follows. In Section 2, we study the uniform and
local modulus of continuity and the law of the iterated logarithm of an (N, 1)-fractional
Brownian sheet. Many authors have studied the asymptotic behavior of the sample functions
of Gaussian random fields [see, e.g. Albin (1994) and Kôno (1975) and the reference therein].
Our approach is different from those in the aforementioned references and relies on the wavelet
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expansion of BH in terms of a Lemarié-Meyer wavelet basis for L2(R). We remark that, even
though the methods of Albin (1994) and Kôno (1975) based on metric entropy may be
modified to prove our Theorems 2.1 and 2.3 below, our wavelet-based approach has certain
advantages. In particular, it allows us to prove that, with probability 1, the sample function
BH(t) does not satisfy any local Hölder conditions with respect to the function σ1+ε(t+h, t),
for any ε > 0, where σ2(t + h, t) = E

[
(BH(t + h)−BH(t))2

]
; see Theorem 2.5. This implies

that BH(t) is nowhere differentiable on RN . Theorem 2.5 is more difficult to establish directly
due to the complex dependence structure of BH . It is worthwhile to mention that another
way of proving the non-differentiability of BH is by investigating the regularity of the local
times of BH . This approach relies on solving Problem 4.12 in Xiao and Zhang (2002) and
requires totally different techniques. We will deal with it elsewhere.

In Section 3, we determine the Hausdorff and packing dimensions of the range BH([0, 1]N ),
the graph GrBH([0, 1]N ) and the level set Lx = {t ∈ (0,∞)N : BH(t) = x}. Our method
for determining the Hausdorff dimension of GrBH([0, 1]N ) is different from that in Ayache
(2002), and is more reminiscent to the arguments in Xiao (1995). Our results suggest that,
due to the anisotropy of BH in t, the sample paths of an (N, d)-fractional Brownian sheet
BH are more irregular than those of the Brownian sheet or an (N, d)-fractional Brownian
motion.

Finally we introduce some notation. Throughout this paper, the underlying parameter
space is RN or RN

+ = [0,∞)N . A typical parameter, t ∈ RN is written as t = (t1, . . . , tN ), or
occasionally, as 〈c〉, if t1 = · · · = tN = c. For any s, t ∈ RN such that sj < tj (j = 1, . . . , N),
we define the closed interval (or rectangle) [s, t] =

∏N
j=1 [sj , tj ]. We use 〈·, ·〉 and | · | to denote

the ordinary scalar product and the Euclidean norm in Rm respectively, no matter the value
of the integer m.

We will use c to denote an unspecified positive and finite constant which may not be the
same in each occurrence. More specific constants in Section i are numbered as ci,1 , ci,2 , . . . ,

and so on.

2 Modulus of continuity and asymptotic properties

In this section, we investigate the uniform and local modulus of continuity, nowhere differ-
entiability and the laws of the iterated logarithm of the fractional Brownian sheet BH =
{BH(t), t ∈ RN} with index H = (H1,H2, . . . , HN ), 0 < Hj < 1. Our approach is based on
the wavelet expansion of BH .

For simplicity, we will suppose BH is real-valued (i.e. d = 1), and we will use A,A1, A2, . . .

to denote positive random variables.
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Let us first state the main results.

Theorem 2.1 There exist a random variable A1 = A1(ω) > 0 of finite moments of any order
and an event Ω∗1 of probability 1 such that for any ω ∈ Ω∗1,

sup
s,t∈[0,1]N

|BH(s, ω)−BH(t, ω)|
∑N

j=1 |sj − tj |Hj

√
log

(
3 + |sj − tj |−1

) ≤ A1(ω). (2.1)

Remark 2.2

• Up to a constant, the inequality in Theorem 2.1 is sharp. When H1 = · · · = HN = 1
2

it agrees with the corresponding result for the Brownian sheet due to Orey and Pruitt
(1973).

• Theorem 2.1 remains valid when [0, 1]N is replaced by any compact rectangle of RN .

• The event Ω∗1 will be specified in the proof of Theorem 2.1.

• As we mentioned in the Introduction, Theorem 2.1 can also be proven using the method
of proving Theorem 1 in Kôno (1975). The proof we give below is based on the wavelet
representation of BH .

Next we give an upper bound for the asymptotic behavior of the fractional Brownian sheet
BH(t) as |t| → ∞. Recall that, by the law of the iterated logarithm [see for example Orey
(1972)], the ordinary fractional Brownian motion {BH(t), t ∈ R} with Hurst index H ∈ (0, 1)
satisfies with probability 1,

|BH(t)| ≤ A (1 + |t|)H
√

log log(3 + |t|), ∀t ∈ R,

where A is a positive random variable. This result can be extended to the fractional Brownian
sheet as follows.

Theorem 2.3 Let BH = {BH(t), t ∈ RN} be a fractional Brownian sheet with index H =
(H1, . . . , HN ) and let Ω∗1 be the event of probability 1 in Theorem 2.1. Then, there is a random
variable A2 > 0 of finite moments of any order such that for all ω ∈ Ω∗1,

sup
t∈RN

|BH(t, ω)|∏N
j=1(1 + |tj |)Hj

√
log log(3 + |tj |)

≤ A2(ω). (2.2)
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Note that (2.2) is more concerned with the global property of BH(t) and it does not catch
the local asymptotic behavior of BH(t) near t = 0. To study the asymptotic properties of
BH at a fixed point t0 ∈ RN , we consider

σ2(s, t) = E
[(

BH(t)−BH(s)
)2

]
, ∀s, t ∈ RN . (2.3)

It follows from the proof of Lemma 3.4 below that for any closed interval I = [a, b], there is
a finite constant c2,1 > 0 such that for all s, t ∈ I,

σ(t, s) ≤ c2,1

N∑

j=1

|tj − sj |Hj . (2.4)

Hence one can apply the metric entropy method to prove a law of the iterated logarithm for
BH . The following is a consequence of the proof of Theorem 2 in Kôno (1975).

Proposition 2.4 There exists a positive and finite constant c2,2 such that for every t0 ∈ I,
with probability 1

lim sup
h→0

|BH(t0 + h)−BH(t0)|
σ(t0, t0 + h)

√
log log 1

|h|
≤ c2,2 . (2.5)

The next result is a partial inverse of (2.5) and implies that, for every ε > 0, the sample
function BH(t) does not satisfy σ1+ε-Hölder condition at any point, where σ(t, s) is defined
in (2.3).

Theorem 2.5 Let BH = {BH(t), t ∈ RN} be a real-valued fractional Brownian sheet with
index H = (H1, . . . , HN ). Then, there is an event Ω∗2 of probability 1 such that for all ε > 0,
t ∈ (0, 1]N and all ω ∈ Ω∗2,

lim sup
|h|→0

|BH(t + h, ω)−BH(t, ω)|
σ(t + h, t)1+ε

= ∞. (2.6)

In order to prove Theorems 2.1, 2.3 and 2.5, we will use the wavelet representation of the
fractional Brownian sheet introduced in Ayache (2002). To this end, we need to introduce
the following notations.

• {2J/2ψ(2Jx−K), (J,K) ∈ Z×Z} will be a Lemarié -Meyer wavelet basis for L2(R) [see
for instance Lemarié and Meyer (1986) or Meyer (1992)]. Recall that such orthonormal
bases satisfy the following properties:
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(a) ψ and its Fourier transform ψ̂ belong to the Schwartz class S(R), namely the space
of all infinitely differentiable functions u which verify for all integers n ≥ 0 and
m ≥ 0,

lim
|t|→∞

tm
( d

dt

)n
u(t) = 0.

Recall that the Fourier transform of a function f ∈ L1(R) is defined as f̂(ξ) =∫
R e−iξ xf(x) dx for all ξ ∈ R.

(b) ψ̂ is even, compactly supported and vanishes in a neighborhood of the origin. More
precisely, the support of ψ̂ is contained in the domain {ξ : 2π

3 ≤ |ξ| ≤ 8π
3 }.

• For any α ∈ (0, 1), the functions ψα and ψ−α will denote respectively the fractional
primitive of order α + 1

2 and the fractional derivative of order α + 1
2 of the mother

wavelet ψ, which are defined for all x ∈ R as

ψα(x) =
1
2π

∫

R
eixξ ψ̂(ξ)

|ξ|α+1/2
dξ and ψ−α(x) =

1
2π

∫

R
eixξ |ξ|α+1/2 ψ̂(ξ) dξ. (2.7)

In view of properties (a) and (b) of the Lemarié-Meyer wavelets, these definitions make
sense and ψα and ψ−α are real-valued and belong to the Schwartz class S(R). Moreover,
we have for every ξ ∈ R,

ψ̂α(ξ) =
ψ̂(ξ)
|ξ|α+1/2

and ψ̂−α(ξ) = |ξ|α+1/2 ψ̂(ξ). (2.8)

• For any H = (H1, . . . , HN ) ∈ (0, 1)N and for all j = (j1, . . . , jN ) ∈ ZN , k = (k1, . . . , kN )
∈ ZN and t = (t1, . . . , tN ) ∈ RN , we set

Ψ̃(H)
j,k (t) =

N∏

l=1

ψ̃Hl
jl,kl

(tl), (2.9)

where for any α ∈ (0, 1), x ∈ R and any (J,K) ∈ Z 2,

ψ̃α
J,K(x) = ψα(2Jx−K)− ψα(−K). (2.10)

We are now in a position to give the wavelet representation of fractional Brownian sheet.

Proposition 2.6 [Ayache (2002)] There is a sequence {εj,k, (j, k) ∈ ZN×ZN} of independent
N (0, 1) Gaussian random variables such that for any H = (H1, . . . , HN ) ∈ (0, 1)N , the
fractional Brownian sheet BH = {BH(t), t ∈ RN} can be represented (up to a multiplicative
constant that only depends on H) as:

BH(t, ω) =
∑

(j, k)∈ZN×ZN

2−〈j,H〉εj,k(ω)Ψ̃(H)
j,k (t), ∀t ∈ RN , (2.11)
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where 〈j, H〉 =
∑N

l=1 jlHl and where the series in (2.11) is, for each t, convergent in the
L2(Ω) -norm (Ω being the underlying probability space).

In fact, the series (2.11) is also convergent in a much stronger sense. More precisely, we
have

Proposition 2.7 For almost all ω ∈ Ω, the series (2.11) is uniformly convergent in t, on
any compact subset of RN .

Proposition 2.7 can be obtained by using the same method as that of Ayache and Taqqu
(2003). But since we are not interested in determining the rate of convergence of the series
(2.11), this Proposition can also be proved more simply as follows.

Proof For simplicity we will only prove that, with probability 1, the series (2.11) converges
uniformly in t ∈ [0, 1]N . For any n ∈ N and t ∈ RN , let

BH
n (t) =

∑

(j, k)∈In

2−〈j,H〉εj, kΨ̃
(H)
j, k (t), (2.12)

where In =
{

(j, k) ∈ ZN × ZN : |jl| ≤ n and |kl| ≤ n for all 1 ≤ l ≤ N
}

.

Since the functions Ψ̃(H)
j,k are continuous and the random variables εj,k are symmetric and

independent, the Itô-Nisio Theorem [see Theorem 2.1.1 in Kwapień and Woyczyński (1992)]
implies that, for proving the uniform convergence of series (2.11) on [0, 1]N , it is sufficient to
show that the sequence {BH

n (t), t ∈ [0, 1]N}n∈N is weakly relatively compact in C([0, 1]N ),
the space of continuous functions on [0, 1]N equipped with the usual topology of uniform
convergence. Observe that (2.11), (2.3) and (2.4) imply that there is a constant c2,3 > 0 such
that for all n ≥ 1 and all t, t′ ∈ [0, 1]N ,

E
[(

BH
n (t)−BH

n (t′)
)2

]
≤ c2,3 |t− t′|2H , (2.13)

where H = min{H1, . . . , HN}. Since (2.13) and Theorem 12.3 in Billingsley (1968) entail the
weak relative compactness of the sequence {BH

n (t), t ∈ [0, 1]N}n∈N in C([0, 1]N ), this finishes
the proof of Proposition 2.7. ¤

The proof of Theorems 2.1 mainly relies on the following two technical lemmas. The proof
of Lemma 2.8 is similar to that of Lemma 4 of Ayache (2002) or Lemma 2 of Ayache and
Taqqu (2003). Hence it is omitted.

Lemma 2.8 Let {εm, m ∈ ZN} be a sequence of N (0, 1) Gaussian random variables. Then,
there is a random variable A3 > 0, of finite moments of any order such that for almost all
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ω ∈ Ω and for all m = (m1, . . . , mN ) ∈ ZN ,

|εm(ω)| ≤ A3(ω)

√√√√log
(
3 +

N∑

i=1

|mi|
)
. (2.14)

We will also make use of the following elementary inequality: there is a constant c > 0
such that for all (m1, . . . , mN ) ∈ ZN ,

√√√√log
(
3 +

N∑

i=1

|mi|
)
≤ c

N∏

i=1

√
log(3 + |mi|). (2.15)

Lemma 2.9 For any α ∈ (0, 1), define the functions

Sα(x, y) =
∑

(J,K)∈Z2

2−Jα
∣∣ψα(2Jx−K)− ψα(2Jy −K)

∣∣√log(3 + |J |+ |K|) (2.16)

and
Tα(x) =

∑

(J,K)∈Z2

2−Jα
∣∣ψ̃α

J,K(x)
∣∣ √

log(3 + |J |+ |K|). (2.17)

Then there is a constant c2,4 > 0 such that for all x, y ∈ [0, 1], one has

Sα(x, y) ≤ c2,4 |x− y|α
√

log(3 + |x− y|−1) (2.18)

and
Tα(x) ≤ c2,4 . (2.19)

Proof First we prove (2.18). Since the function ψα belongs to the Schwartz class S(R), its
derivative of any order n ≥ 0, satisfies

∣∣∣
( d

dx

)n
ψα(x)

∣∣∣ ≤ c2,5(3 + |x|)−2, ∀x ∈ R, (2.20)

where c2,5 > 0 is a constant that only depends on n. For any x, y ∈ [0, 1], satisfying x 6= y,
there is a unique integer J0 ≥ 0 such that

2−J0−1 < |x− y| ≤ 2−J0 . (2.21)

We decompose Sα(x, y) into the following 3 parts:

Sα,1(x, y) =
−1∑

J=−∞

∞∑

K=−∞
2−Jα

∣∣ψα(2Jx−K)− ψα(2Jy −K)
∣∣√log(3 + |J |+ |K|), (2.22)
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Sα,2(x, y) =
J0∑

J=0

∞∑

K=−∞
2−Jα

∣∣ψα(2Jx−K)− ψα(2Jy −K)
∣∣√log(3 + |J |+ |K|), (2.23)

Sα,3(x, y) =
∞∑

J=J0+1

∞∑

K=−∞
2−Jα

∣∣ψα(2Jx−K)− ψα(2Jy −K)
∣∣√log(3 + |J |+ |K|) (2.24)

and derive upper bounds for Sα,1(x, y), Sα,2(x, y) and Sα,3(x, y) separately.
Without loss of generality, we will assume x < y. It follows from the Mean-Value Theorem

that for any integers −∞ < J ≤ J0 and K ∈ Z, there is ν ∈ (2Jx, 2Jy), such that

ψα(2Jx−K)− ψα(2Jy −K) = 2J(x− y)
dψα

dx
(ν −K). (2.25)

By using (2.20) and (2.21) we derive
∣∣∣dψα

dx
(ν −K)

∣∣∣ ≤ c2,5(3 + |ν −K|)−2

≤ c2,5(3 + |2Jx−K| − |ν − 2Jx|)−2

≤ c2,5(2 + |2Jx−K|)−2.

(2.26)

To estimate Sα,1(x, y), we note that for all integers J ≤ −1, (2.26) gives
∣∣∣dψα

dx
(ν −K)

∣∣∣ ≤ c2,5 (2 + |K| − 2J |x|)−2 ≤ c2,5(1 + |K|)−2. (2.27)

So (2.22), (2.25) and (2.27) entail that

Sα,1(x, y) ≤ c2,6 |x− y|, (2.28)

where the constant c2,6 = c2,5

∑−1
J=−∞

∑∞
K=−∞

2J(1−α)
√

log(3+|J |+|K|)
(1+|K|)2 .

Next we proceed to derive an upper bound for Sα,2(x, y). Combining (2.23), (2.25), (2.26)
and (2.15) yields

Sα,2(x, y) ≤ c2,5 |x− y|
J0∑

J=0

∞∑

K=−∞

2J(1−α)
√

log(3 + J + |K|)
(2 + |2Jx−K|)2

= c2,5 |x− y|
J0∑

J=0

∞∑

K=−∞

2J(1−α)
√

log(3 + J + |K + b2Jxc|)
(2 + |2Jx− b2Jxc −K|)2

≤ c2,5 |x− y|
J0∑

J=0

∞∑

K=−∞

2J(1−α)
√

log(3 + J + 2J + |K|)
(1 + |K|)2

≤ c2,7 |x− y|
J0∑

J=0

2J(1−α)
√

log(3 + J + 2J).

(2.29)
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In the above, bzc denotes the integer part of z and 0 < c2,7 < ∞ is a constant. Note that for
any J ∈ N,

√
log(3 + J + 2J) ≤

√
log(2J+2 + 2J) ≤

√
J + 3. (2.30)

It follows from (2.29), (2.30) and (2.21) that

Sα,2(x, y) ≤ c2,7 |x− y|
J0∑

J=0

2J(1−α)
√

J + 3

≤ c2,8 |x− y| 2(J0+1)(1−α)
√

J0 + 3

≤ c2,9 |x− y|α
√

3 + log(|x− y|−1).

(2.31)

Now, let us give an upper bound for Sα,3(x, y). For every z ∈ [0, 1], let

θJ0(z) =
∞∑

J=J0+1

∞∑

K=−∞
2−Jα|ψα(2Jz −K)|

√
log(3 + J + |K|). (2.32)

Then for every x, y ∈ [0, 1],

Sα,3(x, y) ≤ θJ0(x) + θJ0(y). (2.33)

Thus, it is sufficient to bound θJ0(z), uniformly in z ∈ [0, 1]. Note that for any fixed J ∈ N
and any z ∈ [0, 1], (2.20) and (2.15) imply that

∞∑

K=−∞

∣∣ψα(2Jz −K)
∣∣√log(3 + J + |K|) ≤ c2,5

∞∑

K=−∞

√
log(3 + J + |K|)

(3 + |2Jz −K|)2

= c2,5

∞∑

K=−∞

√
log(3 + J + |K + b2Jzc|)

(3 + |2Jz − b2Jzc −K|)2

≤ c2,5

∞∑

K=−∞

√
log(3 + J + 2J + |K|)

(2 + |K|)2

≤ c2,10

√
1 + J,

(2.34)

where c2,10 is a finite constant. It follows from (2.34), (2.32) and some simple calculations
that for every z ∈ [0, 1],

θJ0(z) ≤ c2,10

∞∑

J=J0+1

2−Jα
√

1 + J

≤ c2,10

∫ ∞

J0

2−αx
√

2 + x dx

≤ c2,11 2−J0α
√

1 + J0.

(2.35)
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It is clear that (2.33), (2.35) and (2.21) entail that,

Sα,3(x, y) ≤ c2,12 |x− y|α
√

log(3 + |x− y|−1), (2.36)

where c2,12 > 0 is a constant independent of x and y. Combining (2.28), (2.31) and (2.36)
yields (2.18).

To prove (2.19), we observe that, by (2.10), Tα(x) = Sα(x, 0) for every x ∈ [0, 1]. There-
fore, (2.19) follows from (2.18) immediately. ¤

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1 Observe that for any s, t ∈ [0, 1]N , one has that
∣∣∣BH(t)−BH(s)

∣∣∣

≤
N∑

i=1

∣∣∣BH(s1, . . . , si−1, ti, ti+1, . . . , tN )−BH(s1, . . . , si−1, si, ti+1, . . . , tN )
∣∣∣ (2.37)

with the convention that, when i = 1, BH(s1, . . . , si−1, ti, ti+1, . . . , tN ) = BH(t) and when
i = N , BH(s1, . . . , si−1, si, ti+1, . . . , tN ) = BH(s). Another convention that will be used in
the sequel is that, when i = 1,

∏i−1
l=1 |ψ̃Hl

jl,kl
(sl)| = 1 and when i = N ,

∏N
l=i+1 |ψ̃Hl

jl,kl
(tl)| = 1.

Let Ω∗1 be the event of probability 1 on which Proposition 2.7 and (2.14) hold. For every
fixed integer 1 ≤ i ≤ N , it follows from Propositions 2.6 and 2.7, Lemmas 2.8 and 2.9, (2.10)
and (2.15) that for every ω ∈ Ω∗1 and s, t ∈ [0, 1]N ,

∣∣∣BH(s1, . . . , si−1, ti, ti+1, . . . , tN )−BH(s1, . . . , si−1, si, ti+1, . . . , tN )
∣∣∣

≤ A4

( i−1∏

l=1

THl
(sl)

)
×

( N∏

l=i+1

THl
(tl)

)
× SHi(si, ti)

≤ A5 |si − ti|Hi
√

log(|si − ti|−1),

(2.38)

where the random variables A4 > 0 and A5 > 0 are of finite moments of any order. Finally,
Theorem 2.1 follows from inequalities (2.37) and (2.38). ¤

Now we prove Theorem 2.3.

Proof of Theorem 2.3 For any α ∈ (0, 1), let Tα(x) be defined by (2.17). We first show
that there is a constant c2,13 > 0, depending on α only, such that for all x ∈ R,

Tα(x) ≤ c2,13(1 + |x|)α
√

log log(3 + |x|). (2.39)

It follows from (2.19) that the inequality (2.39) is satisfied when |x| ≤ 1. It remains to show
that it is also true when |x| > 1. Our approach is similar to the proof of Lemma 2.9.
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For any |x| > 1, we choose an integer J0 ≥ 0 such that

2J0 ≤ |x| < 2J0+1 (2.40)

and then write Tα(x) as the sum of the following 3 parts:

Tα,1(x) =
−J0−1∑

J=−∞

∞∑

K=−∞
2−Jα

∣∣ψ̃α
J,K(x)

∣∣√log(3 + |J |+ |K|), (2.41)

Tα,2(x) =
−1∑

J=−J0

∞∑

K=−∞
2−Jα

∣∣ψ̃α
J,K(x)

∣∣√log(3 + |J |+ |K|) (2.42)

and

Tα,3(x) =
∞∑

J=0

∞∑

K=−∞
2−Jα

∣∣ψ̃α
J,K(x)

∣∣√log(3 + |J |+ |K|). (2.43)

First, let us derive an upper bound for Tα,1(x). For any integers −∞ < J ≤ −J0 − 1 and
K ∈ Z, (2.10), the Mean-Value Theorem and (2.20) imply that

∣∣ψ̃α
J,K(x)

∣∣ ≤ c2,52
J |x|

(3 + |ν −K|)2 ≤
c2,52

J |x|
(2 + |K|)2 . (2.44)

Putting (2.44) into (2.41) yields

Tα,1(x) ≤ c2,14 |x| (2.45)

for some finite constant c2,14 > 0.
To derive an upper bound for Tα,2(x), we note that

Tα,2(x) ≤ Rα,2(x) + Rα,2(0), (2.46)

where

Rα,2(x) =
J0∑

J=1

∞∑

K=−∞
2Jα

∣∣ψα(2−Jx−K)
∣∣√log(3 + J + |K|). (2.47)

Applying (2.20) with n = 0 and (2.15), we have

R2,α(x) ≤ c2,5

J0∑

J=1

∞∑

K=−∞

2Jα
√

log(3 + J + |K|)
(3 + |2−Jx−K|)2

≤ c2,15

J0∑

J=1

2Jα
√

log
(
4 + J + 2−J |x|).

(2.48)
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Hence, with some elementary computation, we have

Rα,2(x) ≤ c2,16

∫ J0

0
2αt

√
log(5 + t + 2−t|x|) dx

≤ c2,17 2J0α
√

log(5 + J0 + 2−J0 |x|)
≤ c2,18 (1 + |x|)α

√
log log(3 + |x|),

(2.49)

where the last inequality follows from (2.40).
Similarly, (2.20) and (2.15) imply that

Rα,2(0) =
J0∑

J=1

∞∑

K=−∞
2Jα

∣∣ψα(−K)
∣∣√log(3 + J + |K|)

≤ c2,19

J0∑

J=1

2Jα
√

log(3 + J)

≤ c2,20 (1 + |x|)α
√

log(log(3 + |x|)).

(2.50)

Combining (2.46), (2.47) and (2.50) we obtain that for any |x| > 1,

Tα,2(x) ≤ c2,21 (1 + |x|)α
√

log log(3 + |x|). (2.51)

Now, let us derive an upper bound for Tα,3(x). It follows from (2.43) and (2.10) that for
all x ∈ R,

Tα,3(x) ≤ Rα,3(x) + Rα,3(0), (2.52)

where for any x ∈ R,

Rα,3(x) =
∞∑

J=0

∞∑

K=−∞
2−Jα

∣∣ψα(2Jx−K)
∣∣√log(3 + J + |K|). (2.53)

Using (2.20) again one obtains that for all x ∈ R,

Rα,3(x) ≤ c2,5

∞∑

J=0

∞∑

K=−∞

2−Jα
√

log(3 + J + |K|)
(3 + |2Jx−K|)2

= c2,5

∞∑

J=0

∞∑

K=−∞

2−Jα
√

log(3 + J + |b2Jxc|+ |K|)
(3 + |2Jx− b2Jxc −K|)2

≤ c2,22

∞∑

J=0

2−Jα
√

log(3 + J + |b2Jxc|).

(2.54)

Note that for any x ∈ R,
√

log(3 + J + |b2Jxc|) ≤
√

log(3 + J + 2J) +
√

log(3 + |x|). (2.55)
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It follows from (2.52), (2.53), (2.54) and (2.55) that for any x ∈ R,

Tα,3(x) ≤ c2,23

√
log(3 + |x|). (2.56)

It is clear that (2.56), (2.51) and (2.45) entail (2.39). Finally, (2.11), (2.9), (2.39), (2.15)
and Lemma 2.8 imply that there is a random variable A6 > 0 of finite moments of any order
such that for all ω ∈ Ω∗1 and t = (t1, . . . , tN ) ∈ RN ,

|BH(t, ω)| ≤ A6

N∏

j=1

THj (tj) ≤ c2,24 A6

N∏

j=1

(1 + |tj |)Hj

√
log log(3 + |tj |).

This finishes the proof of Theorem 2.3 with A2 = c2,24 A6. ¤

Remark 2.10 Observe that while proving Theorem 2.3, we have obtained the following
result which will be used in the proof of Proposition 2.11. Namely, there is a random variable
A2 > 0 of finite moments of any order such that for all n ≥ 1, t = (t1, . . . , tN ) ∈ RN and
ω ∈ Ω∗1, one has

∣∣BH
n (t, ω)

∣∣ ≤
∑

(j,k)∈ZN×ZN

2−〈j,H〉
∣∣εj,k(ω)

∣∣ ∣∣Ψ̃j,k(t)
∣∣

≤ A2(ω)
N∏

j=1

(1 + |tj |)Hj

√
log log(3 + |tj |).

(2.57)

The rest of this section is devoted to the proof of Theorem 2.5. First, we need to fix some
more notations.

• For any λ = (λ1, λ2, . . . , λN ) ∈ RN and for each integer 1 ≤ n ≤ N , we denote by λ̂n

the vector of RN−1 defined as

λ̂n = (λ1, . . . , λn−1, λn+1, . . . , λN ) (2.58)

with the convention that λ̂1 = (λ2, λ3, . . . , λN ) and λ̂N = (λ1, λ2, . . . , λN−1). For
convenience, we may sometimes write λ as (λn, λ̂n) [see, e.g. (2.69)].

• For any H = (H1, . . . , HN ) ∈ (0, 1)N , j = (j1, . . . , jN ) ∈ ZN , k = (k1, . . . , kN ) ∈ ZN

and t = (t1, . . . , tN ) ∈ RN , we set

Ψ̃(Ĥn)

ĵn,k̂n
(t̂n) =

( n−1∏

l=1

ψ̃Hl
jl,kl

(tl)
)( N∏

l=n+1

ψ̃Hl
jl,kl

(tl)
)

(2.59)

with the convention that Ψ̃(Ĥ1)

ĵ1,k̂1
(t̂1) =

∏N
l=2 ψ̃Hl

jl,kl
(tl) and Ψ̃(ĤN )

ĵN ,k̂N
(t̂N ) =

∏N−1
l=1 ψ̃Hl

jl,kl
(tl).

Recall that the function ψ̃Hl
jl,kl

(tl) is defined in (2.10).
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Let us now introduce a wavelet transform that allows us to construct a sequence of
independent and identically distributed fractional Brownian sheets on RN−1 starting from a
fractional Brownian sheet on RN .

Proposition 2.11 Let BH = {BH(t), t ∈ RN} be an (N, 1)-fractional Brownian sheet with
index H = (H1, . . . , HN ). For every n ∈ {1, . . . , N}, (jn, kn) ∈ Z× Z and

t̂n = (t1, . . . , tn−1, tn+1, . . . , tN ) ∈ RN−1,

we define

Cjn,kn(t̂n) = 2jn(1+Hn)

∫

R
BH(t)ψ−Hn(2jntn − kn) dtn, (2.60)

where ψ−Hn is the wavelet introduced in (2.7). Then (Cjn,kn)(jn,kn)∈Z×Z is a sequence of
independent and identically distributed fractional Brownian sheets on RN−1 with index Ĥn.

Proof Note that Property (b) of Lemarié-Meyer wavelets and (2.8) imply that ψ̂−Hn(0) = 0.
Therefore one has that,

∫

R
ψ−Hn(2jntn − kn) dtn = 0. (2.61)

For every (p, q) ∈ ZN × ZN and for every t̂n ∈ RN−1, define

I(t̂n; p, q; jn, kn) = 2jn

∫

R
Ψ̃(H)

p,q (t)ψ−Hn(2jntn − kn) dtn. (2.62)

We claim that
I(t̂n; p, q; jn, kn) = δ(pn, qn; jn, kn)Ψ̃(Ĥn)

p̂n,q̂n
(t̂n), (2.63)

where δ(pn, qn; jn, kn) = 1 if (pn, qn) = (jn, kn) and δ(pn, qn; jn, kn) = 0 otherwise. To verify
(2.63), note that (2.9), (2.10), (2.59) and (2.61) imply that

2jn

∫

R
Ψ̃(H)

p,q (t)ψ−Hn(2jntn − kn) dtn

= 2jnΨ̃(Ĥn)
p̂n,q̂n

(t̂n)
∫

R
ψHn(2pntn − qn)ψ−Hn(2jntn − kn) dtn. (2.64)

Since the functions ψHn and ψ−Hn are real-valued, it follows from Parseval’s formula, (2.8)
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and the orthonormality of the Lemarié-Meyer wavelets 2J/2ψ(2Jx−K), J ∈ Z, K ∈ Z, that

2jn

∫

R
ψHn(2pntn − qn)ψ−Hn(2jntn − kn) dtn

= 2−pn

∫

R
e−i(2−pnqn−2−jnkn)ξnψ̂Hn(2−pnξn)ψ̂−Hn(2−jnξn) dξn

= 2(Hn+1/2)(pn−jn)−pn

∫

R
e−i(2−pnqn−2−jnkn)ξnψ̂(2−pnξn)ψ̂(2−jnξn) dξn

= 2(Hn+1/2)(pn−jn)+jn

∫

R
ψ(2pntn − qn)ψ(2jntn − kn) dtn

= 2(Hn+1/2)(pn−jn)δ(pn, qn; jn, kn). (2.65)

Combining (2.64) and (2.65) yields (2.63).
Next it follows from Proposition 2.7, (2.60), (2.62) and (2.63), that almost surely, for

every t̂n ∈ RN−1,

Cjn,kn(t̂n) =
∑

(p,q)∈ZN×ZN

2−〈p,H〉 εp,q I(t̂n; p, q; jn, kn)

=
∑

(p̂n,q̂n)∈ZN−1×ZN−1

2−〈p̂n,Ĥn〉ε(jn,p̂n),(kn,q̂n)Ψ̃
(Ĥn)
p̂n,q̂n

(t̂n).
(2.66)

Observe that we are allowed to interchange the order of integration and summation in deriving
the first equality in (2.66) because the function tn 7→ ψ−Hn(2jntn − kn) belongs to S(R), the
partial-sum processes BH

m(t) [which are defined in (2.12)] converges to BH(t) uniformly on all
compact sets and because of (2.57). Also, observe that Propositions 2.6 and 2.7 entail that,
with probability 1, the series (2.66) is uniformly convergent in t̂n, on any compact of RN−1 and
that the Gaussian field {Cjn,kn(t̂n), t̂n ∈ RN−1} is a fractional Brownian sheet on RN−1, with
index Ĥn. Finally, observe that the Gaussian random sequences {ε(jn,p̂n),(kn,q̂n), (p̂n, q̂n) ∈
ZN−1 × ZN−1} ( (jn, kn) ∈ Z × Z) are independent and have the same distributions, so are
the fractional Brownian sheets {Cjn,kn(t̂n), t̂n ∈ RN−1}, ((jn, kn) ∈ Z× Z). ¤

Let us show that the increments of the Gaussian field {Cjn,kn(t̂n), t̂n ∈ [0, 1]N−1} can be
controlled uniformly in the indices jn and kn.

Lemma 2.12 Let Ω∗1 be the event of probability 1 in Theorem 2.1. For every 1 ≤ n ≤ N

and x, y ∈ [0, 1]N , let

τn(x̂n, ŷn) =
∑

l 6=n

|xl − yl|Hl
√

log(3 + |xl − yl|−1). (2.67)

Then there is a random variable A7 > 0 of finite moments of any order, such that for every
jn ∈ N, kn ∈ {0, 1, . . . , 2jn}, x̂n ∈ [0, 1]N−1, ŷn ∈ [0, 1]N−1 and ω ∈ Ω∗1,

|Cjn,kn(x̂n, ω)− Cjn,kn(ŷn, ω)| ≤ A7(ω) 2jnHn τn(x̂n, ŷn). (2.68)
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Proof Following the same lines as in the proofs of Theorems 2.1 and 2.3, one can show
that there is a random variable A8 > 0, of finite moments of any order, such that for every
tn ∈ R, x̂n ∈ [0, 1]N−1, ŷn ∈ [0, 1]N−1 and ω ∈ Ω∗1, one has

∣∣BH(tn, x̂n, ω)−BH(tn, ŷn, ω)
∣∣ ≤ A8(ω) τn(x̂n, ŷn)(1 + |tn|)Hn

√
log log(3 + |tn|). (2.69)

It follows from (2.60) and (2.69) that for all jn ∈ N, kn ∈ {0, 1, . . . , 2jn}, x̂n ∈ [0, 1]N−1

and ŷn ∈ [0, 1]N−1,

|Cjn,kn(x̂n, ω)− Cjn,kn(ŷn, ω)|
≤ 2jn(1+Hn)

∫

R
|BH(tn, x̂n, ω)−BH(tn, ŷn, ω)| |ψ−Hn(2jntn − kn)| dtn (2.70)

≤ A8(ω) 2jn(1+Hn)τn(x̂n, ŷn)
∫

R
(1 + |tn|)Hn

√
log log(3 + |tn|)

∣∣ψ−Hn(2jntn − kn)
∣∣ dtn,

where the last integral is finite since ψ−Hn belongs to S(R). Moreover, the integral

I(jn, kn) = 2jn

∫

R
(1 + |tn|)Hn

√
log log(3 + |tn|)

∣∣ψ−Hn(2jntn − kn)
∣∣ dtn

can be bounded independently of jn ∈ N and kn ∈ {0, 1, . . . , 2jn}. Indeed, by setting u =
2jntn − kn, we derive that

I(jn, kn) ≤
∫

R
(2 + |u|)Hn

√
log log(4 + |u|) ∣∣ψ−Hn(u)

∣∣ du < ∞. (2.71)

Thus, (2.69) follows from (2.70) and (2.71). ¤

In the following, without loss of generality, we will suppose that

H1 = min{H1, . . . , HN}. (2.72)

Lemma 2.13 Let Ω∗1 be the event with probability 1 in Theorem 2.1. If there exist some
ε > 0, s = (s1, ŝ1) ∈ (0, 1]× (0, 1]N−1 and ω ∈ Ω∗1 such that

lim sup
|h|→0

|BH(s + h, ω)−BH(s, ω)|
σ(s + h, s)1+ε

< ∞, (2.73)

then there is a constant c2,25 > 0 (only depending on s, ε and ω) such that for every j1 ∈ N
and k1 ∈ {0, 1, . . . , 2j1},

|Cj1,k1(ŝ1, ω)| ≤ c2,25 2−j1εH1
(
1 + |2j1s1 − k1|

)(1+ε)H1 . (2.74)
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Proof When (2.73) holds, we can find two constants c2,26 > 0 and η > 0 [depending on s,
ε and ω] such that for all h ∈ RN satisfying |h| ≤ η,

∣∣BH(s + h, ω)−BH(s, ω)
∣∣ ≤ c2,26 σ(s + h, s)1+ε. (2.75)

In particular, for h = (h1, 0, . . . , 0) with |h1| ≤ η, we have
∣∣BH(s1 + h1, ŝ1, ω)−BH(s1, ŝ1, ω)

∣∣ ≤ c2,26 |h1|H1(1+ε). (2.76)

Observe that Theorem 2.3 implies that by increasing the value of c2,26 , (2.76) holds for
all h1 ∈ R. Hence it follows from (2.60), (2.61) and (2.76) that for every jn ∈ N and
kn ∈ {0, 1, . . . , 2jn},

∣∣Cj1,k1(ŝ1, ω)
∣∣ ≤ 2j1(1+H1)

∫

R

∣∣BH(t1, ŝ1)−BH(s1, ŝ1)
∣∣ ∣∣ψ−H1(2j1t1 − k1)

∣∣ dt1

≤ c2,26 2j1(1+H1)

∫

R

∣∣t1 − s1

∣∣H1(1+ε) ∣∣ψ−H1(2j1t1 − k1)
∣∣ dt1.

Setting u = 2j1t1 − k1 in this last integral, one obtains that

∣∣Cj1,k1(ŝ1, ω)
∣∣ ≤ c2,26 2j1H1

∫

R

∣∣2−j1u + 2−j1k1 − s1

∣∣H1(1+ε) ∣∣ψ−H1(u)
∣∣ du

≤ c2,27 2−j1εH1

∫

R
|u|H1(1+ε)

∣∣ψ−H1(u)
∣∣ du

+c2,27 2−j1εH1
∣∣2j1s1 − k1

∣∣H1(1+ε)
∫

R

∣∣ψ−H1(u)
∣∣ du

≤ c2,25 2−j1εH1(1 + |2j1s1 − k1|)(1+ε)H1 ,

for some finite constant c2,25 > 0. This proves (2.74). ¤

The proof of Theorem 2.5 mainly relies on the following technical lemma, which is, to a
certain extent, inspired by Lemma 4.1 in Ayache, Jaffard and Taqqu (2004).

Lemma 2.14 There is an event Ω∗3 with probability 1 satisfying the following property: for
all arbitrarily small η > 0, ε > 0 and for all ω ∈ Ω∗3, there exist a real number ν > 0
and an integer j1,0 ≥ 0 such that for all integers j1 ≥ j1,0, k̂1 ∈ {0, 1, . . . , 3j1}N−1 with
3−j1 k̂1 ∈ [η, 1]N−1 and for all t1 ∈ [0, 1], there exists k1(j1) ∈ {0, 1, . . . , 2j1} such that

∣∣t1 − 2−j1k1(j1)
∣∣ ≤ 2−j1(1−H1ε)+1 (2.77)

and
∣∣Cj1,k1(j1)(3

−j1 k̂1, ω)
∣∣ ≥ ν. (2.78)
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Proof Let us fix two constants ε, η ∈ (0, 1). Since the distribution of the fractional Brownian
sheet {Cj1,k1(x̂1), x̂1 ∈ [η, 1]N−1} is independent of the indices j1 and k1 [see Proposition 2.11],
there is a constant νη > 0, depending on η only, such that for all x̂1 ∈ [η, 1]N−1, j1 ∈ N and
k1 ∈ {0, 1, . . . , 2j1},

√
Var(Cj1,k1(x̂1)) ≥ νη. (2.79)

Thus, for all j1 ∈ N, k1 ∈ {0, 1, . . . , 2j1} and x̂1 ∈ [η, 1]N−1,

P
(|Cj1,k1(x̂1)| ≤ νη

) ≤
√

2
π

. (2.80)

For any j1 ∈ N, we set

Dη,j1 =
{

2−j1 k̂1 : k̂1 ∈ {0, 1, . . . , 3j1}N−1 and 3−j1 k̂1 ∈ [η, 1]N−1
}

(2.81)

and

Lε,j1 = b 2j1

b2j1H1εcc, (2.82)

where bxc is the integer part of x. Observe that each k1 ∈ {0, 1, . . . , 2j1} can be written as

k1 = b2j1H1εc q + r, (2.83)

where q ∈ {0, 1, . . . , Lε,j1} and r ∈ {0, 1, . . . , b2j1H1εc− 1}. Also observe that for all t1 ∈ [0, 1]
and j1 ∈ N, there is qj1 ∈ {0, 1, . . . , Lε,j1} and rj1 ∈ {0, 1, . . . , b2j1H1εc − 1} such that

∣∣∣t1 −
b2j1H1εc qj1 + rj1

2j1

∣∣∣ ≤ 2−j1 .

Hence we have for all rj1 ∈ {0, 1, . . . , b2j1H1εc − 1},
∣∣∣t1 −

b2j1H1εc qj1 + rj1

2j1

∣∣∣ ≤ 2−j1(1−εH1)+1

and (2.77) follows from this last inequality.
Now we consider the event Eη,ε,j1 defined by

Eη,ε,j1 =
⋃

d̂1∈Dη,j1

Lε,j1⋃

q=0

b2j1H1εc−1⋂

r=0

{
|Cj1,b2j1H1εc q+r(d̂1)| ≤ νη

}
. (2.84)

It follows from the independence of the random variables Cj1, b2j1H1εc q+r(d̂1), (see Proposition
2.11), (2.80), (2.81) and (2.82) that

P
(
Eη,ε,j1

) ≤ (3j1 + 1)N−1(Lε,j1 + 1)
( 2

π

)2j1H1ε−1

≤ exp
(
c2,28j1 + (log

2
π

)(2j1H1ε − 1)
)
.
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Since
∑∞

j1=0 P(Eη,ε,j1) < ∞, the Borel-Cantelli Lemma implies that

P
( ∞⋃

J1=0

∞⋂

j1=J1

Ec
η,ε,j1

)
= 1,

where Ec
η,ε,j1

denotes the complementary of the event Eη,ε,j1 .
Finally, we take

Ω∗3 =
⋂

m∈N

⋂

n∈N

∞⋃

J1=0

∞⋂

j1=J1

Ec
1

m+1
, 1
n+1

,j1

and it has the desired properties of Lemma 2.14. ¤

The following lemma is a consequence of Lemmas 2.12 and 2.14.

Lemma 2.15 Let Ω∗2 = Ω∗1∩Ω∗3. Then, for all ε > 0 small enough, (t1, t̂1) ∈ (0, 1]×(0, 1]N−1

and all ω ∈ Ω∗2, there exist ν > 0 and an integer j1,1 ≥ 0 satisfying the following property:
for every integer j1 ≥ j1,1, there exists k1(j1) ∈ {0, 1, . . . , 2j1} such that

∣∣t1 − 2−j1k1(j1)
∣∣ ≤ 2−j1(1−H1ε)+1 (2.85)

and
∣∣Cj1,k1(j1)(t̂1, ω)

∣∣ ≥ ν/2. (2.86)

Proof Let us fix t = (t1, t̂1) ∈ (0, 1]× (0, 1]N−1, ε > 0 small enough and ω ∈ Ω∗2. Observe
that there is an η > 0 such that (t1, t̂1) ∈ (0, 1] × [η, 1]N−1, and for every j1 ∈ N, there is a
k̂1(j1) ∈ {0, 1, . . . , 3j1}N−1 with 3−j1 k̂1(j1) ∈ [η, 1]N−1, such that

|t̂1 − 3−j1 k̂1(j1)| ≤
√

N − 1 3−j1 . (2.87)

Lemma 2.14 implies that for some real ν > 0, integer j1,0 ≥ 0 and every integer j1 ≥ j1,0

there is k1(j1) ∈ {0, 1, . . . , 2j1} satisfying

|t1 − 2−j1k1(j1)| ≤ 2−j1(1−H1ε)+1 (2.88)

and
∣∣Cj1,k1(j1)(3

−j1 k̂1(j1), ω)
∣∣ ≥ ν. (2.89)

On the other hand, applying Lemma 2.12 with n = 1, together with (2.72) and (2.87),
one obtains that for any 0 < θ < H1, there is a constant c2,29 > 0 such that for all j1 ∈ N,

∣∣Cj1,k1(j1)(t̂1, ω)− Cj1,k1(j1)(3
−j1 k̂1(j1), ω)

∣∣ ≤ c2,29

(2
3

)j1(H1−θ)
× 2j1θ. (2.90)
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Combining (2.89) and (2.90), we have that for all j1 ≥ j1,0,
∣∣Cj1,k1(j1)(t̂1, ω)

∣∣ ≥
∣∣Cj1,k1(j1)(3

−j1 k̂1(j1), ω)
∣∣

−
∣∣Cj1,k1(j1)(t̂1, ω)− Cj1,k1(j1)(3

−j1 k̂1(j1), ω)
∣∣

≥ ν − c2,29

(2
3

)j1(H1−θ)
× 2j1θ.

(2.91)

By choosing θ > 0 small enough so that limj1→∞
(

2
3

)j1(H1−θ) × 2j1θ = 0, we see that (2.91)
implies the existence of an integer j1,1 ≥ j1,0 ≥ 0 such that (2.86) holds for all j1 ≥ j1,1. ¤

We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5 Let Ω∗2 be the event in Lemma 2.15. Suppose, ad absurdum, that
there is ε > 0 small enough, t = (t1, t̂1) ∈ (0, 1]× (0, 1]N−1 and ω ∈ Ω∗2 such that

lim sup
|h|→0

|BH(t + h, ω)−BH(t, ω)|
σ(t + h, t)1+ε

< ∞.

Then, it follows from Lemma 2.13 that there is a constant c2,25 > 0 such that for every j1 ∈ N
and k1 ∈ {0, 1, . . . , 2j1},

|Cj1,k1(t̂1, ω)| ≤ c2,25 2−j1εH1
(
1 + |2j1t1 − k1|

)(1+ε)H1 . (2.92)

On the other hand, Lemma 2.15 implies the existence of k1(j1) ∈ {0, 1, . . . , 2j1} satisfying
(2.85), (2.86) and (2.92). Hence for every integer j1 ≥ j1,1,

0 < ν/2 ≤ c2,25 2−j1εH1
(
1 + |2j1s1 − k1(j1)|

)(1+ε)H1

≤ c2,25 2−j1εH1
(
1 + 2j1εH1+1

)(1+ε)H1 . (2.93)

Since ε > 0 can be taken arbitrarily small, one may suppose that (1 + ε)H1 < 1. Then one
obtains that limj1→∞ 2−jεH1

(
1+2j1εH1+1

)(1+ε)H1 = 0, which contradicts (2.93). This finishes
the proof of Theorem 2.5. ¤

3 Hausdorff dimension of the range, graph and level sets

In this section, we study the Hausdorff and packing dimensions of the range BH
(
[0, 1]N

)
={

BH(t) : t ∈ [0, 1]N
}
, the graph GrBH

(
[0, 1]N

)
=

{
(t, BH(t)) : t ∈ [0, 1]N

}
and the level set

Lx = {t ∈ (0,∞)N : BH(t) = x}, where x ∈ Rd is fixed. We refer to Falconer (1990) for the
definitions and properties of Hausdorff and packing dimensions.

In order to state our theorems conveniently, we further assume

0 < H1 ≤ . . . ≤ HN < 1. (3.1)
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Theorem 3.1 Let BH = {BH(t), t ∈ RN
+} be an (N, d)-fractional Brownian sheet with

Hurst index H = (H1, . . . , HN ) satisfying (3.1). Then with probability 1,

dimHBH
(
[0, 1]N

)
= min

{
d;

N∑

j=1

1
Hj

}
(3.2)

and

dimHGrBH
(
[0, 1]N

)
= min

{ k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

}

=

{ ∑N
j=1

1
Hj

if
∑N

j=1
1

Hj
≤ d,

∑k
j=1

Hk
Hj

+ N − k + (1−Hk)d if
∑k−1

j=1
1

Hj
≤ d <

∑k
j=1

1
Hj

,

(3.3)

where
∑0

j=1
1

Hj
:= 0.

Remark 3.2 When d = 1, (3.3) coincides with the result of Ayache (2002).
The second equality in (3.3) is verified by the following lemma, whose proof is elementary

and is omitted. Denote

κ := min
{ k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

}
.

Lemma 3.3 Assume (3.1) holds. We have

(i) If d ≥ ∑N
j=1

1
Hj

, then κ =
∑N

j=1
1

Hj
.

(ii) If
∑`−1

j=1
1

Hj
≤ d <

∑`
j=1

1
Hj

for some 1 ≤ ` ≤ N , then

κ =
∑̀

j=1

H`

Hj
+ N − ` + (1−H`)d (3.4)

and κ ∈ (N − ` + d,N − ` + d + 1].

As usual, the proof of Theorem 3.1 is divided into proving the upper and lower bounds
separately. In the following, we first show that the upper bounds in (3.2) and (3.3) follow
from Theorem 2.1 and a covering argument.
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Proof of the upper bounds in Theorem 3.1. For the proof of the upper bound in
(3.2), we note that clearly dimHBH

(
[0, 1]N

) ≤ d a.s., so we only need to prove the following
inequality:

dimHBH
(
[0, 1]N

) ≤
N∑

j=1

1
Hj

a.s. (3.5)

For any constants 0 < γj < γ′j < Hj (1 ≤ j ≤ N), it follows from Theorem 2.1 that there
is a random variable A1 of finite moments of all orders such that for all ω ∈ Ω∗1,

sup
s,t∈[0,1]N

|BH(s, ω)−BH(t, ω)|∑N
j=1 |sj − tj |γ

′
j

≤ A1(ω). (3.6)

Let ω ∈ Ω∗1 be fixed and then suppressed. For any integer n ≥ 2, we divide [0, 1]N into mn

sub-rectangles {Rn,i} with sides parallel to the axes and side-lengths n−1/Hj (j = 1, . . . , N),
respectively. Then

mn ≤ c3,1 n
∑N

j=1
1

Hj . (3.7)

and BH
(
[0, 1]N

)
can be covered by BH(Rn,i) (1 ≤ i ≤ mn) and, by (3.6), we see that the

diameter of the image BH(Rn,i) satisfies

diamBH(Rn,i) ≤ c3,2 n−1+δ, (3.8)

where δ = max{(Hj − γ′j)/Hj , 1 ≤ j ≤ N}. We choose γj
′ ∈ (γj ,Hj) for each j such that

(1− δ)
N∑

j=1

1
γj

>
N∑

j=1

1
Hj

.

Hence, for γ =
∑N

j=1
1
γj

, it follows from (3.7) and (3.8) that

mn∑

i=1

[
diamBH(Rn,i)

]γ ≤ c3,3 n
∑N

j=1
1

Hj n−(1−δ)γ → 0

as n → ∞. This proves that dimHBH
(
[0, 1]N

) ≤ γ a.s. By letting γj ↑ Hj along rational
numbers, we derive (3.5).

Now we turn to the proof of the upper bound in (3.3). We will show that there are
several different ways to cover GrBH

(
[0, 1]N

)
, each of which leads to an upper bound for

dimHGrBH
(
[0, 1]N

)
.

For each fixed integer n ≥ 2, we have

GrBH
(
[0, 1]N

) ⊆
mn⋃

i=1

Rn,i ×BH(Rn,i). (3.9)
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It follows from (3.8) and (3.9) that GrBH
(
[0, 1]N

)
can be covered by mn cubes in RN+d with

side-lengths c3,4 n−1+δ and the same argument as the above yields

dimHGrBH
(
[0, 1]N

) ≤
N∑

j=1

1
Hj

a.s. (3.10)

We fix an integer 1 ≤ k ≤ N . Observe that each Rn,i ×BH(Rn,i) can be covered by `n,k

cubes in RN+d of sides n
− 1

Hk , where by (3.6)

`n,k ≤ c3,5 n
∑N

j=k( 1
Hk
− 1

Hj
) × n

( 1
Hk
−1+δ)d

.

Hence GrBH
(
[0, 1]N

)
can be covered by mn × `n,k cubes in RN+d with sides n

− 1
Hk . Denote

ηk =
k∑

j=1

Hk

Hj
+ N − k + (1− γk)d.

Recall from the above that we can choose the constants γk and γ ′j (1 ≤ j ≤ N) such that
1− δ > γk

Hk
. Some simple calculations show that

mn × `n,k ×
(
n
− 1

Hk

)ηk ≤ c3,6 n
−(1−δ− γk

Hk
)d → 0

as n → ∞. This implies that dimHGrBH
(
[0, 1]N

) ≤ ηk almost surely. Therefore for every
k = 1, . . . , N ,

dimHGrBH
(
[0, 1]N

) ≤
k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d. (3.11)

Combining (3.10) and (3.11) yields the upper bound in (3.3). ¤

For proving the lower bounds in Theorem 3.1, we need several lemmas.

Lemma 3.4 For any ε > 0, there exist positive and finite constants c3,7 and c3,8 such that
for all s, t ∈ [ε, 1]N ,

c3,7

N∑

j=1

|sj − tj |2Hj ≤ E
[(

BH
0 (s)−BH

0 (t)
)2

]
≤ c3,8

N∑

j=1

|sj − tj |2Hj . (3.12)

Remark 3.5 The upper bound in (3.12) holds for all s, t ∈ [0, 1]N and c3,8 is independent
of ε. However, the constant c3,7 depends on ε.
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Proof Lemma 3.4 In order to prove the upper bound in (3.12), we use (1.1) and write
E

[(
BH

0 (s)−BH
0 (t)

)2] as

[ N−1∏

j=1

s
2Hj

j +
N−1∏

j=1

t
2Hj

j − 2
N−1∏

j=1

1
2

(
s
2Hj

j + t
2Hj

j − |sj − tj |2Hj

)]
s2HN
N

+
[ N−1∏

j=1

t
2Hj

j −
N−1∏

j=1

1
2

(
s
2Hj

j + t
2Hj

j − |sj − tj |2Hj

)]
(t2HN

N − s2HN
N )

+ |tN − sN |2HN ·
N−1∏

j=1

1
2

(
s
2Hj

j + t
2Hj

j − |sj − tj |2Hj

)

:= T1 + T2 + T3.

(3.13)

It is clear that |T2| ≤ c |tN − sN |2HN and T3 ≤ |tN − sN |2HN for all s, t ∈ [ε, 1]N . Therefore
the upper bound in (3.12) follows from (3.13) and induction on N .

It seems to be quite involved to apply a similar elementary method to prove the lower
bound in (3.12); see Xiao and Zhang (2002, pp.213–214) for an application of this argument
to a similar, but easier problem. Instead, we will proceed by making use of the stochastic
integral representation (1.4). We believe that our argument below will be useful in further
studying other problems such as the sharp Hölder conditions for the local times and the exact
Hausdorff measure of the image and graph sets of fractional Brownian sheet BH .

Let Y = {Y (t), t ∈ RN
+} be the Gaussian random field defined by

Y (t) =
∫ t1

0
· · ·

∫ tN

0
g(t, r)W (dr)

=
∫ t1

0
· · ·

∫ tN

0

N∏

j=1

(tj − rj)Hj− 1
2 W (dr), t ∈ RN

+ .

(3.14)

Then by the independence of the Brownian sheet on different quadrants of RN , we have
E

[(
BH

0 (s)−BH
0 (t)

)2] ≥ κ−2
H
E

[(
Y (s)− Y (t)

)2] for all s, t ∈ [ε, 1]N .
For every t ∈ [ε, 1]N , we decompose the rectangle [0, t] into the following disjoint union:

[0, t] = [0, ε]N ∪
N⋃

j=1

R(tj) ∪∆(ε, t), (3.15)

where R(tj) = {r ∈ [0, 1]N : 0 ≤ ri ≤ ε if i 6= j, ε < rj ≤ tj} and ∆(ε, t) can be written as a
union of 2N −N − 1 sub-rectangles of [0, t]. It follows from (3.14) and (3.15) that for every
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t ∈ [ε, 1]N ,

Y (t) =
∫

[0,ε]N
g(t, r)W (dr) +

N∑

j=1

∫

R(tj)
g(t, r)W (dr) +

∫

∆(ε,t)
g(t, r)W (dr)

:= X(ε, t) +
N∑

j=1

Yj(t) + Z(ε, t). (3.16)

Since the processes X(ε, t), Yj(t) (1 ≤ j ≤ N) and Z(ε, t) are defined by the stochastic
integrals over disjoint sets, they are independent. Only the Yj(t)’s will be useful for proving
the lower bound in (3.12).

Now let s, t ∈ [ε, 1]N and 1 ≤ j ≤ N be fixed. Without loss of generality, we assume
sj ≤ tj . Then

E
[(

Yj(t)− Yj(s)
)2

]
=

∫

R(sj)

(
g(t, r)− g(s, r)

)2
dr +

∫

R(sj ,tj)
g2(t, r)dr, (3.17)

where R(sj , tj) = {r ∈ [0, 1]N : 0 ≤ ri ≤ ε if i 6= j, sj < rj ≤ tj}. By (3.17) and some
elementary calculations we derive

E
[(

Yj(t)− Yj(s)
)2

]
≥

∫

R(sj ,tj)
g2(t, r) dr

=
∫

[0,ε]N−1

∏

k 6=j

(tk − rk)2Hk−1

∫ tj

sj

(tj − rj)2Hj−1 dr

≥ c3,9 |tj − sj |2Hj ,

(3.18)

where c3,9 is a positive constant depending on ε and Hk (1 ≤ k ≤ N) only.
It follows from (3.16), (3.17) and (3.18) that for all s, t ∈ [ε, 1]N ,

E
[(

Y (s)− Y (t)
)2

]
≥

N∑

j=1

E
[(

Yj(s)− Yj(t)
)2

]

≥ c3,9

N∑

j=1

|sj − tj |2Hj .

(3.19)

This proves (3.12) with c3,7 = c3,9κ
−2
H

. ¤

Lemma 3.6 below is proved in Xiao and Zhang (2002, p.212) which will be used to derive
a lower bound for dimHBH([0, 1]N ). Lemma 3.7 is needed for determining a lower bound for
dimHGrBH([0, 1]N ). Both lemmas will be useful in the proof of Theorem 3.8.
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Lemma 3.6 Let 0 < α < 1 and ε > 0 be given constants. Then for any constants δ > 2α,
M > 0 and p > 0, there exists a positive and finite constant c3,10, depending on ε, δ, p and
M only, such that for all 0 < A ≤ M ,

∫ 1

ε
ds

∫ 1

ε

1(
A + |s− t|2α

)p dt ≤ c3,10

(
A−(p− 1

δ
) + 1

)
. (3.20)

Lemma 3.7 Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A,B) =
∫ 1

0

dt

(A + tα)β(B + t)η
. (3.21)

Then there exist finite constants c3,11 and c3,12, depending on α, β, η only, such that the
following hold for all reals A, B > 0 satisfying A1/α ≤ c3,11 B:

(i) if αβ > 1, then

J ≤ c3,12

1
Aβ−α−1Bη

; (3.22)

(ii) if αβ = 1, then

J ≤ c3,12

1
Bη

log
(
1 + BA−1/α

)
; (3.23)

(iii) if 0 < αβ < 1 and αβ + η 6= 1, then

J ≤ c3,12

( 1
Bαβ+η−1

+ 1
)
. (3.24)

Proof By a change of variable, we have

J =
1

Bη−1

∫ B−1

0

dt

(A + Bαtα)β(1 + t)η
. (3.25)

To prove (i) and (ii), we note that if B < 1, then we can split the integral in (3.25) so that

J =
1

Bη−1

∫ 1

0

dt

(A + Bαtα)β(1 + t)η
+

1
Bη−1

∫ B−1

1

dt

(A + Bαtα)β(1 + t)η
. (3.26)

If B ≥ 1, then J is bounded by the first term in (3.26). Hence, in the following, it is sufficient
to consider the case 0 < B < 1.
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When αβ > 1, By using (3.26) and changing the variables again, we get

J ≤ 1
Bη−1

∫ 1

0

dt

(A + Bαtα)β
+

1
Bη−1

∫ B−1

1

dt

(A + Bαtα)β tη

≤ 1
Aβ−α−1Bη

∫ BA−1/α

0

ds

(1 + sα)β
+

1
Aβ−α−1+ηα−1

∫ ∞

BA−1/α

ds

(1 + sα)β sη

≤ c

Aβ−α−1Bη
+

1
Aβ−α−1+ηα−1

∫ ∞

BA−1/α

ds

sαβ+η

≤ c

Aβ−α−1Bη
+

c

Bαβ+η−1

≤ c3,12

Aβ−α−1Bη
,

(3.27)

where in deriving the third and the last inequalities, we have used the fact that αβ > 1 and
BA−1/α ≥ c−1

3,11
.

When αβ = 1, similar to (3.27), we have

J ≤ 1
Bη

∫ BA−1/α

0

ds

(1 + sα)β
+

1
Aηα−1

∫ ∞

BA−1/α

ds

(1 + sα)β sη

≤ 2
Bη

∫ BA−1/α

0

ds

1 + s
+

1
Aηα−1

∫ ∞

BA−1/α

ds

s1+η

≤ c3,12

Bη
log

(
1 + BA−1/α

)
.

(3.28)

Hence (3.23) holds.
Finally we consider the case 0 < αβ < 1. If we further have αβ + η < 1, then it follows

from (3.21) that J ≤ ∫ 1
0

dt
tαβ+η < ∞ and (3.24) holds. So it only remains to consider the case

0 < αβ < 1 and αβ + η > 1. For simplicity, we assume c3,12 = 1 and split the integral in
(3.25) as

J =
1

Bη−1

( ∫ B−1A1/α

0

dt

(A + Bαtα)β(1 + t)η
+

∫ B−1

B−1A1/α

dt

(A + Bαtα)β(1 + t)η

)

≤ 1
Aβ−α−1Bη

( ∫ 1

0

ds

(1 + sα)β
+

∫ A−1/α

1

ds

(1 + sα)β (1 + B−1A1/αs)η

)

≤ c

Aβ−α−1Bη
+

1
Aβ−α−1Bη

( ∫ BA−1/α

1

ds

sαβ
+

1
(B−1A1/α)η

∫ A−1/α

BA−1/α

ds

sαβ+η

)
.

(3.29)

Since αβ + η > 1, we have

J ≤ c

Aβ−α−1Bη
+

1
Aβ−α−1Bη

c

(BA−α−1)αβ−1

≤ c

Aβ−α−1Bη
+

c

Bαβ+η−1

≤ c3,12

Bαβ+η−1
,

(3.30)
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where the last inequality follows from the assumption that 0 < αβ < 1 and BA−1/α ≥ c−1
3,11

.
Thus (3.24) holds and the proof of Lemma 3.7 is finished. ¤

Proof of the lower bounds in Theorem 3.1. First we prove the lower bound in (3.2).
Note that for any ε ∈ (0, 1), dimHBH([0, 1]N ) ≥ dimHBH([ε, 1]N ). Hence by Frostman’s
theorem [see e.g. Kahane (1985, Chapter 10)], it is sufficient to show that for all 0 < γ <

min{d,
∑N

j=1
1

Hj
},

Eγ =
∫

[ε,1]N

∫

[ε,1]N
E

( 1
|BH(s)−BH(t)|γ

)
dsdt < ∞. (3.31)

Since 0 < γ < d, we have 0 < E(|Ξ|−γ) < ∞, where Ξ is a standard d-dimensional normal
vector. Combining this fact with Lemma 3.4, we have

Eγ ≤ c3,13

∫ 1

ε
ds1

∫ 1

ε
dt1 · · ·

∫ 1

ε
dsN

∫ 1

ε

1
(∑N

j=1 |sj − tj |2Hj
)γ/2

dtN . (3.32)

To prove the above integral is finite, we observe that for any 0 < γ < min{d,
∑N

j=1
1

Hj
}, there

exists an integer 1 ≤ k ≤ N such that

N∑

j=k+1

1
Hj

< γ ≤
N∑

j=k

1
Hj

, (3.33)

where
∑N

j=N+1
1

Hj
:= 0. In the following, we will only consider the case of k = 1, the

remaining cases are simpler because they require less steps of integration using Lemma 3.6.
Now assuming (3.33), we choose positive constants δ2, . . . , δN such that δj > 2Hj for each

2 ≤ j ≤ N and
1
δ2

+ · · ·+ 1
δN

<
γ

2
<

1
2H1

+
1
δ2

+ · · ·+ 1
δN

. (3.34)

Applying Lemma 3.6 to (3.32) with

A =
N−1∑

j=1

|sj − tj |2Hj and p = γ/2,

we obtain from (3.32) that

Eγ ≤ c3,14 + c3,14

∫ 1

ε
ds1

∫ 1

ε
dt1 · · ·

∫ 1

ε
dsN−1

∫ 1

ε

1
(∑N−1

j=1 |sj − tj |2Hj
)γ/2−1/δN

dtN−1. (3.35)

By repeatedly using Lemma 3.6 to the integral in (3.35) for N − 2 steps, we derive that

Eγ ≤ c3,15 + c3,15

∫ 1

ε
ds1

∫ 1

ε

1
(|s1 − t1|2H1

)γ/2−(1/δ2+···+1/δN )
dt1. (3.36)
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Since the δj ’s satisfy (3.34), we have 2H1

[
γ/2− (1/δ2 + · · ·+ 1/δN )

]
< 1. Thus the integral

in the right hand side of (3.36) is finite. This proves (3.31).
Now we prove the lower bound in (3.3). Since dimHGrBH

(
[0, 1]N

) ≥ dimHBH
(
[0, 1]N

)

always holds, we only need to consider the case when

k−1∑

j=1

1
Hj

≤ d <
k∑

j=1

1
Hj

for some 1 ≤ k ≤ N. (3.37)

Here and in the sequel,
∑0

j=1
1

Hj
:= 0.

Let 0 < ε < 1 and 0 < γ <
∑k

j=1
Hk
Hj

+N−k+(1−Hk)d be fixed, but arbitrary, constants.
By Lemma 3.3, we may and will assume γ ∈ (N − k + d,N − k + d + 1). In order to prove
dimHGrBH([ε, 1]N ) ≥ γ a.s., again by Frostman’s theorem, it is sufficient to show

Gγ =
∫

[ε,1]N

∫

[ε,1]N
E

[ 1
(|s− t|2 + |BH(s)−BH(t)|2)γ/2

]
dsdt < ∞. (3.38)

Since γ > d, we note that for a standard normal vector Ξ in Rd and any number a ∈ R,

E
[ 1
(
a2 + |Ξ|2)γ/2

]
≤ c3,16 a−(γ−d),

see e.g. Kahane (1985, p.279). Consequently, we derive that

Gγ ≤ c3,16

∫

[ε,1]N

∫

[ε,1]N

1
σ(s, t)d |s− t|γ−d

dsdt, (3.39)

where σ2(s, t) = E
[
(BH

0 (s)−BH
0 (t))2

]
. [This was obtained by Ayache (2002) for d = 1]. By

Lemma 3.4 and a change of variables, we have

Gγ ≤ c3,17

∫ 1

0
dtN · · ·

∫ 1

0

1(∑N
j=1 t

Hj

j

)d (∑N
j=1 tj

)γ−d
dt1. (3.40)

In order to show the integral in (3.40) is finite, we will integrate [dt1], . . . , [dtk] iteratively.
Furthermore, we will assume k > 1 in (3.37) [If k = 1, we can use (3.24) to obtain (3.44)
directly].

We integrate [dt1] first. Since H1d > 1, we can use (3.22) of Lemma 3.7 with A =
∑N

j=2 t
Hj

j

and B =
∑N

j=2 tj to get

Gγ ≤ c3,18

∫ 1

0
dtN · · ·

∫ 1

0

1
(∑N

j=2 t
Hj

j

)d−1/H1
(∑N

j=2 tj
)γ−d

dt2. (3.41)

31



We can repeat this procedure for integrating dt2, . . . , dtk−1. Note that if d =
∑k−1

j=1
1

Hj
, then

we need to use (3.23) to integrate [dtk−1] and obtain

Gγ ≤ c3,19

∫ 1

0
dtN · · ·

∫ 1

0

1(∑N
j=k tj

)γ−d
log

(
1 +

1∑N
j=k tj

)
dtk < ∞. (3.42)

Note that the last integral is finite since γ−d < N−k+1. On the other hand, if d >
∑k−1

j=1
1

Hj
,

then (3.22) gives

Gγ ≤ c3,20

∫ 1

0
dtN · · ·

∫ 1

0

1
(∑N

j=k t
Hj

j

)d−∑k−1
j=1 1/Hj

(∑N
j=k tj

)γ−d
dtk. (3.43)

We integrate [dtk] in (3.43) and by using (3.24), we see that

Gγ ≤ c3,21

[ ∫ 1

0
dtN · · ·

∫ 1

0

1
(∑N

j=k+1 tj
)γ−d+Hk(d−∑k−1

j=1
1

Hj
)−1

dtk+1 + 1
]

< ∞, (3.44)

since γ− d+Hk(d−
∑k−1

j=1
1

Hj
)− 1 < N − k. Combining (3.42) and (3.44) yields (3.38). This

completes the proof of Theorem 3.1. ¤

The following result is on the Hausdorff dimension of the level set Lx = {t ∈ (0,∞)N :
BH(t) = x}.

Theorem 3.8 Let BH = {BH(t), t ∈ RN
+} be an (N, d)-fractional Brownian sheet with

Hurst index H = (H1, . . . , HN ) satisfying (3.1). If
∑N

j=1
1

Hj
< d then for every x ∈ Rd,

Lx = ∅ a.s. If
∑N

j=1
1

Hj
> d, then for any x ∈ Rd and 0 < ε < 1, with positive probability

dimH

(
Lx ∩ [ε, 1]N

)
= min

{ k∑

j=1

Hk

Hj
+ N − k −Hkd, 1 ≤ k ≤ N

}

=
k∑

j=1

Hk

Hj
+ N − k −Hkd, if

k−1∑

j=1

1
Hj

≤ d <
k∑

j=1

1
Hj

.

(3.45)

Remark 3.9 When
∑N

j=1
1

Hj
= d, we believe that for every x ∈ Rd, Lx = ∅ a.s. However

we have not been able to prove this statement. In the Brownian sheet case, this was proved
by Orey and Pruitt (1973, Theorem 3.4). It also follows from a result of Khoshnevisan and
Shi (1999).
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Proof The second equality in (3.45) follows from Lemma 3.3. First we prove

dimH

(
Lx ∩ [ε, 1]N

) ≤ min
{ k∑

j=1

Hk

Hj
+ N − k −Hkd, 1 ≤ k ≤ N

}
a.s. (3.46)

and Lx = ∅ a.s. whenever the right hand side of (3.46) is negative. It can be verified that
the latter is equivalent to

∑N
j=1

1
Hj

< d.

For an integer n ≥ 1, divide the interval [ε, 1]N into mn = n
∑N

j=1 H−1
j sub-rectangles Rn,`

of side lengths n−1/Hj (j = 1, · · · , N). Let 0 < δ < 1 be fixed and let τn,` be the lower-left
vertex of Rn,`. Then

P
{

x ∈ BH(Rn,`)
}
≤ P

{
max

s,t∈Rn,`

|BH(s)−BH(t)| ≤ n−(1−δ); x ∈ BH(Rn,`)
}

+ P
{

max
s,t∈Rn,`

|BH(s)−BH(t)| > n−(1−δ)
}

≤ P
{
|BH(τn,`)− x| ≤ n−(1−δ)

}
+ e−c n2δ

≤ c3,22 n−(1−δ)d.

(3.47)

In the above we have applied Lemma 2.1 in Talagrand (1995) to get the second inequality.
If

∑N
j=1

1
Hj

< d, we choose δ > 0 such that (1 − δ)d >
∑N

j=1
1

Hj
. Let Nn be the number of

rectangles Rn,` such that x ∈ BH(Rn,`). It follows from (3.47) that

E(Nn) ≤ c3,22 n
∑N

j=1 H−1
j n−(1−δ)d → 0 as n →∞. (3.48)

Since the random variables Nn are integer-valued, (3.48) and Fatou’s lemma imply that a.s.
Nn = 0 for infinitely many integers n ≥ 1. Therefore Lx = ∅ a.s.

Now we assume
∑N

j=1
1

Hj
> d and define a covering {R′

n,`} of Lx ∩ [ε, 1]N by R′
n,` = Rn,`

if x ∈ BH(Rn,`) and R′
n,` = ∅ otherwise. For every 1 ≤ k ≤ N , R′

n,` can be covered by

n
∑N

j=k+1(H−1
k −H−1

j ) cubes of side length n−H−1
k . Thus we can cover the level set Lx ∩ [ε, 1]N

by a sequence of cubes of side length n−H−1
k . Let δ ∈ (0, 1) be an arbitrary constant and let

η =
k∑

j=1

Hk

Hj
+ N − k −Hk(1− δ)d.

It follows from (3.47) that

E
[ mn∑

`=1

n
∑N

j=k+1(H−1
k −H−1

j ) (
n−H−1

k
)η1l{x∈BH(Rn,`)}

]

≤ c3,23 n
∑N

j=1 H−1
j +

∑N
j=k+1(H−1

k −H−1
j )−ηH−1

k −(1−δ)d = c3,23 .

(3.49)
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Fatou’s lemma implies that the η-dimensional Hausdorff measure of Lx ∩ [ε, 1]N is finite a.s.
and thus dimH(Lx ∩ [ε, 1]N ) ≤ η almost surely. Letting δ ↓ 0 along rational numbers, we
obtain (3.46).

To prove the lower bound in (3.45), we assume
∑k−1

j=1
1

Hj
≤ d <

∑k
j=1

1
Hj

for some
1 ≤ k ≤ N . Let δ > 0 be a small constant such that

γ :=
k∑

j=1

Hk

Hj
+ N − k −Hk(1 + δ)d > N − k. (3.50)

Note that if we can prove that there is a constant c3,24 > 0, independent of δ and γ, such that

P
{
dimH

(
Lx ∩ [ε, 1]N

) ≥ γ
} ≥ c3,24 , (3.51)

then the lower bound in (3.45) will follow by letting δ ↓ 0.
Our proof of (3.51) is based on the capacity argument due to Kahane [see Kahane (1985)].

Similar methods have been used by Adler (1981), Testard (1986), Xiao (1995).
Let M+

γ be the space of all non-negative measures on RN with finite γ-energy. It is known
[cf. Adler (1981)] that M+

γ is a complete metric space under the metric

‖µ‖γ =
∫

RN

∫

RN

µ(dt)µ(ds)
|t− s|γ . (3.52)

We define a sequence of random positive measures µn on the Borel sets C of [ε, 1]N by

µn(C) =
∫

C
(2πn)d/2 exp

(
− n |BH(t)− x|2

2

)
dt

=
∫

C

∫

Rd

exp
(
− |ξ|2

2n
+ i〈ξ, BH(t)− x〉

)
dξ dt.

(3.53)

It follows from Kahane (1985) or Testard (1986) that if there are constants c3,25 > 0, c3,26 >

0 such that
E(‖µn‖) ≥ c3,25 , E

(‖µn‖2
) ≤ c3,26 (3.54)

and
E(‖µn‖γ) < +∞, (3.55)

where ‖µn‖ = µn([ε, 1]N ), then there is a subsequence of {µn}, say {µnk
}, such that µnk

→ µ

in M+
γ and µ is strictly positive with probability ≥ c2

3,25
/(2c3,26). In this case, it follows from

(3.53) that the measure µ has its support in Lx ∩ [ε, 1]N almost surely. Hence Frostman’s
theorem yields (3.51) with c3,24 = c2

3,25
/(2c3,26).
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It remains to verify (3.54) and (3.55). By Fubini’s theorem we have

E(‖µn‖) =
∫

[ε,1]N

∫

Rd

e−i〈ξ,x〉 exp
(
− |ξ|2

2n

)
E exp

(
i〈ξ, BH(t)〉

)
dξ dt

=
∫

[ε,1]N

∫

Rd

e−i〈ξ,x〉 exp
(
− 1

2
(n−1 + σ2(t))|ξ|2

)
dξ dt

=
∫

[ε,1]N

( 2π

n−1 + σ2(t)

)d/2
exp

(
− |x|2

2(n−1 + σ2(t))

)
dt

≥
∫

[ε,1]N

( 2π

1 + σ2(t)

)d/2
exp

(
− |x|2

2σ2(t)

)
dt := c3,25 .

(3.56)

Denote by I2d the identity matrix of order 2d, Cov(BH(s), BH(t)) the covariance matrix of
(BH(s), BH(t)), Γ = n−1I2d + Cov(BH(s), BH(t)) and (ξ, η)′ the transpose of the row vector
(ξ, η). Then

E(‖µn‖2) =
∫

[ε,1]N

∫

[ε,1]N

∫

Rd

∫

Rd

e−i〈ξ+η,x〉 exp
(
− 1

2
(ξ, η) Γ (ξ, η)′

)
dξdη dsdt

=
∫

[ε,1]N

∫

[ε,1]N

(2π)d

√
detΓ

exp
(
− 1

2
(x, x) Γ−1 (x, x)′

)
ds dt

≤
∫

[ε,1]N

∫

[ε,1]N

(2π)d

[
detCov(BH

0 (s), BH
0 (t))

]d/2
ds dt.

(3.57)

It can be proven [see Xiao and Zhang (2002, p.214)] that for all s, t ∈ [ε, 1]N ,

detCov(BH
0 (s), BH

0 (t)) =
N∏

j=1

s
2Hj

j t
2Hj

j −
N∏

j=1

1
4
(
s
2Hj

j + t
2Hj

j − |sj − tj |2Hj
)

≥ c3,27

N∑

j=1

|sj − tj |2Hj .

(3.58)

Combining (3.57), (3.58) and applying Lemma 3.6 repeatedly, we obtain

E(‖µn‖2) ≤ c3,28

∫

[ε,1]N

∫

[ε,1]N

1
[∑N

j=1 |sj − tj |2Hj
]d/2

ds dt := c3,26 < ∞. (3.59)

In the above, we have omitted the proof of c3,26 < ∞ since it is very similar to (3.32)–(3.36)
in the proof of Theorem 3.1. Therefore we have shown (3.54) holds.
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Similar to (3.57), we have

E(‖µn‖γ) =
∫

[ε,1]N

∫

[ε,1]N

ds dt

|s− t|γ
∫

Rd

∫

Rd

e−i〈ξ+η,x〉 exp
(
− 1

2
(ξ, η) Γ (ξ, η)′

)
dξdη

≤ c3,29

∫

[ε,1]N

∫

[ε,1]N

1
(∑N

j=1 |sj − tj |
)γ(∑N

j=1 |sj − tj |2Hj
)d/2

ds dt

≤ c3,30

∫ 1

0
dtN · · ·

∫ 1

0

1(∑N
j=1 t

Hj

j

)d (∑N
j=1 tj

)γ
dt1,

(3.60)

where the two inequalities follow from (3.58) and a change of variables. Note that the last
integral in (3.60) is similar to (3.40). By using Lemma 3.7 in the same way as in the proof of
(3.41) – (3.44), we see that for any γ defined in (3.50), E(‖µn‖γ) < +∞. This proves (3.55)
and hence Theorem 3.8. ¤

By using the relationships among the Hausdorff dimension, packing dimension and the
box dimension [see Falconer (1990)], Theorems 3.1 and 3.8 and their proofs of the upper
bounds, we derive the following analogous result on the packing dimensions of BH

(
[0, 1]N

)
,

GrBH
(
[0, 1]N

)
and Lx.

Theorem 3.10 Let BH = {BH(t), t ∈ RN
+} be an (N, d)-fractional Brownian sheet with

Hurst index H = (H1, . . . , HN ) satisfying (3.1). Then with probability 1,

dimPBH
(
[0, 1]N

)
= min

{
d;

N∑

j=1

1
Hj

}
, (3.61)

dimPGrBH
(
[0, 1]N

)
= min

{ k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

}
. (3.62)

If
∑N

j=1
1

Hj
> d, then for any x ∈ Rd and 0 < ε < 1,

dimP

(
Lx ∩ [ε, 1]N

)
= min

{ k∑

j=1

Hk

Hj
+ N − k −Hkd, 1 ≤ k ≤ N

}
(3.63)

with positive probability.

Remark 3.11 In light of Theorems 3.1, 3.8 and 3.10, it would be interesting to determine
the exact Hausdorff and packing measure functions for BH([0, 1]N ), GrBH([0, 1]N ) and the
level set Lx. In the special case of the Brownian sheet, the Hausdorff measure of the range and
graph were evaluated by Ehm (1981). However, his method relies crucially on the independent
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increment property of the Brownian sheet and is not applicable to the fractional Brownian
sheet BH in general. Moreover, no packing measure results have been proven even for random
sets determined by the ordinary Brownian sheet.

Related to these problems, we mention that the Hausdorff measure functions for the range
and graph of an (N, d)-fractional Brownian motion X have been obtained by Talagrand (1995)
and Xiao (1997a, b); and the exact packing measure functions for X([0, 1]N ) have been studied
by Xiao (1996, 2003). Their methods are useful for studying the fractional Brownian sheet
BH as well.

Remark 3.12 By examining the proofs, we see that Theorems 3.1, 3.8 and 3.10 hold for
all Gaussian random fields satisfying (3.12) and (3.58), including certain anistropic Gaussian
random fields with stationary increments [see e.g., Kôno (1975), Bonami and Estrade (2003,
Example 3)].
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