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Abstract

Let BE = {Bf(t), t € RV} be an (N,d)-fractional Brownian sheet with index
H = (Hy,...,Hy) € (0,1)". The uniform and local asymptotic properties of B are
proved by using wavelets methods. The Hausdorff and packing dimensions of the range
B ([0,1]"), the graph GrB*([0,1]") and the level set are determined.
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1 Introduction

For a given vector H = (Hy,...,Hn) (0 < H; < 1 forj = 1,...,N), a 1-dimensional
fractional Brownian sheet Bl = {Bl(t),t € R} with Hurst index H is a real-valued,

centered Gaussian random field with covariance function given by
Ay
E(B§ (s)B' (1)) =[] §<|Sj\2Hj + |t 12— |s; — tj\ij), s,t € RV, (1.1)
j=1

It follows from (1.1) that B is an anisotropic Gaussian random field and B (t) = 0 a.s. for
every t € RV with at least one zero coordinate. Moreover, Bé{ has the following invariance

properties:
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(i) BE is self-similar in the sense that for all constants ¢ > 0,

{Bgf(ct), te RN} 4 {ciﬁil HigH (1), t ¢ RN}. (1.2)

(ii) Let WH = {W#(t),t € RN} be the Gaussian random field defined by

aon ) TIS [P Bty it £ 0 forall j
W) = : (1.3)
0 otherwise.

Then, WH £ BH.

In the above, 2 means equality in the finite dimensional distributions.

Fractional Brownian sheet has the following stochastic integral representation
t1 tN
B0 =, [ [ gt swias), (1.4)
—0oQ —00

where W = {W(s), s € RV} is the standard real-valued Brownian sheet and

N

g(t;s)=]] [((tj —s)4) T ((—sj)+)Hi—1/2]

Jj=1

with s; = max{s,0}, and where k,, is the normalizing constant given by

R

so that E[(B (t))?] = HN:1 ‘tj|2Hj for all t € RY. Here (1) = (1,1,...,1) € RV,

Let Bff,...,BH be d independent copies of B{!. Then the (N,d)-fractional Brownian
sheet with Hurst index H = (Hy, ..., Hy) is the Gaussian random field B = {Bf(t): ¢ ¢
RN} with values in R? defined by

BH(t)=(BH(),...,BH (), teRYN. (1.5)

Note that if N = 1, then B¥ is a fractional Brownian motion in R? with Hurst index
Hy € (0,1); if N > 1 and Hy = --- = Hy = 1/2, then B is the (N,d)-Brownian sheet.
Hence B can be regarded as a natural generalization of one parameter fractional Brownian
motion in R? to (N, d) Gaussian random fields, as well as a generalization of the Brownian
sheet. Another well known generalization is the multiparameter fractional Brownian motion

X ={X(t), t € RV}, which is a centered Gaussian random field with covariance function
1
E[Xi(s)X;(t)] = §5ij(\s\2fh + [P — s — t]2H1>, Vs,t € RV, (1.6)
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where 0 < Hy < 1 is a constant and d;; = 1 if ¢ = j and 0 if i # j, and where | - | denotes the
Euclidean norm in RY.

Fractional Brownian sheets arise naturally in many areas, including in stochastic partial
differential equations [cf. @ksendal and Zhang (2000), Hu, @ksendal and Zhang (2000)] and in
studies of most visited sites of symmetric Markov processes [cf. Eisenbaum and Khoshnevisan
(2001)].

Recently, many authors have studied various properties of the fractional Brownian sheets.
For example, Dunker (2000) has studied the small ball probability of an (NN, 1)-fractional
Brownian sheet. For the special class of fractional Brownian sheets such that there is a unique
minimum among Hi, ..., Hy, Mason and Shi (2001) have obtained the exact rate for the small
ball probability and have computed the Hausdorff dimension of some exceptional sets related
to the oscillation of their sample paths. Belinski and Linde (2002) give a different proof of
the small ball probability result of Mason and Shi (2001) and have also obtained a sharp
estimate for the small ball probability in the case of N = 2 and H1; = Hs. More generally, by
using different kinds of s-numbers Kiihn and Linde (2002) have determined the rate, up to a
logarithmic factor, for the small ball probability and the optimality of series representations
for the fractional Brownian sheet B with an arbitrary index H = (Hy,...,Hy) € (0,1)V.
Ayache and Taqqu (2003) have derived optimal wavelet series expansions for the fractional
Brownian sheet B; see also Dzhaparidze and van Zanten (2003) for other optimal infinite
series expansions. Xiao and Zhang (2002) have proved a sufficient condition for the joint
continuity of the local times of an (N, d)-fractional Brownian sheet B . Kamont (1996) and
Ayache (2002) have studied the box-dimension and the Hausdorff dimension of the graph set
of an (N, 1)-fractional Brownian sheet B¥ using wavelet methods.

The main objective of this paper is to further investigate the asymptotic and fractal
properties of the (IV,d)-fractional Brownian sheet BY. We are particularly interested in
describing the anisotropic nature of B¥ in terms of the Hurst index H = (Hy,...,Hy) €
(0, 1)N . We should mention that several authors have been interested in applying anisotropic
Gaussian random fields to stochastic modelling; see, for example, Bonami and Estrade (2003)
for bone structure modelling and Benson et al. (2004) for modelling aquifer structure in
hydrology. We hope that the results and techniques in this paper will be helpful for studying
more general anisotropic Gaussian random fields.

The rest of this paper is organized as follows. In Section 2, we study the uniform and
local modulus of continuity and the law of the iterated logarithm of an (XN, 1)-fractional
Brownian sheet. Many authors have studied the asymptotic behavior of the sample functions
of Gaussian random fields [see, e.g. Albin (1994) and Kono (1975) and the reference therein).

Our approach is different from those in the aforementioned references and relies on the wavelet



expansion of B in terms of a Lemarié-Meyer wavelet basis for L?(R). We remark that, even
though the methods of Albin (1994) and Koéno (1975) based on metric entropy may be
modified to prove our Theorems 2.1 and 2.3 below, our wavelet-based approach has certain
advantages. In particular, it allows us to prove that, with probability 1, the sample function
B (t) does not satisfy any local Holder conditions with respect to the function o' (¢4 h, t),
for any € > 0, where o2(¢t + h,t) = E[(B (t + h) — B¥(t))?]; see Theorem 2.5. This implies
that B (t) is nowhere differentiable on RY. Theorem 2.5 is more difficult to establish directly
due to the complex dependence structure of B. It is worthwhile to mention that another
way of proving the non-differentiability of BY is by investigating the regularity of the local
times of BY. This approach relies on solving Problem 4.12 in Xiao and Zhang (2002) and
requires totally different techniques. We will deal with it elsewhere.

In Section 3, we determine the Hausdorff and packing dimensions of the range B ([0, 1]V),
the graph GrBY([0,1]") and the level set L, = {t € (0,00)" : B (t) = z}. Our method
for determining the Hausdorff dimension of GrB*([0,1]") is different from that in Ayache
(2002), and is more reminiscent to the arguments in Xiao (1995). Our results suggest that,
due to the anisotropy of B in ¢, the sample paths of an (N, d)-fractional Brownian sheet
BH are more irregular than those of the Brownian sheet or an (N, d)-fractional Brownian
motion.

Finally we introduce some notation. Throughout this paper, the underlying parameter
space is RY or RJX = [0,00)V. A typical parameter, t € RV is written as t = (¢1,...,tx), or
occasionally, as {(c), if t; = --- =ty = c. For any s,t € RN such that s; <t; (j =1,...,N),
we define the closed interval (or rectangle) [s,t] = vazl [sj,t;]. We use (-, -) and |- | to denote
the ordinary scalar product and the Euclidean norm in R™ respectively, no matter the value
of the integer m.

We will use ¢ to denote an unspecified positive and finite constant which may not be the
same in each occurrence. More specific constants in Section ¢ are numbered as c, |, ¢, ,,. ..,

and so on.

2 Modulus of continuity and asymptotic properties

In this section, we investigate the uniform and local modulus of continuity, nowhere differ-
entiability and the laws of the iterated logarithm of the fractional Brownian sheet BH =
{BH(t),t € RN} with index H = (Hy, Ha,...,Hy), 0 < H; < 1. Our approach is based on
the wavelet expansion of BY.

For simplicity, we will suppose B is real-valued (i.e. d = 1), and we will use A, Ay, A, ...

to denote positive random variables.



Let us first state the main results.

Theorem 2.1 There exist a random variable A1 = Aj(w) > 0 of finite moments of any order
and an event Q7 of probability 1 such that for any w € QfF,

sup [B%(s,w) — B (t,w) < Aj(w). (2.1)

s,tef0,1]¥ Zjvzl |s; — t;|Hi \/log (3 +|s; — tj|—1)

Remark 2.2

e Up to a constant, the inequality in Theorem 2.1 is sharp. When Hy = --- = Hy = %
it agrees with the corresponding result for the Brownian sheet due to Orey and Pruitt

(1973).
e Theorem 2.1 remains valid when [0, 1]V is replaced by any compact rectangle of R,
e The event ] will be specified in the proof of Theorem 2.1.

e As we mentioned in the Introduction, Theorem 2.1 can also be proven using the method
of proving Theorem 1 in Koéno (1975). The proof we give below is based on the wavelet

representation of B .

Next we give an upper bound for the asymptotic behavior of the fractional Brownian sheet
BH(t) as |t| — oo. Recall that, by the law of the iterated logarithm [see for example Orey
(1972)], the ordinary fractional Brownian motion { By (t), ¢t € R} with Hurst index H € (0, 1)
satisfies with probability 1,

B (t)] < A(1+t))\/loglog(3 + |t]), VteER,

where A is a positive random variable. This result can be extended to the fractional Brownian

sheet as follows.

Theorem 2.3 Let Bf = {BH(t), t € RN} be a fractional Brownian sheet with index H =
(Hy,...,Hn) and let Q] be the event of probability 1 in Theorem 2.1. Then, there is a random
variable Ay > 0 of finite moments of any order such that for all w € Q7,

BH(t,w
sup — | H( ) < Az (w). (2.2)
vern [I;2y (1 +[t) /loglog(3 + [t5])




Note that (2.2) is more concerned with the global property of B (t) and it does not catch
the local asymptotic behavior of B (t) near t = 0. To study the asymptotic properties of
BH at a fixed point tg € RV, we consider

o2(s,1) = E[(BH(t) - BH(S))Q}, Vs, t € RV, (2.3)

It follows from the proof of Lemma 3.4 below that for any closed interval I = [a,b], there is

a finite constant ¢, , > 0 such that for all s, € I,

N
o(t,s) < Can Z ‘tj - Sj’Hj' (2.4)
j=1

Hence one can apply the metric entropy method to prove a law of the iterated logarithm for

BH . The following is a consequence of the proof of Theorem 2 in Kéno (1975).

Proposition 2.4 There exists a positive and finite constant c,, such that for every to € I,

with probability 1

BH(ty+h) — BH(t
lim sup 1Bt + h) (fo) <y, (2.5)
h—0  g(to,to + h),/loglog ﬁ

The next result is a partial inverse of (2.5) and implies that, for every € > 0, the sample
function B (t) does not satisfy o'**-Hélder condition at any point, where o(t, s) is defined
in (2.3).

Theorem 2.5 Let B = {BH(t),t € RN} be a real-valued fractional Brownian sheet with
index H = (Hi,...,Hy). Then, there is an event Q% of probability 1 such that for all e > 0,
t € (0,1)N and all w € O,

BH(t+ h,w) — BH(¢
i sup LB+ @) = B (4 w)

= 00. 2.
|h|—0 U(t+h,t)1+€ 0 ( 6)

In order to prove Theorems 2.1, 2.3 and 2.5, we will use the wavelet representation of the
fractional Brownian sheet introduced in Ayache (2002). To this end, we need to introduce

the following notations.

o {27222~ K),(J,K) € Zx Z} will be a Lemarié -Meyer wavelet basis for L*(R) [see
for instance Lemarié and Meyer (1986) or Meyer (1992)]. Recall that such orthonormal

bases satisfy the following properties:



(a) ¢ and its Fourier transform QZ belong to the Schwartz class S(R), namely the space
of all infinitely differentiable functions u which verify for all integers n > 0 and
m > 0,

lim ™ (%)nu(t) —0.

[t|—o0
Recall that the Fourier transform of a function f € L'(R) is defined as f(£) =
Jre % f(z)dx for all £ € R.
(b) 12}\ is even, compactly supported and vanishes in a neighborhood of the origin. More

precisely, the support of 121\ is contained in the domain {¢ : %’r < ¢l < %’r}

e For any a € (0,1), the functions ¥ and ¥ ~¢ will denote respectively the fractional
primitive of order o + % and the fractional derivative of order a + % of the mother

wavelet 1, which are defined for all z € R as

1 NPT 1 . N
P (z) = 27T/Rezx£ |€Qi(f1)/2 d¢ and ¢ %(x) = 27r/Rechg €12 () dg. (2.7)

In view of properties (a) and (b) of the Lemarié-Meyer wavelets, these definitions make
sense and ¥ and ¥ ~% are real-valued and belong to the Schwartz class S(R). Moreover,

we have for every ¢ € R,
o . lg(f) 5 _|elatl/2 7
P(§) = W and P *(§) = [¢] P(&). (2.8)
e Forany H = (Hy,...,Hy) € (0,1)Y and for all j = (j1,...,jn) € ZN, k = (k1, ..., kn)
€ ZN and t = (t1,...,tn) € RY, we set

N

() = [Tt ). (2.9)

=1

where for any o € (0,1), z € R and any (J, K) € Z2,
U k(@) = (272 — K) = (= K). (2.10)

We are now in a position to give the wavelet representation of fractional Brownian sheet.

Proposition 2.6 [Ayache (2002)] There is a sequence {¢; ., (j, k) € ZN xZN} of independent
N(0,1) Gaussian random variables such that for any H = (Hi,...,Hy) € (0,1)V, the
fractional Brownian sheet BY = {BH(t),t € RN} can be represented (up to a multiplicative

constant that only depends on H) as:

BI(twy= Y 270 w1, vteRY, (2.11)
(4, k)€ZN xZN



where (j, H) = >N jiH; and where the series in (2.11) is, for each t, convergent in the
L2(Q) -norm (Q being the underlying probability space).

In fact, the series (2.11) is also convergent in a much stronger sense. More precisely, we

have

Proposition 2.7 For almost all w € Q, the series (2.11) is uniformly convergent in t, on

any compact subset of RN

Proposition 2.7 can be obtained by using the same method as that of Ayache and Taqqu
(2003). But since we are not interested in determining the rate of convergence of the series

(2.11), this Proposition can also be proved more simply as follows.

Proof For simplicity we will only prove that, with probability 1, the series (2.11) converges
uniformly in ¢ € [0,1]. For any n € N and ¢t € RY let

Bty =Y 270 w), (212)
(4, k)eln

where I,, = {(j, k)€ ZN xZN ¢ |5 <nand |k| <nforall 1<1< N}.
(H)

j?k

independent, the It6-Nisio Theorem [see Theorem 2.1.1 in Kwapieri and Woyczynski (1992)]

Since the functions ¥'", are continuous and the random variables €1 are symmetric and
implies that, for proving the uniform convergence of series (2.11) on [0, 1], it is sufficient to
show that the sequence {B(t),t € [0,1]" },en is weakly relatively compact in C([0,1]V),
the space of continuous functions on [0, 1]N equipped with the usual topology of uniform
convergence. Observe that (2.11), (2.3) and (2.4) imply that there is a constant ¢, ; > 0 such
that for all n > 1 and all ¢, ¢’ € [0,1]",

E[(BI(t) - BI()’] < calt — ¢1PL, (2.13)

n

where H = min{Hj, ..., Hy}. Since (2.13) and Theorem 12.3 in Billingsley (1968) entail the
weak relative compactness of the sequence { B (t), t € [0,1]" },en in C([0,1]V), this finishes

the proof of Proposition 2.7. O

The proof of Theorems 2.1 mainly relies on the following two technical lemmas. The proof
of Lemma 2.8 is similar to that of Lemma 4 of Ayache (2002) or Lemma 2 of Ayache and
Taqqu (2003). Hence it is omitted.

Lemma 2.8 Let {e;,, m € ZV} be a sequence of N'(0,1) Gaussian random variables. Then,

there is a random variable As > 0, of finite moments of any order such that for almost all



w € Q and for all m = (ma,...,my) € ZV,

N
lem (w)] < Az(w), |log (3 + Z Im)). (2.14)

We will also make use of the following elementary inequality: there is a constant ¢ > 0
such that for all (mq,...,my) € ZV,

N N
log (3 +y |mi|> < ¢ [] V1og(3 + [mi).- (2.15)
=1 =1

Lemma 2.9 For any o € (0,1), define the functions

= > 2y’ — 27y — K)[\/log(3 + | J| + |K]) (2.16)
(J,K)ez?
and
To(z)= Y 27705 k(2)] og(3 + [J] + | K]). (2.17)
(J,K)ez?

Then there is a constant c,, > 0 such that for all x, y € [0,1], one has

Sal@,y) < ¢y, |2 — y|*V/1og(3 + |z — y| =) (2.18)
and

To(@) < ¢y, (2.19)

Proof First we prove (2.18). Since the function ¢ belongs to the Schwartz class S(R), its

derivative of any order n > 0, satisfies

(EY 'y )| <31 % vaeR (2:20)

where ¢, > 0 is a constant that only depends on n. For any z, y € [0, 1], satisfying 2 # y,
there is a unique integer Jy > 0 such that

27Nl < g —y| < 2700, (2.21)

We decompose S, (z,y) into the following 3 parts:

Saa(@,y) Z Z 277y (27 — 427y — K)|[\/log(3 + [ + |K[), (2.22)

J=—00 K=—



Sa2(z,y) Z > 22’ — 9227y — K)|/log(3 + [J] + |K]), (2:23)

J=0 K=—00

Sa3(z,y) Z Z 2770 |y (27 — 927y — K)|\/log(3 + [ J| + | K[) (2.24)
J=Jo+1 K=—oc0
and derive upper bounds for Sy 1(z,y), Sa2(x,y) and S, 3(z,y) separately.
Without loss of generality, we will assume x < y. It follows from the Mean-Value Theorem
that for any integers —oo < J < Jy and K € Z, there is v € (27x,27y), such that

d «
V(@ — K) 02y~ K) =2 (@ — ) (v~ ). (225)
By using (2.20) and (2.21) we derive
d (e
)| < 3+ I - KD
<y (3422 — K| — [v—272[)? (2.26)

S 62,5 (2 =+ |2Jx - K|)_2
To estimate Sy,1(z,y), we note that for all integers J < —1, (2.26) gives
@
dz
So (2.22), (2.25) and (2.27) entail that

(v=K)| < ¢ Q+|K|=27]2))7? < e, (14 K72 (2.27)

Sa,l(xvy) < C2,6 |.CU - y|a (228)

_ 27— flog(3+|J|+|K])
where the constant ¢, ; = ¢, ; ZJi_OO Y oo ciiastlad

(1+[K])?
Next we proceed to derive an upper bound for S, 2(z,y). Comblmng (2.23), (2.25), (2.26)

and (2.15) yields

= 270=9) flog(3 + J + | K])
Sa2(l'y 25|$_y|z Z 2_\‘_/‘2(]1._](’)
J=0 K=—
>, 2J0- O‘\/Iog3+J+\K+L2J$J|)
2o’x_y’JZ%K_Z: (24 |27z — |272] — K|)?
—o0 - (2.29)
— 27079 /log(3 + J + 2/ + |K])
D> (141K
J=0 K=—oc0

Jo
<y lr—yl> 2J<1*a>\/log(3 +J+27).
J=0
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In the above, |z] denotes the integer part of z and 0 < ¢, , < oo is a constant. Note that for
any J € N,

VIog(3 + J +27) <y log(2/+2 4 27) < VT 1 3. (2.30)

It follows from (2.29), (2.30) and (2.21) that

Jo
Sog,Q(l', y) < C2,7 |1E — y| Z 2J(l—a)\/m

J=0

(2.31)
<yl =y o(fo+)(1=a) /713
<ty e =yl V3 +log(lz — y 7).
Now, let us give an upper bound for S, 3(x,y). For every z € [0, 1], let
Op(z)= > > 27742z — K)[\/log(3 + J + [K)). (2.32)
J=Jp+1 K=—00
Then for every z, y € [0,1],

Sa,3(x7 y) < 9]0 (1‘) —+ QJO (y) (233)

Thus, it is sufficient to bound 6 ,(z), uniformly in z € [0, 1]. Note that for any fixed J € N
and any z € [0,1], (2.20) and (2.15) imply that

> e K ViosB T F IR <, 3 YRS IED)

K=—c0 K=—

[e.o]

S BT
2,5 (34272 —|272] — K|)? (2.34)

K=-—

[e.9]

<o 3 V9og(3 + J +27 + |K])
- (2 + K1)

K=—0c0

<y V1I+J,

where c, |, is a finite constant. It follows from (2.34), (2.32) and some simple calculations
that for every z € [0,1],

01,(2) < €510 Z 2771+ J

J=Jop+1
o0 2.35
<y / 2792 + xdx ( )
Jo

<y, 2771+ .
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It is clear that (2.33), (2.35) and (2.21) entail that,

Sas(@,y) < ¢4 o —y|*Viog(3 + [z —y[71), (2.36)

where ¢, , > 0 is a constant independent of 2 and y. Combining (2.28), (2.31) and (2.36)
yields (2.18).

To prove (2.19), we observe that, by (2.10), T,,(z) = Sa(z,0) for every = € [0,1]. There-
fore, (2.19) follows from (2.18) immediately. O

We are now in a position to prove Theorem 2.1.
Proof of Theorem 2.1 Observe that for any s, ¢ € [0,1]", one has that

‘BH(t) - BH(S)\

N
< Z ‘BH(SL e Siclytistipts oo tn) — B (1,000 sim1, Sistit, - tN)| (2:37)
i1

with the convention that, when i = 1, B (sy,...,8;_1,t;,tiy1,...,tn) = BY(t) and when
i=N, BH(sy,...,si1,8i,tix1,...,tn) = BH(s). Another convention that will be used in
the sequel is that, when i = 1, [[/Z} |1Zﬁlkl(sl)\ =1 and when i = N, Hl]iiﬂ \{Eﬁlkl (t)] = 1.

Let QF be the event of probability 1 on which Proposition 2.7 and (2.14) hold. For every
fixed integer 1 < i < N, it follows from Propositions 2.6 and 2.7, Lemmas 2.8 and 2.9, (2.10)
and (2.15) that for every w € Qf and s,t € [0, 1]V,

)BH(Sl, e ,Sifl,ti,tZ#l, e ,tN) — BH(SI, ey Si—1, Si,tiJrl, e ,tN)

<A, (ﬁTHl(s,)) X ( ﬂ THl(tl)) % S, (i, ) (2.38)
=1

l=i+1
< As |s; — |\ /log(|si — ti]1),

where the random variables A4 > 0 and As > 0 are of finite moments of any order. Finally,
Theorem 2.1 follows from inequalities (2.37) and (2.38). O

Now we prove Theorem 2.3.

Proof of Theorem 2.3 For any o € (0,1), let T,,(z) be defined by (2.17). We first show

that there is a constant ¢, ,; > 0, depending on « only, such that for all z € R,

To(x) < €451 + [2])*v/1oglog(3 + |z]). (2.39)

It follows from (2.19) that the inequality (2.39) is satisfied when |z| < 1. It remains to show

that it is also true when |z| > 1. Our approach is similar to the proof of Lemma 2.9.
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For any |z| > 1, we choose an integer Jy > 0 such that
270 < |z| < 2701

and then write T, (z) as the sum of the following 3 parts:

—Jo—1 [e'e)

ST G k(@) |Viog (B + [T] + K],

J=—00 K=—

Z Z 2775 i () |\/1og (3 + [ J] + |K])

J=—Jo K

and

z)=> > 277G k()| Viog(3 + [ ] + | K.

J=0 K=—00

(2.40)

(2.41)

(2.42)

(2.43)

First, let us derive an upper bound for 7, ;(z). For any integers —oo < J < —Jy — 1 and

K € Z, (2.10), the Mean-Value Theorem and (2.20) imply that

7 J

~o 02,52 |$’ 62752 ‘l‘|
) .

Wikl < G T wE S Rl K]

Putting (2.44) into (2.41) yields
Tou(x) < Co14 ||

for some finite constant c,,, > 0.

To derive an upper bound for T, 2(z), we note that
To2(x) < Ra2(x) + Ra2(0),

where

Jo 0o
z)=> Y 22z - K)|[\log(3 + J + [K]).

J=1K=—
Applying (2.20) with n = 0 and (2.15), we have

= 272 /log(3 + J + |K])
Rz.alw) < 252 2 (B3+2-7z— K|)?

J=1 K=—c0
< €y Z 2Ja\/log (4+ J+ 2_J\37|).
J=1

13

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)



Hence, with some elementary computation, we have

Jo
Roae) <y [ 2V/log(5+ 42 el ds
0

< 6,2 flog(5+ Jo + 2 al)
< 645 (14 [2])%/loglog(3 + |z)),
where the last inequality follows from (2.40).
Similarly, (2.20) and (2.15) imply that

o0

Jo
Raa(0) =Y Y 2/*|y*(-K)|\/log(3 + J + |K])

J=1 K=—00

Jo
<y Y27 10g(3 + J)

J=1
< ¢y (14 [2])*/log(log(3 + [2])).

Combining (2.46), (2.47) and (2.50) we obtain that for any |z| > 1,

Ta,g(m‘) < Cy.01 (1 =+ ’xDa V IOgIOg(3 =+ ’x‘)

(2.49)

(2.50)

(2.51)

Now, let us derive an upper bound for T}, 3(z). It follows from (2.43) and (2.10) that for

all z € R,
Ta,3(x) < Ra,3(£) + Ra,3(0)7

where for any = € R,

ng(m)zz Z 277 |2 (272 — K)|\/log(3 + J + | K]).

J=0 K=—

Using (2.20) again one obtains that for all z € R,

o

s 2772 /log(3 + J + |K])
Ra3(x) < ¢y Z Z (34 |27z — K|)?
J=0 K=—00

o0

> 277 flog(3 + J + |27z ]| + | K
:62752 Z V/log( |1272]] + |K])

L L T3+ (27— [272] - K|)?

o

< ey 3277 log(3 4 J + [[272])).

J=0

Note that for any = € R,

Viog(3 + J +1[272]]) < \/log(3 + J +27) + /Iog(3 ¥ [a]).
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It follows from (2.52), (2.53), (2.54) and (2.55) that for any = € R,

Ta3(x) < €5 5 V/10g(3 + []). (2.56)

It is clear that (2.56), (2.51) and (2.45) entail (2.39). Finally, (2.11), (2.9), (2.39), (2.15)
and Lemma 2.8 imply that there is a random variable Ag > 0 of finite moments of any order
such that for all w € QF and t = (t1,...,ty) € RV,

N

N
1B (t,w)| < A¢ [ Tu; (t5) < €00 A JJ 1+ 18517 \/IOglOg(?) + [t51)-
j=1 Jj=1

This finishes the proof of Theorem 2.3 with A = ¢, ,, 4. 0

Remark 2.10 Observe that while proving Theorem 2.3, we have obtained the following
result which will be used in the proof of Proposition 2.11. Namely, there is a random variable
Ay > 0 of finite moments of any order such that for all n > 1, t = (t1,...,ty) € RY and

w € )], one has

1B (t,w)| < Z 2" ‘ejk )| ‘\P]’ )|
(s k‘)EZNXZN

(2.57)

< Asy(w H (L4 1t5)" 3 loglog(3 + [15]).

The rest of this section is devoted to the proof of Theorem 2.5. First, we need to fix some

more notations.

e For any A = (A1, Aa,..., A\y) € RN and for each integer 1 < n < N, we denote by Mn
the vector of RN~ defined as

/)\\n:(Al)"'v)‘nflv)‘n+1a--'7)\N) (258)

with the convention that A; = (A2, As,...,An) and Ay = (A1, A2,...,An_1). For

convenience, we may sometimes write A as (A, An) [see, e.g. (2.69)].

e Forany H = (Hy,...,Hy) € (0,1)Y, j = (j1,...,jn) € ZN, k = (k1,...,ky) € ZN
and t = (t1,...,tn) € RV, we set

W () (H% ) ( I %0 () (2.59)

I=n+1

with the convention that ‘lf( ( D =TIIY QQ/)JL '}, (t1) and \IJ£ %N (tv) =TI, (Crsy kz( 1)-
Recall that the function 1 r kz( 1) is defined in (2.10).

15



Let us now introduce a wavelet transform that allows us to construct a sequence of
independent and identically distributed fractional Brownian sheets on RV ™! starting from a

fractional Brownian sheet on RY.

Proposition 2.11 Let BY = {BY(t),t € RN} be an (N, 1)-fractional Brownian sheet with
index H = (Hy,...,Hy). For everyn € {1,...,N}, (jn,kn) € Z X Z and

%\n = (tb' .. atn—htn-l—h s 7tN) € RN?l?
we define

Cyo o (B) = 27n(1+H) / BH £y (201, — k) dty, (2.60)
R

where = Hn is the wavelet introduced in (2.7). Then (Clpkn) (jnskn)ezxz, 18 @ sequence of

independent and identically distributed fractional Brownian sheets on RN™1 with index ﬁn.

Proof Note that Property (b) of Lemarié-Meyer wavelets and (2.8) imply that o~ Hn (0) =0.

Therefore one has that,
/ W (2t — o) by = 0, (2.61)
R

For every (p,q) € ZN x ZN and for every ,, € RN~1, define

I(%\n;pa ¢ jny kn) = 2/ /R{IVI;({{]) (t)¢_Hn (2jntn — k) dt. (2.62)
We claim that -
I(?n;p, q; In, kn) = 5(pna dn Jns kn)qlgi%l (fn)a (2'63)

where 0(pn, Gn; Jns kn) = 1 if (Dn, qn) = (Gns kn) and 6(pn, qn; Jn, kn) = 0 otherwise. To verify
(2.63), note that (2.9), (2.10), (2.59) and (2.61) imply that

> /Ri’éf? ()™ (2t — k) dty
— oG (7 / I (2Pt — go)p~ T (200t — ky) dty,. (2.64)
R

Pnyqn

Since the functions ¥ and ¢~ are real-valued, it follows from Parseval’s formula, (2.8)

16



and the orthonormality of the Lemarié-Meyer wavelets 27/ 22’z — K), J € Z, K € Z, that
9Jn /R¢Hn(2pntn — )Y (201, — k) dty,
_ 2(Hn+1/2)(pnjn)pn/ei(z—pnqn2—J‘nkn)£n$(gpn§ )@(2 in&,) dén
R
— 9(Hnt1/2)(pn—in)+in /R (2Pt — qu) (2Pt — k) by

2UHnH1/2)n=in) §(p,. g ., in)- (2.65)

Combining (2.64) and (2.65) yields (2.63).
Next it follows from Proposition 2.7, (2.60), (2.62) and (2.63), that almost surely, for
every tn € RN-L

Cjn»kn (?n) = Z 27<p7H> 6p,q I(?n,p, q; j’rh kn)
Q) EZN xZN
(p,q) €ZY % - i (2.66)
= Z 2~ Pn,lin e(jn,ﬁn):(knyqn)q]pn:]n(t )

(PrsGn)EZN—1xZN -1
Observe that we are allowed to interchange the order of integration and summation in deriving
the first equality in (2.66) because the function ¢, + 1~ (2/n¢, — k,) belongs to S(R), the
partial-sum processes B (t) [which are defined in (2.12)] converges to B (t) uniformly on all
compact sets and because of (2.57). Also, observe that Propositions 2.6 and 2.7 entail that,
with probability 1, the series (2.66) is uniformly convergent in T, on any compact of RN ~1 and
that the Gaussian field {C}, , (t), tn € RN~} is a fractional Brownian sheet on RV ~!, with
index H,. Finally, observe that the Gaussian random sequences LG ), (knsdn)> Py @n) €
ZN=L < ZN"YY ( (Jn, kn) € Z x Z) are independent and have the same distributions, so are
the fractional Brownian sheets {C}, k. (tn), tn € RN}, ((jn, kn) € Z X 7). O

Let us show that the increments of the Gaussian field {C}, , (tn), tn € [0,1]V 1} can be

controlled uniformly in the indices j, and k,.

Lemma 2.12 Let Q] be the event of probability 1 in Theorem 2.1. For every 1 < n < N
and x,y € [0,1]V, let
@) = 3 b — il log (B + i — w1 ). (2.67)
l#n
Then there is a random variable A7 > 0 of finite moments of any order, such that for every
gn €N, ky € {0,1,...,277}, 2, € [0, 1]V, 5, € [0,1]V ! and w € QF,

(Cibn @y 0) = Cio o (T w)| < Ar(w) 22 7 (T, ) (2.68)
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Proof Following the same lines as in the proofs of Theorems 2.1 and 2.3, one can show
that there is a random variable Ag > 0, of finite moments of any order, such that for every
th ER, T, € [0,1]V1 7, €10,1]V"! and w € 93, one has

}BH(tn,.ﬁc\n,w) - BH(tn,fjn,w)‘ < Ag(w) Tn (T, Y ) (1 + ‘tn|)H" \/loglog(3 + [ta]).  (2.69)

It follows from (2.60) and (2.69) that for all j, € N, k, € {0,1,...,2"} 7, € [0,1]N~!
and g, € [0,1]V 1,

|C]nukn (/x\'f“w) - Cjn,kn (@\nu LU)|
R

< Ag(w) 20+ ) 2 (3 50 / (1 + [ta]) " \/loglog(3 + [tn]) |~ (297t — k)| dtn,
R

where the last integral is finite since == belongs to S(R). Moreover, the integral

I(jn, kp) = 297 /(1 + [ta]) " \/loglog (3 + [ta]) [0~ (27t — kn)| dtn
R

can be bounded independently of j, € N and k, € {0,1,...,2/n}. Indeed, by setting u =
2nt, — k,, we derive that

I(jins kn) < /(2 + [u]) " \/log log(4 + |ul) [~ (u)| du < oo. (2.71)
R
Thus, (2.69) follows from (2.70) and (2.71). O

In the following, without loss of generality, we will suppose that
H1 :min{Hl,...,HN}. (2.72)

Lemma 2.13 Let Q)] be the event with probability 1 in Theorem 2.1. If there exist some
€>0,s=(s1,51) € (0,1] x (0,1]""! and w € QF such that

H h _BH
s B3 ho0) = B (s, 0)|

2.73
A PER A LT 27

then there is a constant c,,, > 0 (only depending on s, € and w) such that for every j1 € N
and k1 € {0,1,...,271},

(G (B, )| < €5 277K (14 2705y — k) 1FOM, (2.74)
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Proof When (2.73) holds, we can find two constants c, ,, > 0 and 1 > 0 [depending on s,
¢ and w] such that for all h € R satisfying |h| < 7,

’BH(S + h,w) — BH (s, w)| <o 0(s+h, s)Ire, (2.75)
In particular, for h = (hy,0,...,0) with |h;| <7, we have
|BH (51 + h1,31,w) — B (s1,51,w)| < ¢, 4 | [T (2.76)

Observe that Theorem 2.3 implies that by increasing the value of c, 4, (2.76) holds for
all hy € R. Hence it follows from (2.60), (2.61) and (2.76) that for every j, € N and
kn € {0,1,...,27n},

Cj Grow)| < 200D /R |BH (t1,51) — B (s1,81)| [0 (271 — k)| dta
< Chag oJ1(1+Hz) /R \t1 _ 81‘H1(1+e) W}—Hl(letl _ k‘1)\ dty.
Setting u = 271t; — ky in this last integral, one obtains that
’thkl (§1,w)‘ < Gy i1t /R ‘Q_jlu + 27y — 51|H1(1+6) W_Hl (u)’ du
< ey, 2701 /R | 109 = H1 ()| du
+Cy 07 g~ Jieth ‘2j131 — kﬂHl(HE) /R }w_Hl (u)‘ du
< G 9 Ieti(] 4 |201g) — fy|)(HO
for some finite constant c,,; > 0. This proves (2.74). O

The proof of Theorem 2.5 mainly relies on the following technical lemma, which is, to a

certain extent, inspired by Lemma 4.1 in Ayache, Jaffard and Taqqu (2004).

Lemma 2.14 There is an event 25 with probability 1 satisfying the following property: for
all arbitrarily small n > 0, € > 0 and for all w € Q3, there exist a real number v > 0
and an integer ji1o0 > 0 such that for all integers j1 > jio, k€ {0,1,..., 31} N=1 with
3701k € [, 11V and for all t1 € 0,1], there exists ki(j1) € {0,1,...,291} such that

|t — 279y (jr) | < 27207 HhoH (2.77)
and

|Cj )37k, w)| = v, (2.78)
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Proof Let us fix two constants €, 1 € (0,1). Since the distribution of the fractional Brownian
sheet {C}, x, (Z1), 71 € [n, 1]V} is independent of the indices j; and k; [see Proposition 2.11],
there is a constant v, > 0, depending on 7 only, such that for all Z; € [, 1]V, j; € N and
k1 € {0,1,. . .,2j1},

VVar(Cy, 1, (31) > vy, (2.79)
Thus, for all j; € N, ky € {0,1,...,271} and 71 € [, 1]V,
- 2
IP)(|C]‘1J€1 (:El)| < Vn) < ; (2.80)
For any j; € N, we set
Dy = {2 "1y k€ {0,1,..., 31 and 3701, € [n, 1]N—1} (2.81)

and
271

L€7j1 = LLleHlﬁJJv (282)

where |z] is the integer part of z. Observe that each k; € {0,1,...,271} can be written as
ky = L2j1H16J q+r, (2.83)

where ¢ € {0,1,...,Lcj, } and r € {0,1,..., [271H1¢] —1}. Also observe that for all ¢; € [0, 1]

and j1 € N, there is g;, € {0,1,..., Lej, } and 75, € {0,1,...,[221¢] — 1} such that

|2 Hhe | g + 7,
271

Hence we have for all 7;, € {0,1,..., |291H1¢| — 1},

< 97,

=

L2j1H1eJ qjl + 7,
2J1
and (2.77) follows from this last inequality.

< 2—j1(1—EH1)+1

-

Now we consider the event F, . ;, defined by

Le j, LQJ'1H1€J_1

Evsi= U U N G mmge @) <w}. (2.84)

6?1 eDﬂJd q:0 r=0
It follows from the independence of the random variables C '|5i1 1| 4 +T(d1) (see Proposition
2.11), (2.80), (2.81) and (2.82) that

2>211H16_1
s

IN

P(Epes) < (3" + DV (Log, +1)
< exp c228.71+ log )(2j1H16_1))'
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Since > 7 P(E.ej) < oo, the Borel-Cantelli Lemma implies that

P( [j ﬁ Es,ﬁ»ﬁ) =1,

J1=0j1=J1

C
where Emw&

Finally, we take

denotes the complementary of the event £, . ;.

s-NNUN#E .,

1o ntl
meNneN J1=0j1=J; " "

and it has the desired properties of Lemma 2.14. ]

The following lemma is a consequence of Lemmas 2.12 and 2.14.

Lemma 2.15 Let Q5 = QiNQ%. Then, for all € > 0 small enough, (t1,11) € (0,1] x (0, 1]V 1
and all w € €23, there exist v > 0 and an integer j1,1 > 0 satisfying the following property:
for every integer j1 > j11, there exists k1(j1) € {0,1,...,271} such that

|t — 277k (jr) | < 27107 (2.85)
and

1Ci iy (T, w)| = /2. (2.86)

Proof Let us fix t = (t1,1;) € (0,1] x (0,1]V~!, € > 0 small enough and w € Q5. Observe
that there is an 1 > 0 such that (¢1,%;) € (0,1] x [,1]V~", and for every j; € N, there is a
k1(j1) € {0,1,...,31}N=1 with 3791k, (j1) € [, 1]V, such that

it — 377k (1) < VN — 1 3791, (2.87)

Lemma 2.14 implies that for some real v > 0, integer j; o > 0 and every integer j; > jio
there is k1(j1) € {0,1,...,271} satisfying

Ity — 9—J1 k(1) < 9—i1(1-Hie)+1 (2.88)
and

|Cir k(i B F1 (), w)| > v (2.89)

On the other hand, applying Lemma 2.12 with n = 1, together with (2.72) and (2.87),
one obtains that for any 0 < 6 < Hj, there is a constant c, ,, > 0 such that for all j; € N,

i1 (H1—06 .
2)”( RN (2.90)

|Can iy (15 9) = Gy iy (i) 377k (51), w)| < 59 (g
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Combining (2.89) and (2.90), we have that for all j; > j; 0,

|CJ1J€1 (J1) tl’ ‘ | J1Jﬂ(]1 jlkl(jl)’w)‘
| J1,k1(J1) t17w) - Cj17k1(j1)(3_]1k1(j1)?w)' (2.91)
J1(H1-0) »
>V = Cyog (§> x 2717,

By choosing 6 > 0 small enough so that lim;, . (%)jl(Hl_e) x 2119 = 0, we see that (2.91)

implies the existence of an integer ji 1 > ji,0 > 0 such that (2.86) holds for all j; > j1;. O
We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5 Let ()5 be the event in Lemma 2.15. Suppose, ad absurdum, that

there is ¢ > 0 small enough, ¢t = (t1,#;) € (0,1] x (0,1]¥=" and w € O} such that

11m Su Q.
B0 o(t + h, t)lte

Then, it follows from Lemma 2.13 that there is a constant c, ,; > 0 such that for every j; € N
and k1 € {0,1,...,271}

1Cjoy (B )| < g5 2770 (1 4 2004y — Ky )T, (2.92)

On the other hand, Lemma 2.15 implies the existence of k;(j1) € {0,1,...,27} satisfying
(2.85), (2.86) and (2.92). Hence for every integer j; > ji1,

0< V/2 < Cy25 2_jl€H1( + |2j181 - kl(jl)’>(1+€)Hl

<y 2791EHI (1 4 gireHi ) (O (2.93)

225

Since € > 0 can be taken arbitrarily small, one may suppose that (1 + €)H; < 1. Then one
obtains that lim;, o 277°H1 (14 271cH1+1) e _ 0, which contradicts (2.93). This finishes
the proof of Theorem 2.5. O]

3 Hausdorff dimension of the range, graph and level sets

In this section, we study the Hausdorff and packing dimensions of the range B ([O, v ) =
{BH(t): t €[0,1]V}, the graph GrB([0,1]V) = {(t, B7(t)) : t € [0,1]"} and the level set
Ly = {t € (0,00)N : BH(t) = 2}, where 2 € R? is fixed. We refer to Falconer (1990) for the
definitions and properties of Hausdorff and packing dimensions.

In order to state our theorems conveniently, we further assume

O<H,<...<Hpy<1. (31)
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Theorem 3.1 Let B = {Bf(t), t € RY} be an (N,d)-fractional Brownian sheet with
Hurst index H = (Hq, ..., Hy) satisfying (3.1). Then with probability 1,

N
1
. H NY _ .- .
dim, B ([0,1] )—mln{d, zlej} (3.2)
]:
and
" H, Mo
i = . — <k< —
dim,, GrB* ([0, 1) mln{ZH + N —k+ (1 Hyd _k_N,Zl j}
N - = (3.3)
— Z] 1 Hj if E] 1ﬁ§d,
SR BNk (- H)d i YR <d< T 4

where Z] 1 H =0.

Remark 3.2 When d =1, (3.3) coincides with the result of Ayache (2002).
The second equality in (3.3) is verified by the following lemma, whose proof is elementary

and is omitted. Denote

k N
ﬂ—mln{zﬁk—FN—k—l—(l—Hk)d,lg <N Z }

Lemma 3.3 Assume (3.1) holds. We have
. N N
(i) Ifd=>32, H%,, thenmzzjle%.

(ii) If Zﬁ;i H% <d< Z§:1 H% for some 1 < ¢ < N, then

+N—(+(1—Hyd (3.4)

m\m

l
and k € (N —{0+d,N —(+d+1].

As usual, the proof of Theorem 3.1 is divided into proving the upper and lower bounds
separately. In the following, we first show that the upper bounds in (3.2) and (3.3) follow

from Theorem 2.1 and a covering argument.
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Proof of the upper bounds in Theorem 3.1. For the proof of the upper bound in
(3.2), we note that clearly dim, B ([0,1]") < d a.s., so we only need to prove the following

inequality:

dim,, BH [0, 1 (3.5)

HMZ
)
Va)

For any constants 0 < v; < ’y;» <H;(1<j<N ), it follows from Theorem 2.1 that there
is a random variable A; of finite moments of all orders such that for all w € €7,
B (s,w) — BY(t,w)|

sup — < Aj(w). (3.6)
s,t€[0,1]N Zjvzl |s; — ;]9

Let w € QF be fixed and then suppressed. For any integer n > 2, we divide [0, 1]V into m,,
sub-rectangles {R,,;} with sides parallel to the axes and side-lengths n='/i (j =1,..., N),
respectively. Then

My <3y M - HLJ (3.7)
and BY([0,1]") can be covered by B (R,;) (1 < i < m,) and, by (3.6), we see that the
diameter of the image B (R,,;) satisfies

diamB* (R, ;) < Cyr n1+o, (3.8)

where § = max{(H; —~})/H;,1 < j < N}. We choose v;" € (v;, H;) for each j such that

Hence, for v = Zjvzl Vij’ it follows from (3.7) and (3.8) that

mMn
Z [diamBH(Rn,i)]'y < eyynTT % n~ (=97
i=1

as n — oco. This proves that dim, B ([0,1]V) < v a.s. By letting v; T H; along rational
numbers, we derive (3.5).

Now we turn to the proof of the upper bound in (3.3). We will show that there are
several different ways to cover GrBH ([0, v ), each of which leads to an upper bound for
dim,, GrB ([0, 1]V).

For each fixed integer n > 2, we have

GrBH ([0, 1] U Rni x BT(R,,). (3.9)
=1
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It follows from (3.8) and (3.9) that GrB¥ ([0,1]") can be covered by m,, cubes in RV *% with

side-lengths c; , n~ 119 and the same argument as the above yields

1

. H N

dim, GrB" ([0,1]") < E:ng a.s. (3.10)

]:
We fix an integer 1 < k < IN. Observe that each R, ; x BH(RM) can be covered by £, .
_1
cubes in RVN*4 of sides n~ 7, where by (3.6)

PO G (7 —1+6)d

H
E’n,k S 6375 n J Xn

_1
Hence GrBH([O, l]N) can be covered by m,, X £, cubes in RNt with sides n~ Zr . Denote

k
Hy,
= — + N —k+ (1 —)d.
Mk Z 1, + + (1 =)
j=1
Recall from the above that we can choose the constants ~; and *y;. (1 <j < N) such that
1-90> IZ,—’; Some simple calculations show that
_r _(1—§— 2k
M X oo x (7 FE)™ < ey om (=0—g)d _
as n — oo. This implies that dim, GrBH ([O, 1N ) < g almost surely. Therefore for every
k=1,...,N,

k
H
dim, GrB™ ([0,1]V) <} Fk + N —k+ (1 - Hy)d. (3.11)
j=1"7
Combining (3.10) and (3.11) yields the upper bound in (3.3). O

For proving the lower bounds in Theorem 3.1, we need several lemmas.
Lemma 3.4 For any € > 0, there exist positive and finite constants ¢y, and cy 5 such that
for all s,t € [g,1]7,

N

N
Cs 7 Z |3j - tj|2Hj < E[(B(I)q(s) - Bé{(t))ﬂ < Css Z |5j - tj|2Hj' (3'12)
j=1 j=1

Remark 3.5 The upper bound in (3.12) holds for all s,t € [0,1]" and ¢, is independent

of . However, the constant c, , depends on €.
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Proof Lemma 3.4 In order to prove the upper bound in (3.12), we use (1.1) and write
2
E[(B{(s) — B (t))"] as

N—-1 N-1 N—-1 1
T+ TL 8% -2 TE S (5 % -y )i
j=1 j=1 j=1
P 2H T 2H 2H
j j j 2H; 2H 2H
NI | IERE D) o
j=1 j=1 (3.13)
= 2H 2H
+tnv —sn PV T 5(sj Tt — s —tj|2Ha')
j=1
=T+ T+ T;.

It is clear that |Th| < c|ty — sy|?I¥ and T3 < [ty — sy |?HN for all s,t € [,1]Y. Therefore
the upper bound in (3.12) follows from (3.13) and induction on N.

It seems to be quite involved to apply a similar elementary method to prove the lower
bound in (3.12); see Xiao and Zhang (2002, pp.213-214) for an application of this argument
to a similar, but easier problem. Instead, we will proceed by making use of the stochastic
integral representation (1.4). We believe that our argument below will be useful in further
studying other problems such as the sharp Holder conditions for the local times and the exact
Hausdorff measure of the image and graph sets of fractional Brownian sheet B,

Let Y = {Y(t),t € RY} be the Gaussian random field defined by

ywy= [ [ gtrywan)
Lo

N i N 1 (3.14)
— / . / H(tj —rp)iT2w(dr), teRY.
0 0 4

Then by the independence of the Brownian sheet on different quadrants of R, we have
E[(BE (s) — BI (t))*] > #,2E[(Y (s) — Y ())°] for all s,t € [¢,1]".

For every t € [¢, 1]V, we decompose the rectangle [0,] into the following disjoint union:

N
[0,8] = [0,e]N U | J R(t;) U A(e, 1), (3.15)

j=1
where R(t;) = {r € [0,1]V : 0<r; <eifi#j, e <r; <t;} and A(e,t) can be written as a
union of 2V — N — 1 sub-rectangles of [0,¢]. It follows from (3.14) and (3.15) that for every
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A(e,t)

N
Y(t) = /[o,sw g(t,r)W(dr)—i—jz_;/R(tj)g(t,r)W(dr)—i—/ g(t,r)W (dr)

N
= X(e,t)+ Y Y(t) + Z(e,1). (3.16)
j=1
Since the processes X (e,t), Yj(t) (1 < j < N) and Z(e,t) are defined by the stochastic
integrals over disjoint sets, they are independent. Only the Y;(¢)’s will be useful for proving
the lower bound in (3.12).
Now let s, € [¢,1]V and 1 < j < N be fixed. Without loss of generality, we assume
sj < t;. Then

E|(v;() - Y;(5)*] = /R(S_) (g(t,7) — g(s,7)*dr + /R(S't.)QQ(t,r)dr, (3.17)

where R(s;,t;) = {r € [0,1]V : 0 <7 < eifi # j,s; <rj <t;}. By (3.17) and some

elementary calculations we derive
2 2
E[(¥(t) - %;(5))] >/ P (t,7) dr

(s5:t5)
t,
[Tt —re)*™ / [ty — )P (3.18)

~Jr
/[078]]\]_1 k#j J

> Cs9 |tj - Sj|2Hj,

where ¢, , is a positive constant depending on ¢ and Hj, (1 < k < N) only.
It follows from (3.16), (3.17) and (3.18) that for all s,¢ € [¢, 1],

E[(v(s) - Y(1)?] = B[ (¥() - ¥;(0))?]

Jj=1

(3.19)

N

2> Cy Z ‘Sj - tjPHj'
j=1

This proves (3.12) with ¢, , = ¢, 4k O

H

Lemma 3.6 below is proved in Xiao and Zhang (2002, p.212) which will be used to derive
a lower bound for dim, B (]0,1]"). Lemma 3.7 is needed for determining a lower bound for
dim,, GrB ([0, 1]V). Both lemmas will be useful in the proof of Theorem 3.8.
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Lemma 3.6 Let 0 < o < 1 and € > 0 be given constants. Then for any constants § > 2q,
M >0 and p > 0, there exists a positive and finite constant c, ., depending on €, d, p and
M only, such that for all0 < A < M,

1 1
1 _(p—1

Lemma 3.7 Let o, 3 and n be positive constants. For A >0 and B > 0, let

! dt
J = J(A,B):/O ST ET (3.21)

Then there exist finite constants c,,, and c,,,, depending on «, (B3, n only, such that the
following hold for all reals A, B > 0 satisfying AY/* < cs31, B:

(1) if a8 > 1, then

1
J < C3712 m, (322)
(i) if af =1, then
1 —1/«

J < ey g log (1+BA™Y), (3.23)

(i1i) if 0 < af <1 and a8 +n# 1, then

1

J S 03112 (W + 1) (324)

Proof By a change of variable, we have

1 B dt
J=—=— : 3.25
Bn—1 /0 (A+ Bat*)B(1 +t)n (3.25)

To prove (i) and (ii), we note that if B < 1, then we can split the integral in (3.25) so that

S 1 /1 dt L1 /Bl dt (3.26)
- Bty (A4 Bet)S(14+t)n - Brl Ji (A4 Bet)S(14t)n’ '

If B > 1, then J is bounded by the first term in (3.26). Hence, in the following, it is sufficient
to consider the case 0 < B < 1.
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When af > 1, By using (3.26) and changing the variables again, we get

1! dt 1 B dt
J < —— S — e
Bl J, (A+ Bat*)8 ~ Bn 1 (A4 Bag>)Byen

- 1 /BA‘”“ ds 1 /OO ds
= AP—alpn J, (14528 AP—a=t4na™" Jp 1ja (14 5%)8 57

< c 1 o ds (3.27)
— AB—a~1lpm + AB—a"14na=1 BA-1/ saB+n
& C
< AB—a"1Bn + BapB+n—1
C.
< 3,12
>~ A,@—Oé*lBTﬂ

where in deriving the third and the last inequalities, we have used the fact that a3 > 1 and
BA—I/a > c—l

3,11°

When af = 1, similar to (3.27), we have

S BATVe g L1 /OO ds
- B77 0 (1 —+ Sa)ﬁ A’?Oé_l BA-1/a (1 + Sa)ﬂ s
- 2 BA- 1/« ds . 1 /Oo ds (328)
- Dn 0 1 + s Ana*l BA-1/a 81+77
< 22 Jog (14 BATY).

Hence (3.23) holds.
Finally we consider the case 0 < af < 1. If we further have o + n < 1, then it follows
from (3.21) that J < fol taﬁin < oo and (3.24) holds. So it only remains to consider the case

0 <aB <1and aff +n > 1. For simplicity, we assume ¢, ,, = 1 and split the integral in
(3.25) as

S /B‘IA”" dt . /B‘1 dt )
- Bt (A+Bot)S(1+t)1 * Jp-ra1a (A4 Bot®)B(1 4 )
1 L ds ATl/e ds
< _ a5 3.29
— AB-alpn (/0 (1+s)8 +/1 (14 s*)8(1+ B—lAl/as)’?) (3.29)

S ! (N S
= Apaipn T Apaipn ( | s* " (BTTAV) Jpporsa s@04n )
Since aff +n > 1, we have

c 1 c
J < AP Tpn T Ap-aipn (BA—a"")ap-1
c c
3.30
= AB—a~'Bn * Bab+n—1 (3:30)
Cs.12
— BoB+n-1’
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where the last inequality follows from the assumption that 0 < a3 < 1 and BA~Y/* > c;lll
Thus (3.24) holds and the proof of Lemma 3.7 is finished. O

Proof of the lower bounds in Theorem 3.1. First we prove the lower bound in (3.2).
Note that for any e € (0,1), dim,B#([0,1]") > dim, B ([¢,1]"). Hence by Frostman’s
theorem [see e.g. Kahane (1985, Chapter 10)], it is sufficient to show that for all 0 < v <
min{d, Z;V:1 H%}a

1
- E dsdt < oo. 31
/[e,uw /[] <|BH<s>—BH<t>h> b= oe (3.31)

Since 0 < v < d, we have 0 < E(|Z|77) < oo, where = is a standard d-dimensional normal

vector. Combining this fact with Lemma 3.4, we have

< 313/ d81/ dty -- / dSN/ |5 . |2H )7/2 dtn. (3.32)

To prove the above integral is finite, we observe that for any 0 < v < min{d, Zj:1 HL}, there
J
exists an integer 1 < k < N such that

Yo S|
— < — 3.33
S s (33
Jj=k+1 Jj=k
where Z —Ni1 H := 0. In the following, we will only consider the case of £ = 1, the
remaining cases are simpler because they require less steps of integration using Lemma 3.6.
Now assuming (3.33), we choose positive constants s, ...,y such that 6; > 2H; for each
2<j<N and
1 1 ~ 1 1 1
-+t —< < =+ =+ F —. 3.34
R N ) T S (3:34)
Applying Lemma 3.6 to (3.32) with
N-1
A= s; —t;*% and p=1/2,
j=1

we obtain from (3.32) that

1
1
8 > C34 +C314/ dsl/ dty -- / dSN—l/ 5175 dtn_1. (3.35)
e (5" sy — 1) o

By repeatedly using Lemma 3.6 to the integral in (3.35) for N — 2 steps, we derive that

1
&, <c +c / d$1/ dtq. (3.36)
v 3,15 3,15 e 6 (’51 B tl|2H1)y/2—(1/52+..v+1/51v)
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Since the §;’s satisfy (3.34), we have 2H[v/2 — (1/2 + - -- 4+ 1/6y)] < 1. Thus the integral
in the right hand side of (3.36) is finite. This proves (3.31).
Now we prove the lower bound in (3.3). Since dim,GrB¥([0,1]") > dim, B ([0,1]")

always holds, we only need to consider the case when

— <d< for some 1<k < N. (3.37)

TEM?T

Here and in the sequel, Z] 1 H = 0

Let0<e<land0 <y < Zj 1 H k 4+ N —k+(1— Hg)d be fixed, but arbitrary, constants.
By Lemma 3.3, we may and will assume v € (N —k +d,N —k +d+ 1). In order to prove
dim,, GrB (¢, 1]V) > v a.s., again by Frostman’s theorem, it is sufficient to show

1
_ / / E[ 5] dsdt < co. (3.38)
N SN (s —t2+|BH(s) — BH(t)[2)”

Since v > d, we note that for a standard normal vector Z in R? and any number a € R,

—(v—d)’

1
E[(az + 5\2)7/2} = Goao @

see e.g. Kahane (1985, p.279). Consequently, we derive that

1
< dsdt 3.39
97 > G316 /[a,l}N /[871]]\, a(s,t)d\s _t|7—d sat, ( )

where 02 (s, t) = E[(B{!(s) — B{'(t))?]. [This was obtained by Ayache (2002) for d = 1]. By

Lemma 3.4 and a change of variables, we have

1 1
1
Sy <cy /dtN--/ — dty. (3.40)
o 0 (Z] 1%; ) ( ;'V:lt]')’y ¢

In order to show the integral in (3.40) is finite, we will integrate [dt1],...,[dts] iteratively.
Furthermore, we will assume k& > 1 in (3.37) [If £ = 1, we can use (3.24) to obtain (3.44)
directly].

We integrate [dt;] first. Since Hid > 1, we can use (3.22) of Lemma 3.7 with A = Z;V 9 f
and B = Zj:2 tj to get
1 1 1
9 < 63 18 / dtN s / dtQ. (3.41)
N L H\d—1/H N —d
0 0 (Zj:Qtj]) ' (Zg‘:ﬂj)7
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We can repeat this procedure for integrating dto, ..., dtr_1. Note that if d = 25;11 H%-v then

we need to use (3.23) to integrate [dtx_1] and obtain

1 1 1 1
S, < ¢y / dty - / —_log (1 +—5 )dtk < . (3.42)
0 0o (XZiity) 2=kt

Note that the last integral is finite since y—d < N —k+1. On the other hand, if d > Zf;ll H%,,
then (3.22) gives

1 1
1
9 <C$20/ dty - -+ / - dty. (343)
: (SN S (5

ka

We integrate [dt] in (3.43) and by using (3.24), we see that

1 1

1

< dity--- dt 1 44
91 S G [/o N /0 (ZV ')'Y*d+Hk(d*Z§ i (3.44)

since ¥ —d + Hy(d— 2§7) 71-) =1 < N — k. Combining (3.42) and (3.44) yields (3.38). This

completes the proof of Theorem 3.1. (|

The following result is on the Hausdorff dimension of the level set L, = {t € (0,00)" :

H(t) = 3.
Theorem 3.8 Let BY = {Bf(t), t € RY} be an (N,d)-fractional Brownian sheet with
Hurst index H = (Hy,...,Hyn) satisfying (3.1). If Zjvzl H% < d then for every x € RY,
L,=0 as. If Zjvzl H% > d, then for any x € R? and 0 < € < 1, with positive probability
dimy, (L, N [£,1]Y) = min —+N k — Hyd, 1<k<N}

. (3.45)

Y oH, , 1 |
gf N — k — Hyd, if Zngd<j;H

.

Remark 3.9 When Z] 1 H
we have not been able to prove this statement. In the Brownian sheet case, this was proved
by Orey and Pruitt (1973, Theorem 3.4). It also follows from a result of Khoshnevisan and
Shi (1999).

= d, we believe that for every z € R? L, = () a.s. However
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Proof The second equality in (3.45) follows from Lemma 3.3. First we prove

k
H
dimy, (L, N [¢, 1)) < min { S AN —k—Hd 1<k< N} a.s. (3.46)
j=1""
and L, = () a.s. whenever the right hand side of (3.46) is negative. It can be verified that

N 1

the latter is equivalent to >
For an integer n > 1, divide the interval [¢,1]" into m,, = nZi= Hy sub-rectangles R,, ¢
of side lengths n= Y/ (j =1,---,N). Let 0 < § < 1 be fixed and let Tn,e be the lower-left
vertex of R, o. Then
IP’{x c BH(RM)} < JP’{ max [BA(s) — BE@®)| < n~ 09, z BH(RM)}

S;tER, ¢

+1P>{ max \BH(S)—BH(t)|>n_(1_5)}

S,tERme (347)
< ¢,y =170,

In the above we have applied Lemma 2.1 in Talagrand (1995) to get the second inequality.
If Zjvzl H% < d, we choose 0 > 0 such that (1 —¢d)d > Zjvzl H% Let N,, be the number of
rectangles R,, ¢ such that x € BH(R,, ;). It follows from (3.47) that

E(Nn) < ¢y nzjyileln_(l_é)d —0 asn — oo. (3.48)

Since the random variables NN,, are integer-valued, (3.48) and Fatou’s lemma imply that a.s.
N,, = 0 for infinitely many integers n > 1. Therefore L, = ) a.s.
Now we assume Zjvzl H% > d and define a covering {R], ,} of L, N[e, 11V by o= R
if z € BH(R, ) and R/, = 0 otherwise. For every 1 < k < N, R/ , can be covered by
-1

N - -1
nZi=k e =H) cubes of side length n=#x . Thus we can cover the level set L, N [e, 1]V

by a sequence of cubes of side length n=x " Letde (0,1) be an arbitrary constant and let
k H,
n:ZEJrN—k:—Hk(l—é)d.
j=1
It follows from (3.47) that

E[anﬁy:ml(H';l_H;l) (niH'j)n]l{xeBH(Rn,z)}]
=1

N -1 N —1 -1 -1
< Cy 93 anzl Hj +E]'=k+1(Hk *Hj )—nH, ~—(1-d)d =c

(3.49)

3,23°
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Fatou’s lemma implies that the n-dimensional Hausdorff measure of L, N[, 1]" is finite a.s.
and thus dim, (L, N [e,1]Y) < 5 almost surely. Letting § | 0 along rational numbers, we
obtain (3.46).
To prove the lower bound in (3.45), we assume Zf;ll H% <d< Z?:l H% for some
1<k <N. Let § >0 be a small constant such that
" H
k
=Y —+N—-k—Hp(1+6)d>N —k. 3.50
Y Z . + k(14 0) (3.50)

j=1""7

Note that if we can prove that there is a constant ¢, ,, > 0, independent of § and ~, such that
P{dim,, (L, N[, 1)) > 7} > ¢y, (3.51)

then the lower bound in (3.45) will follow by letting ¢ | 0.

Our proof of (3.51) is based on the capacity argument due to Kahane [see Kahane (1985)].
Similar methods have been used by Adler (1981), Testard (1986), Xiao (1995).

Let M# be the space of all non-negative measures on RY with finite y-energy. It is known

[cf. Adler (1981)] that M is a complete metric space under the metric

Il = [ [ (3.52)

We define a sequence of random positive measures y,, on the Borel sets C of [, 1]V by

wun(C) = /C(Qﬂn)d/2 exp ( — W)dt

B /C/Rd xp < - E: +i¢, BY () - x>>d§ dt.

It follows from Kahane (1985) or Testard (1986) that if there are constants ¢, ,; > 0, ¢, ,5 >
0 such that

(3.53)

E(lunl) > ci05, E(llinll?) < €36 (3.54)

and
E(llpnlly) < 400, (3.55)

where ||| = pn([g, 1)), then there is a subsequence of {11, }, say {fn, }, such that p,, — p
in MY and p is strictly positive with probability > 03725 /(2¢5 ). In this case, it follows from
(3.53) that the measure p has its support in L, N [e, 1]V almost surely. Hence Frostman’s
theorem yields (3.51) with ¢, ,, = 03,25/(203’26).
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It remains to verify (3.54) and (3.55). By Fubini’s theorem we have

E([]gen l) / /Rd &) exp E‘ )Eexp ('(g,BH(t»)dgdt
/[g1 /R 6] exp (= S0+ PR de i
/ 2
- /u <nl—2$2<>>d e (- 2(n|+|(t)>) dt
2
- /[e,uN <1+2j2(1t))d/2 P ( N 2|O':[;|(t)) b= Cy 5.

Denote by oy the identity matrix of order 2d, Cov(B¥ (s), B (t)) the covariance matrix of
(BH(s), BH(t)), T = n~tIyq + Cov(B(s), B (t)) and (&£,7n) the transpose of the row vector
(& n). Then

Bl = [ )L /R e exp (= L(€.n) T (6 m)') dedy dsar

! 1y )
/[61 /[sl]N VdetT p( g (@)L (x’x))det (3.57)

d
< / / (2m) 5 dsdt.
e 1N J[e )V [detCov(BE (s), BE (t))]

It can be proven [see Xiao and Zhang (2002, p.214)] that for all s,¢ € [¢, 1]V

(3.56)

N
detCov (B (s H H ne g t — [sj — t]*1)
= (3.58)

2 C37 Z ’8j - tj|2Hj'
j=1

Combining (3.57), (3.58) and applying Lemma 3.6 repeatedly, we obtain

1
wnll?) < / / dsdt := ¢, ,5 < 00. 3.59
Bl < o [ TR (3:59)

In the above, we have omitted the proof of ¢, ,, < 0o since it is very similar to (3.32)—(3.36)
in the proof of Theorem 3.1. Therefore we have shown (3.54) holds.
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Similar to (3.57), we have

B = [ [ [ e e (< Sen T ) dsin

1
<c / / ds dt
T e S (SN [s; — t5]) T (Z0 Isy — t2H) Y (3.60)
< /ldt /1 ! dt
= 03730 N 1,
0 (Z] 1 j ) ( N_ .)’Y

where the two inequalities follow from (3.58) and a change of variables. Note that the last

integral in (3.60) is similar to (3.40). By using Lemma 3.7 in the same way as in the proof of
(3.41) — (3.44), we see that for any v defined in (3.50), E(||xtn||y) < +o00. This proves (3.55)
and hence Theorem 3.8. O

By using the relationships among the Hausdorff dimension, packing dimension and the
box dimension [see Falconer (1990)], Theorems 3.1 and 3.8 and their proofs of the upper
bounds, we derive the following analogous result on the packing dimensions of B¥ ([O, i ),
GrBH([0,1]) and L,.

Theorem 3.10 Let BY = {BH(t), t € RY} be an (N,d)-fractional Brownian sheet with
Hurst index H = (Hq, ..., Hy) satisfying (3.1). Then with probability 1,

N
. , 1
dlmPBH([O,l]N):mm{d; ;H]}’ (3.61)
N
|
dim,, GrBY (0,1 _mln{Z—+N k+(1— Hy)d, 1<k <N; ZlHj} (3.62)
j:

IfZ;yle%_ > d, then for any x € R and 0 < e < 1,
"\ H,
dim,, (L, N [e, 1Y) = { 2k N—k—Hd,1<k<N} 3.63
im,, ( [£,1]") = min g H, k SKES (3.63)
with positive probability.
Remark 3.11 In light of Theorems 3.1, 3.8 and 3.10, it would be interesting to determine
the exact Hausdorff and packing measure functions for B¥([0,1]"), GrBH ([0,1]") and the

level set L,. In the special case of the Brownian sheet, the Hausdorff measure of the range and

graph were evaluated by Ehm (1981). However, his method relies crucially on the independent
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increment property of the Brownian sheet and is not applicable to the fractional Brownian
sheet B in general. Moreover, no packing measure results have been proven even for random
sets determined by the ordinary Brownian sheet.

Related to these problems, we mention that the Hausdorff measure functions for the range
and graph of an (V, d)-fractional Brownian motion X have been obtained by Talagrand (1995)
and Xiao (1997a, b); and the exact packing measure functions for X ([0, 1]") have been studied
by Xiao (1996, 2003). Their methods are useful for studying the fractional Brownian sheet
BH as well.

Remark 3.12 By examining the proofs, we see that Theorems 3.1, 3.8 and 3.10 hold for
all Gaussian random fields satisfying (3.12) and (3.58), including certain anistropic Gaussian
random fields with stationary increments [see e.g., Kéno (1975), Bonami and Estrade (2003,

Example 3)].
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