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Abstract
Let BH,K =

{
BH,K(t), t ∈ R+

}
be a bifractional Brownian motion in Rd. By con-

necting it to a stationary Gaussian process through Lamperti’s transform, 1 we prove
that BH,K is strongly locally nondeterministic. Applying this property and a stochastic
integral representation of BH,K , we establish Chung’s law of the iterated logarithm for
BH,K , as well as sharp Hölder conditions and tail probability estimates for the local times
of BH,K .

We also consider the existence and regularity of the local times of multiparameter
bifractional Brownian motion BH,K =

{
BH,K(t), t ∈ RN

+

}
in Rd using Wiener-Itô chaos

expansion.
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∗Research partially supported by the NSF grant DMS-0404729.
1changed gaussian to Gaussian

1



1 Introduction

In recent years, there has been considerable interest in studying fractional Brownian motion
due to its applications in various scientific areas including telecommunications, turbulence,
image processing and finance. Many authors have also proposed using more general self-
similar Gaussian processes and random fields as stochastic models; see e.g. Addie et al.
(1999), Anh et al. (1999), Benassi et al. (2000), Mannersalo and Norros (2002), Bonami and
Estrade (2003), Cheridito (2004), Benson et al. (2006). Such applications have raised many
interesting theoretical questions about self-similar Gaussian processes and fields in general.
However, in contrast to the extensive studies on fractional Brownian motion, there has been
little systematic investigation on other self-similar Gaussian processes. The main reasons for
this, in our opinion, are the complexity of dependence structures and the non-availability of
convenient stochastic integral representations for self-similar Gaussian processes that do not
have stationary increments.

The objective of this paper is to fill this gap by developing systematic ways to study sample
path properties of self-similar Gaussian processes. Our main tools are the Lamperti transfor-
mation [which provides a powerful connection between self-similar processes and stationary
processes; see Lamperti (1962)] and the strong local nondeterminism of Gaussian processes
[see Xiao (2007)]. In particular, for any self-similar Gaussian process X = {X(t), t ∈ R}, the
Lamperti transformation leads to a stochastic integral representation for X. We will show
the usefulness of such a representation in studying sample path properties of X.

To illustrate our methods, we only consider a rather special class of self-similar Gaussian
processes, namely, the bifractional Brownian motions introduced by Houdré and Villa (2003).
Given constants H ∈ (0, 1) and K ∈ (0, 1], the bifractional Brownian motion (bi-fBm, in
short) in R is a centered Gaussian process BH,K

0 = {BH,K
0 (t), t ∈ R+} with covariance

function
RH,K(s, t) := R(s, t) =

1
2K

[
(t2H + s2H)K − |t− s|2HK

]
(1.1)

and BH,K
0 (0) = 0.

Let BH,K
1 , . . . , BH,K

d be independent copies of BH,K
0 . We define the Gaussian process

BH,K =
{
BH,K(t), t ∈ R+

}
with values in Rd by

BH,K(t) =
(
BH,K

1 (t), . . . , BH,K
d (t)

)
, ∀t ∈ R+. (1.2)

By (1.1) one can verify easily that BH,K is a self-similar process with index HK, that is, for
every constant a > 0,

{
BH,K(at), t ∈ R+

}
d=

{
aHKBH,K(t), t ∈ R+

}
, (1.3)

where X
d= Y means the two processes have the same finite dimensional distributions. Note

that, when K = 1, BH,K is the ordinary fractional Brownian motion in Rd. However, if
K 6= 1, BH,K does not have stationary increments. In fact, fractional Brownian motion is the
only Gaussian self-similar process with stationary increments [see Samorodnitsky and Taqqu
(1994)].
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Russo and Tudor (2006) have established some properties concerning the strong varia-
tions, local times and stochastic calculus of real-valued bifractional Brownian motion. An
interesting property that deserves to be recalled is the fact that, when HK = 1

2 , the quadratic
variation of this family of stochastic processes (which includes the standard Brownian motion
when K = 1 and HK = 1

2) on [0, t] is equal to a constant times t. This is really remarkable
since as far as we know these are the only Gaussian self-similar processes with this quadratic
variation and besides the well-known case of Brownian motion, the other members of this
family are not semimartingale. Taking into account this property, it is natural to ask if the
bifractional Brownian motion BH,K with KH = 1

2 shares other properties with Brownian
motion (from the sample path regularity point of view). As it can be seen from the rest of
the paper, the answer is often positive: for example, the bi-fBm with HK = 1

2 and Brown-
ian motion satisfy the same forms of Chung’s laws of the iterated logarithm and the Hölder
conditions for their local times.

The rest of this paper is organized as follows. In Section 2 we apply the Lamperti
transformation to prove the strong local nondeterminism of BH,K

0 . This property plays
essential roles in proving most of our results. In Section 3 we derive small ball probability
estimates and a stochastic integral representation for BH,K

0 . Applying these results, we prove
a version of the Chung’s law of the iterated logarithm for bifractional Brownian motion.

Section 4 is devoted to the study of local times of one-parameter bifractional Brownian
motion and the corresponding N -parameter fields. In general, there are mainly two methods
in studying local times of Gaussian processes: the Fourier analysis approach introduced by
Berman and the Malliavin calculus approach. It is known that, the Fourier analysis approach
combined with various properties of local nondeterminism yields strong regularity properties
such as the joint continuity and sharp Hölder conditions for the local times [see Berman
(1973), Pitt (1978), Geman and Horowitz (1980), Xiao (1997, 2007)]; while the Malliavin
calculus approach requires fewer conditions on the process and establishes regularity of the
local times in the sense of Sobolev-Watanabe spaces [see Watanabe (1984), Imkeller et al.
(1995), Eddahbi et al. (2005)]. In this paper we make use of both approaches to obtain more
comprehensive results on local times of bifractional Brownian motion and fields.

Throughout this paper, an unspecified positive and finite constant is denoted by c, which
may not be the same in each occurrence. More specific constants in Section i are numbered
as ci,1 , ci,2 , . . ..

2 Strong local nondeterminism

The following proposition is essential in this paper. From its proof, we see that the same
conclusion holds for quite general self-similar Gaussian processes.

Proposition 2.1 For all constants 0 < a < b, BH,K
0 is strongly locally ϕ-nondeterministic

on I = [a, b] with ϕ(r) = r2HK . That is, there exist positive constants c2,1 and r0 such that
for all t ∈ I and all 0 < r ≤ min{t, r0},

Var
(
BH,K

0 (t)
∣∣BH,K

0 (s) : s ∈ I, r ≤ |s− t| ≤ r0

)
≥ c2,1 ϕ(r). (2.1)
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Proof We consider the centered stationary Gaussian process Y0 = {Y0(t), t ∈ R} defined
through Lamperti’s transformation [Lamperti (1962)]:

Y0(t) = e−HK t BH,K
0 (et), for every t ∈ R. (2.2)

The covariance function r(t) := E
(
Y0(0)Y0(t)

)
is given by

r(t) =
1

2K
e−HKt

[(
e2Ht + 1

)K − ∣∣et − 1
∣∣2HK

]

=
1

2K
eHKt

[(
1 + e−2Ht

)K − ∣∣1− e−t
∣∣2HK

]
.

(2.3)

Hence r(t) is an even function and, by (2.3) and the Taylor expansion, we verify that r(t) =
O(e−βt) as t →∞, where β = min{H(2−K), 1−HK}. It follows that r(·) ∈ L1(R). Also,
by using (2.3) and the Taylor expansion again, we also have

r(t) ∼ 1− 1
2K

|t|2HK as t → 0. (2.4)

The stationary Gaussian process Y0 is sometimes called the Ornstein-Uhlenbeck process
associated with BH,K

0 [Note that it does not coincide with the solution of the fractional
Langevin equation, see Cheridito et al. (2003) for a proof in the case K = 1]. By Bochner’s
theorem, Y0 has the following stochastic integral representation

Y0(t) =
∫

R
eiλt W (dλ), ∀ t ∈ R, (2.5)

where W is a complex Gaussian measure with control measure ∆ whose Fourier transform is
r(·). The measure ∆ is called the spectral measure of Y .

Since r(·) ∈ L1(R), the spectral measure ∆ of Y has a continuous density function f(λ)
which can be represented as the inverse Fourier transform of r(·):

f(λ) =
1
π

∫ ∞

0
r(t) cos(tλ) dt. (2.6)

We would like to prove f has the following asymptotic property

f(λ) ∼ c2,2 |λ|−(1+2HK) as λ →∞, (2.7)

where c2,2 > 0 is an explicit constant depending only on HK. Note that (2.4) and the
Tauberian theorem due to Pitman (1968, Theorem 5) only imply

∫∞
λ f(x) dx ∼ c |λ|−2HK as

λ → ∞. Some extra Tauberian condition on f is usually needed if we wish to obtain (2.7)
by using the Tauberian theorem; see Bingham et al. (1987).

In the following we give a direct proof of (2.7) by using (2.6) and an Abelian argument
similar to that in the proof of Theorem 1 of Pitman (1968). Without loss of generality, we
assume from now on that λ > 0. Applying integration-by-parts to (2.6), we get

f(λ) = − 1
πλ

∫ ∞

0
r′(t) sin(tλ) dt (2.8)
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with

r′(t) =
HK

2K
eHKt

[
(1 + e−2Ht)K−1(1− e−2Ht)− (1 + e−t)(1− e−t)2HK−1

]
. (2.9)

We need to distinguish three cases: 2HK < 1, 2HK = 1 and 2HK > 1. In the first case, it
can be verified from (2.9) that r′(t) = O(e−βt) as t →∞, hence r′(·) ∈ L1(R), and

r′(t) ∼ −21−KHK |t|2HK−1 as t → 0. (2.10)

We will also make use of the properties of higher order derivatives of r(t). It is elementary
to compute r′′(t) and verify that, when 2HK < 1, we have

r′′(t) ∼ −21−KHK(2HK − 1) |t|2HK−2 as t → 0 (2.11)

and r′′(t) = O(e−βt) as t → ∞ which implies r′′(·) ∈ L1(R). Moreover, we can show that
r′′(t) > 0 for all t large enough and r′′(t) is eventually monotone decreasing.

The behavior of the derivatives of r(t) is slightly different when 2HK = 1. (2.9) becomes

r′(t) =
1

2K+1
et/2

[
(1 + e−2Ht)K−1(1− e−2Ht)− 1− e−t

]
, (2.12)

and

r′′(t) =
1

2K+2
et/2

[
(1 + e−2Ht)K−2

(
1 + 2(4H − 1)e−2Ht + e−4Ht

)
− 1 + e−t

]
. (2.13)

Hence we have r′(0) = −2−K , r′′(0) = H/2, and both r′(·) and r′′(·) are in L1(R).
When 2HK > 1, it can be shown that (2.11) still holds, r′′(t) = O(e−βt) as t → ∞,

r′′(t) > 0 for all t large enough and r′′(t) is eventually monotone decreasing. We omit the
details.

Now we proceed to prove (2.7). First we consider the case when 0 < 2HK < 1. By a
change of variable, we can write

f(λ) = − 1
πλ2

∫ ∞

0
r′

(
t

λ

)
sin t dt. (2.14)

Hence
f(λ)

−(πλ2)−1r′(1/λ)
=

∫ ∞

0

r′ (t/λ)
r′(1/λ)

sin t dt. (2.15)

Let p ∈ (0,∞) be a fixed constant such that r′′(t) > 0 on [p,∞). It follows from (2.10) and
the dominated convergence theorem that

lim
λ→∞

∫ p

0

r′ (t/λ)
r′(1/λ)

sin t dt =
∫ p

0
t2HK−1 sin t dt. (2.16)

On the other hand, integration-by-parts yields
∫ ∞

p
r′ (t/λ) sin t dt = r′ (p/λ) cos p +

1
λ

∫ ∞

p
r′′ (t/λ) cos t dt. (2.17)
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Using the Riemann-Lebesgue lemma, we derive
∣∣∣∣
∫ ∞

p
r′ (t/λ) sin t dt

∣∣∣∣ ≤
∣∣∣∣r′ (p/λ) cos p

∣∣∣∣ +
∣∣∣∣
1
λ

∫ ∞

p
r′′ (t/λ) cos t dt

∣∣∣∣
≤ 2

∣∣r′ (p/λ)
∣∣.

(2.18)

Hence we have

lim sup
λ→∞

∣∣∣∣
∫ ∞

p

r′ (t/λ)
r′(1/λ)

sin t dt

∣∣∣∣ ≤ 2p2HK−1. (2.19)

Combining (2.15), (2.16), (2.19) and letting p → ∞, we see that, when 0 < 2HK < 1, (2.7)
holds with c2,2 = 21−KHKπ−1

∫∞
0 t2HK−1 sin t dt.

Secondly we consider the case 2HK = 1. Since r′(t) is continuous and r′(0) = −2−K ,
(2.16) becomes

lim
λ→∞

∫ p

0
r′ (t/λ) sin t dt = r′(0)

∫ p

0
sin t dt = r′(0)(1− cos p). (2.20)

Using (2.17) and integration-by-parts again we derive
∫ ∞

p
r′ (t/λ) sin t dt = r′ (p/λ) cos p +

1
λ

∫ ∞

p
r′′ (t/λ) cos t dt. (2.21)

It follows from (2.21), (2.13) and the Riemann-Lebesgue lemma that

lim
λ→∞

∫ ∞

p
r′ (t/λ) sin t dt = r′ (0) cos p. (2.22)

We see from the above and (2.14) that

f(λ) ∼ 1
2Kπ

|λ|−2 as λ →∞, (2.23)

This verifies that (4.10) holds when 2HK = 1.
Finally we consider the case 1 < 2HK < 2. Note that (2.16) and (2.19) are not useful

anymore and we need to modify the above argument. By using integration-by-parts to (2.8)
we obtain

f(λ) = − 1
πλ2

∫ ∞

0
r′′(t) cos(tλ) dt. (2.24)

Note that we have −1 < 2HK − 2 < 0. Hence r′′(t) is integrable in the neighborhood of
t = 0. Consequently the proof for this case is very similar to the case of 0 < 2HK < 1. From
(2.24) and (2.11) we can verify that (2.7) holds as well and the constant c2,2 is explicitly
determined by H and K. Hence we have proved (2.7) in general.

It follows from (2.7) and Lemma 1 of Cuzick and DuPreez (1982) [see also Xiao (2007) for
more general results] that Y0 = {Y0(t), t ∈ R} is strongly locally ϕ-nondeterministic on any
interval J = [−T, T ] with ϕ(r) = r2HK in the following sense: There exist positive constants
δ and c2,3 such that for all t ∈ [−T, T ] and all r ∈ (0, |t| ∧ δ),

Var
(
Y0(t)

∣∣Y0(s) : s ∈ J, r ≤ |s− t| ≤ δ
) ≥ c2,3 ϕ(r). (2.25)
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Now we prove the strong local nondeterminism of BH,K
0 on I. To this end, note that

BH,K
0 (t) = tHKY0(log t) for all t > 0. We choose r0 = aδ. Then for all s, t ∈ I with

r ≤ |s− t| ≤ r0 we have
r

b
≤ ∣∣ log s− log t

∣∣ ≤ δ. (2.26)

Hence it follows from (2.25) and (2.26) that for all t ∈ [a, b] and r < r0,

Var
(
BH,K

0 (t)
∣∣BH,K

0 (s) : s ∈ I, r ≤ |s− t| ≤ r0

)

= Var
(
tHKY0(log t)

∣∣sHK Y0(log s) : s ∈ I, r ≤ |s− t| ≤ r0

)

≥ t2HK Var
(
Y0(log t)

∣∣Y0(log s) : s ∈ I, r ≤ |s− t| ≤ r0

)

≥ a2HKVar
(
Y0(log t)

∣∣Y0(log s) : s ∈ I, r/b ≤ | log s− log t| ≤ δ
)

≥ c2,3 ϕ(r).

(2.27)

This proves Proposition 2.1. ¤

For use in next section, we list two properties of the spectral density f(λ) of Y . They
follow from (2.7) or, more generally, from (2.4) and the truncation inequalities in Loéve (1977,
p.209); see also Monrad and Rootzén (1995).

Lemma 2.2 There exist positive constants c2,4 and c2,5 such that for u > 1,
∫

|λ|<u
λ2f(λ) dλ ≤ c2,4 u2(1−HK) (2.28)

and ∫

|λ|≥u
f(λ) dλ ≤ c2,5 u−2HK . (2.29)

We will also need the following lemma from Houdré and Villa (2003).

Lemma 2.3 There exist positive constants c2,6 and c2,7 such that for all s, t ∈ R+, we have

c2,6 |t− s|2HK ≤ E
[(

BH,K
0 (t)−BH,K

0 (s)
)2]

≤ c2,7 |t− s|2HK . (2.30)

3 Chung’s law of the iterated logarithm

As applications of small ball probability estimates, Monrad and Rootzén (1995), Xiao (1997)
and Li and Shao (2001) established Chung-type laws of the iterated logarithm for fractional
Brownian motion and other strongly locally nondeterministic Gaussian processes with station-
ary increments. However, there have been no results on Chung’s LIL for self-similar Gaussian
processes that do not have stationary increments [Recall that the class of self-similar Gaussian
processes is large and fBm is the only such process with stationary increments].
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In this section, we prove the following Chung’s law of the iterated logarithm for bifrac-
tional Brownian motion in R. It will be clear that our argument is applicable to a large class
of self-similar Gaussian processes.

Theorem 3.1 Let BH,K
0 = {BH,K

0 (t), t ∈ R+} be a bifractional Brownian motion in R.
Then there exists a positive and finite constant c3,1 such that

lim inf
r→0

maxt∈[0,r]

∣∣BH,K
0 (t)

∣∣
rHK/(log log(1/r))HK

= c3,1 a.s. (3.1)

In order to prove Theorem 3.1, we need several preliminary results. Lemma 3.2 gives
estimates on the small ball probability of BH,K

0 .

Lemma 3.2 There exist positive constants c3,2 and c3,3 such that for all t0 ∈ [0, 1] and
x ∈ (0, 1),

exp
(
− c3,2

x1/(HK)

)
≤ P

{
max
t∈[0,1]

∣∣BH,K
0 (t)−BH,K

0 (t0)
∣∣ ≤ x

}
≤ exp

(
− c3,3

x1/(HK)

)
. (3.2)

Proof By Proposition 2.1 and Lemma 2.3, we see that BH,K
0 satisfies Conditions (C1) and

(C2) in Xiao (2007). Hence this lemma follows from Theorem 3.1 in Xiao (2007). ¤

Proposition 3.3 provides a zero-one law for ergodic self-similar processes, which comple-
ments the results of Takashima (1989). In order to state it, we need to recall some definitions.

Let X = {X(t), t ∈ R} be a separable, self-similar process with index κ. For any constant
a > 0, the scaling transformation Sκ,a of X is defined by

(Sκ,aX)(t) = a−κX(at), ∀t ∈ R. (3.3)

Note that X is κ-self-similar is equivalent to saying that for every a > 0, the process
{(Sκ,aX)(t), t ∈ R} has the same finite dimensional distributions as those of X. That is,
for a κ-self-similar process X, a scaling transformation Sκ,a preserves the distribution of
X, and so the notion of ergodicity and mixing of Sκ,a can be defined in the usual way, cf.
Cornfeld et al. (1982). Following Takashima (1989), we say that a κ-self-similar process
X = {X(t), t ∈ R} is ergodic (or strong mixing) if for every a > 0, a 6= 1, the scaling transfor-
mation Sκ,a is ergodic (or strong mixing, respectively). This, in turn, is equivalent to saying
that the shift transformations for the corresponding stationary process Y = {Y (t), t ∈ R}
defined by Y (t) = e−κtX(et) are ergodic (or strong mixing, respectively).

Proposition 3.3 Let X = {X(t), t ∈ R} be a separable, self-similar process with index κ.
We assume that X(0) = 0 and X is ergodic. Then for any increasing function ψ : R+ → R+,
we have P(Eκ,ψ) = 0 or 1, where

Eκ,ψ =
{

ω : there exists δ > 0 such that sup
0≤s≤t

|X(s)| ≥ tκψ(t) for all 0 < t ≤ δ

}
. (3.4)
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Proof We will prove that for every a > 0, the event Eκ,ψ is invariant with respective to
the transformation Sκ,a. Then the conclusion follows from the ergodicity of X.

Fix a constant a > 0 and a 6= 1. We consider two cases: (i) a > 1 and (ii) a < 1. In the
first case, since ψ is increasing, we have ψ(au) ≥ ψ(u) for all u > 0. Assume that a.s. there
is a δ > 0 such that

sup
0≤s≤t

|X(s)| ≥ tκψ(t) for all 0 < t ≤ δ, (3.5)

then
sup

0≤s≤t

∣∣a−κ X(as)
∣∣ = a−κ sup

0≤s≤at
|X(s)| ≥ tκψ(t) for all 0 < t ≤ δ/a. (3.6)

This implies that Eκ,ψ ⊂ S−1
κ,a

(
Eκ,ψ

)
. By the self-similarity of X, these two events have

the same probability, it follows that P
{
Eκ,ψ∆S−1

κ,a

(
Eκ,ψ

)}
= 0. This proves that Eκ,ψ is

Sκ,a-invariant and, hence, has probability 0 or 1.
In case (ii), we have ψ(au) ≤ ψ(u) for all u > 0 and the proof is similar to the above. If

Sκ,aX ∈ Eκ,ψ, then we have X ∈ Eκ,ψ. This implies S−1
κ,a

(
Eκ,ψ

) ⊂ Eκ,ψ and again Eκ,ψ is
Sκ,a-invariant. This finishes the proof. ¤

By a result of Maruyama (1949) on ergodicity and mixing properties of stationary Gaussian
processes, we see that BH,K

0 is mixing. Hence we have the following corollary of Proposition
3.3.

Corollary 3.4 There exists a constant c3,4 ∈ [0,∞] such that

lim inf
t→0+

(log log 1/t)HK

tHK
max
0≤s≤t

∣∣BH,K
0 (s)

∣∣ = c3,4 , a.s. (3.7)

Proof We take ψc(t) = c
(
log log 1/t

)−HK and define c3,4 = sup
{
c ≥ 0 : P

{
Eκ, ψc

}
= 1

}
.

It can be verified that (3.7) follows from Proposition 3.3. ¤

It follows from Corollary 3.4 that Theorem 3.1 will be established if we show c3,4 ∈ (0,∞).
This is where Lemma 3.2 and the following lemma from Talagrand (1995) are needed.

Lemma 3.5 Let X = {X(t), t ∈ R} be a centered Gaussian process in R and let S ⊂ R be a
closed set equipped with the canonical metric defined by

d(s, t) =
[
E

(
X(s)−X(t)

)2
]1/2

.

Then there exists a positive constants c3,5 such that for all u > 0,

P

{
sup

s, t∈S
|X(s)−X(t)| ≥ c3,5

(
u +

∫ D

0

√
log Nd(S, ε) dε

)}
≤ exp

(
− u2

D2

)
, (3.8)

where Nd(S, ε) denotes the smallest number of open d-balls of radius ε needed to cover S and
where D = sup{d(s, t) : s, t ∈ S} is the diameter of S.

Now we proceed to prove Theorem 3.1.
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Proof of Theorem 3.1 We prove the lower bound first. For any integer n ≥ 1, let rn = e−n.
Let 0 < γ < c3,3 be a constant and consider the event

An =
{

max
0≤s≤rn

∣∣BH,K
0 (s)

∣∣ ≤ γHKrHK
n /(log log 1/rn)HK

}
.

Then the self-similarity of BH,K
0 and Lemma 3.2 imply that

P{An} ≤ exp
(
− c3,3

γ
log n

)
= n−c3,3/γ . (3.9)

Since
∑∞

n=1 P{An} < ∞, the Borel-Cantelli lemma implies

lim inf
n→∞

maxs∈[0,rn]

∣∣BH,K
0 (s)

∣∣
rHK
n /(log log(1/rn))HK

≥ c3,3 a.s. (3.10)

It follows from (3.10) and a standard monotonicity argument that

lim inf
r→0

maxt∈[0,r]

∣∣BH,K
0 (t)

∣∣
rHK/(log log(1/r))HK

≥ c3,6 a.s. (3.11)

The upper bound is a little more difficult to prove due to the dependence structure of
BH,K

0 . In order to create independence, we will make use of the following stochastic integral
representation of BH,K

0 : For every t > 0,

BH,K
0 (t) = tHK

∫

R
eiλ log t W (dλ). (3.12)

This follows from the spectral representation (2.5) of Y and its connection with BH,K
0 .

For every integer n ≥ 1, we take

tn = n−n and dn = nβ, (3.13)

where β > 0 is a constant whose value will be determined later. It is sufficient to prove that
there exists a finite constant c3,7 such that

lim inf
n→∞

maxs∈[0,tn]

∣∣BH,K
0 (s)

∣∣
tHK
n /(log log(1/tn))HK

≤ c3,7 a.s. (3.14)

Let us define two Gaussian processes Xn and X̃n by

Xn(t) = tHK

∫

|λ|∈(dn−1,dn]
eiλ log t W (dλ) (3.15)

and
X̃n(t) = tHK

∫

|λ|/∈(dn−1,dn]
eiλ log t W (dλ), (3.16)

respectively. Clearly BH,K
0 (t) = Xn(t) + X̃n(t) for all t ≥ 0. It is important to note that the

Gaussian processes Xn (n = 1, 2, . . .) are independent and, moreover, for every n ≥ 1, the
processes Xn and X̃n are independent as well.

Denote h(r) = rHK
(
log log 1/r

)−HK . We make the following two claims:

10



(i). There is a constant γ > 0 such that
∞∑

n=1

P
{

max
s∈[0,tn]

∣∣Xn(s)
∣∣ ≤ γHK h(tn)

}
= ∞. (3.17)

(ii). For every ε > 0,
∞∑

n=1

P
{

max
s∈[0,tn]

∣∣X̃n(s)
∣∣ > ε h(tn)

}
< ∞. (3.18)

Since the events in (3.17) are independent, we see that (3.14) follows from (3.17), (3.18) and
a standard Borel-Cantelli argument.

It remains to verify the claims (i) and (ii) above. By Lemma 3.2 and Anderson’s inequality
[see Anderson (1955)], we have

P
{

max
s∈[0,tn]

∣∣Xn(s)
∣∣ ≤ γHK h(tn)

}
≥ P

{
max

s∈[0,tn]

∣∣BH,K
0 (s)

∣∣ ≤ γHK h(tn)
}

≥ exp
(
− c3,2

γ
log(n log n)

)

=
(
n log n

)−c3,2/γ
.

(3.19)

Hence (i) holds for γ ≥ c3,2 .
In order to prove (ii), we divide [0, tn] into pn + 1 non-overlapping subintervals Jn,j =

[an,j−1, an,j ], (i = 0, 1, . . . , pn) and then apply Lemma 3.5 to X̃n on each of Jn,j . Let β > 0
be the constant in (3.13) and we take Jn,0 = [0, tnn−β]. After Jn,j has been defined, we
take an,j+1 = an,j(1 + n−β). It can be verified that the number of such subintervals of [0, tn]
satisfies the following bound:

pn + 1 ≤ c nβ log n. (3.20)

Moreover, for every j ≥ 1, if s, t ∈ Jn,j and s < t, then we have t/s− 1 ≤ n−β and this yields

t− s ≤ s n−β and log
( t

s

)
≤ n−β. (3.21)

Lemma 2.3 implies that the canonical metric d for the process X̃n satisfies

d(s, t) ≤ c |s− t|HK for all s, t > 0 (3.22)

and d(0, s) ≤ c tHK
n n−βHK for every s ∈ Jn,0. It follows that D0 := sup{d(s, t); s, t ∈ Jn,0} ≤

c tHK
n n−βHK and

Nd(Jn,0, ε) ≤ c
tn n−β

ε1/(HK)
. (3.23)

Some simple calculation yields
∫ D0

0

√
log Nd(Jn,0, ε) dε ≤

∫ tHK
n n−βHK

0

√
log

( tn n−β

ε1/(HK)

)
dε

= tHK
n n−βHK

∫ 1

0

√
log

(1
u

)
du

= c3,8 tHK
n n−βHK .

(3.24)
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It follows from Lemma 3.5 and (3.24) that

P
{

max
s∈Jn,0

∣∣X̃n(s)
∣∣ > εh(tn)

}
≤ exp

(
− c

n2βHK

(
log(n log n)

)2HK

)
. (3.25)

For every 1 ≤ j ≤ pn, we estimate the d-diameter of Jn,j . It follows from (3.16) that for
any s, t ∈ Jn,j with s < t,

E
(
X̃n(s)− X̃n(t)

)2
=

∫

|λ|≤dn−1

∣∣∣tHK eiλ log t − sHK eiλ log s
∣∣∣
2
f(λ) dλ

+
∫

|λ|>dn

∣∣∣tHK eiλ log t − sHK eiλ log s
∣∣∣
2
f(λ) dλ

:= I1 + I2.

(3.26)

The second term is easy to estimate: For all s, t ∈ Jn,j ,

I2 ≤ 4 t2HK
n

∫

|λ|>dn

f(λ) dλ ≤ c3,9 t2HK
n n−2βHK , (3.27)

where the last inequality follows from (2.29).
For the first term I1, we use the elementary inequality 1 − cosx ≤ x2 to derive that for

all s, t ∈ Jn,j with s < t,

I1 =
∫

|λ|≤dn−1

[(
tHK − sHK

)2 + 2tHK sHK
(
1− cos

(
λ log

t

s

))]
f(λ) dλ

≤ s2HK
( t

s
− 1

)2HK
∫

R
f(λ) dλ + 2t2HK log2

( t

s

) ∫

|λ|≤dn−1

λ2 f(λ) dλ

≤ c3,10 t2HK
n n−2βHK ,

(3.28)

where, in deriving the last inequality, we have used (3.21) and (2.28), respectively.
It follows from (3.26), (3.27) and (3.28) that the d-diameter of Jn,j satisfies

Dj ≤ c3,11 tHK
n n−βHK . (3.29)

Hence, similar to (3.25), we use Lemma 3.5 and (3.29) to derive

P
{

max
s∈Jn,j

∣∣X̃n(s)
∣∣ > ε h(tn)

}
≤ exp

(
− c

n2βHK

(
log(n log n)

)2HK

)
. (3.30)

By combining (3.20), (3.25) and (3.30) we derive that for every ε > 0,
∞∑

n=1

P
{

max
s∈[0,tn]

∣∣X̃n(s)
∣∣ > ε h(tn)

}
≤

∞∑

n=1

pn∑

j=0

P
{

max
s∈Jn,j

∣∣X̃n(s)
∣∣ > εh(tn)

}

≤ c
∞∑

n=1

nβ log n exp
(
− c

n2βHK

(
log(n log n)

)2HK

)

< ∞.

(3.31)

This proves (3.18) and hence the theorem. ¤
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Remark 3.6 Let t0 ∈ [0, 1] be fixed and we consider the process X = {X(t), t ∈ R+} defined
by X(t) = BH,K

0 (t + t0) − BH,K
0 (t0). By applying Lemma 3.2 and modifying the proof of

Theorem 3.1, one can show that

c−1
3,12

≤ lim inf
r→0

maxt∈[0,r]

∣∣BH,K
0 (t + t0)−BH,K

0 (t0)
∣∣

rHK/(log log(1/r))HK
≤ c3,12 a.s., (3.32)

where c3,12 > 1 is a constant depending on HK only.
Corresponding to Lemma 3.2, we can also consider the small ball probability of BH,K

0

under the Hölder-type norm. For α ∈ (0, 1) and any function y ∈ C0([0, 1]), we consider the
α-Hölder norm of y defined by

‖y‖α = sup
s,t∈[0,1],s 6=t

|y(s)− y(t)|
|s− t|α . (3.33)

The following proposition extends the results of Stolz (1996) and Theorem 2.1 of Kuelbs,
Li and Shao (1995) to bifractional Brownian motion.

Proposition 3.7 Let BH,K
0 be a bifractional Brownian motion in R and α ∈ (0, HK). There

exist positive constants c3,13 and c3,14 such that for all ε ∈ (0, 1),

exp
(
− c3,13 ε−1/(HK−α)

)
≤ P

{
‖BH,K

0 ‖α ≤ ε
}
≤ exp

(
− c3,14 ε−1/(HK−α)

)
. (3.34)

Proof It follows from Theorem 3.4 in Xiao (2007). ¤

4 Local times of bifractional Brownian motion

This section is devoted to the study of the local times of the bi-fBm both in the one-parameter
and multi-parameter cases. As we pointed out in the Introduction there are essentially two
ways to prove the existence and regularity properties of local times for Gaussian processes:
the first is related to the Fourier analysis and the local nondeterminism property; the second is
based on the Malliavin calculus and Wiener-Itô chaos expansion. We will apply the Fourier
analysis approach for the one-parameter case and the Malliavin calculus approach for the
multiparameter case.

4.1 The one-parameter case

Let BH,K = {BH,K(t), t ∈ R+} be a bifractional Brownian motion with indices H and K in
Rd. For any closed interval I ⊂ R+ and for any x ∈ Rd, the local time L(x, I) of BH,K is
defined as the density of the occupation measure µI defined by

µI(A) =
∫

I
11A

(
BH,K(s)

)
ds, A ∈ B(Rd).
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It can be shown [cf. Geman and Horowitz (1980) Theorem 6.4] that the following occupation
density formula hods: For every Borel function g(t, x) ≥ 0 on I × Rd,

∫

I
g
(
t, BH,K(t)

)
dt =

∫

Rd

∫

I
g(t, x)L(x, dt) dx. (4.1)

Lemma 2.3 and Theorem 21.9 in Geman and Horowitz (1980) imply that if 1/(HK) > d
then BH,K has a local time L(x, t) := L(x, [0, t]), where (x, t) ∈ Rd × [0,∞). In fact, more
regularity properties of L(x, t) can be derived from Theorem 3.14 in Xiao (2007) which we
summarize in the following theorem. Besides interest in their own right, such results are also
useful in studying the fractal properties of the sample paths of BH,K .

Theorem 4.1 Let BH,K = {BH,K(t), t ∈ R} be a bifractional Brownian motion with indices
H and K in Rd. If 1/(HK) > d, then the following properties hold:

(i) BH,K has a local time L(x, t) that is jointly continuous in (x, t) almost surely.

(ii) [Local Hölder condition] For every B ∈ B(R), let L∗(B) = supx∈Rd L(x,B) be the
maximum local time. Then there exists a positive constant c4,1 such that for all t0 ∈ R+,

lim sup
r→0

L∗(B(t0, r))
ϕ1(r)

≤ c4,1 a.s. (4.2)

Here and in the sequel, B(t, r) = (t− r, t + r) and ϕ1(r) = r1−HKd(log log 1/r)HKd.

(iii) [Uniform Hölder condition] For every finite interval I ⊆ R, there exists a positive finite
constant c4,2 such that

lim sup
r→0

sup
t0∈I

L∗(B(t0, r))
ϕ2(r)

≤ c4,2 a.s., (4.3)

where ϕ2(r) = r1−HKd(log 1/r)HKd.

Proof By Proposition 2.1 and Lemma 2.3, we see that the conditions of Theorem 3.14 in
Xiao (2007) are satisfied. Hence the results follow. ¤

The following states that the local Hölder condition for the maximum local time is sharp.

Remark 4.2 By the definition of local times, we have that for every interval Q ⊆ R+,

|Q| =
∫

BH,K(Q)
L(x,Q) dx ≤ L∗(Q) ·

(
max
s,t∈Q

∣∣BH,K(s)−BH,K(t)
∣∣
)d

. (4.4)

By taking Q = B(t0, r) in (4.4) and using (3.32) in Remark 3.6, we derive the lower bound
in the following

c4,3 ≤ lim sup
r→0

L∗(B(t0, r))
ϕ1(r)

≤ c4,4 a.s., (4.5)
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where c4,3 > 0 is a constant independent of t0 and the upper bound is given by (4.2). A
similar lower bound for (4.3) could also be established by using (4.4), if one proves that for
every interval I ⊆ R+,

lim inf
r→0

inf
t∈I

max
s∈B(t,r)

|BH,K(s)−BH,K(t)|
rHk/(log 1/r)HK

≤ c4,5 a.s. (4.6)

Theorem 4.1 can be applied to determine the Hausdorff dimension and Hausdorff measure
of the level set Zx = {t ∈ R+ : BH,K(t) = x}, where x ∈ Rd. See Berman (1972), Monrad and
Pitt (1987) and Xiao (1997, 2007). In the following theorem we prove a uniform Hausdorff
dimension result for the level sets of BH,K .

Theorem 4.3 If 1/(HK) > d, then with probability one,

dimHZx = 1−HKd for all x ∈ Rd, (4.7)

where dimH denotes Hausdorff dimension.

Proof It follows from Theorem 3.19 in Xiao (2007) that with probability one,

dimHZx = 1−HKd for all x ∈ O, (4.8)

where O is the random open set defined by

O =
⋃

s,t∈Q; s<t

{
x ∈ Rd : L(x, [s, t]) > 0

}
.

Hence it only remains to show O = Rd a.s. For this purpose, we consider the stationary
Gaussian process Y = {Y (t), t ∈ R} defined by Y (t) = e−HKtBH,K(et), using the Lamperti
transformation.

Note that the component processes of Y are independent and, as shown in the proof of
Proposition 2.1, they are strongly locally ϕ-nondeterministic with ϕ(r) = r2HK . It follows
from Theorem 3.14 in Xiao (2007) that Y has a jointly continuous local time LY (x, t), where
(x, t) ∈ Rd × R. From the proof of Proposition 2.1, it can be verified that Y satisfies the
conditions of Theorem 2 in Monrad and Pitt (1987), it follows that almost surely for every
y ∈ Rd, there exists a finite interval J ⊂ R such that LY (y, J) > 0.

On the other hand, by using the occupation density formula (4.1), we can verify that the
local times of BH,K and Y are related by the following equation: For all x ∈ Rd and finite
interval I = [a, b] ⊂ [0,∞),

L(x, I) =
∫

[log a, log b]
e(1−HK)s LY (e−HKs x, ds). (4.9)

Hence, there exists a.s. a finite interval I such that L(0, I) > 0. The continuity of L(x, I)
implies the a.s. existence of δ > 0 such that L(y, I) > 0 for all y ∈ Rd with |y| ≤ δ.
Observe that the scaling property of BH,K implies that for all constants c > 0, the scaled
local time c−(1−HKd)L(x, ct) is a version of L(c−HKx, t). It follows that a.s. for every x ∈ Rd,
L(x, J) > 0 for some finite interval J ⊂ [0,∞). ¤
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Since there is little knowledge on the explicit distribution of L(0, 1), it is of interest to
estimate the tail probability P{L(0, 1) > x} as x → ∞. This problem has been considered
by Kasahara et al. (1999) for certain fractional Brownian motion and by Xiao (2007) for a
large class of Gaussian processes. Our next result is a consequence of Theorem 3.20 in Xiao
(2007).

Theorem 4.4 Let BH,K = {BH,K(t), t ∈ R} be a bifractional Brownian motion in Rd with
indices H and K. If 1/(HK) > d, then for x > 0 large enough,

− logP
{
L(0, 1) > x

} ³ xHK , (4.10)

where a(x) ³ b(x) means a(x)/b(x) is bounded from below and above by positive and finite
constants for allx large enough.

Proof By Proposition 2.1 and Lemma 2.3, we see that the conditions of Theorem 3.20 in
Xiao (2007) are satisfied. This proves (4.10). ¤

Let us also note that the existence of the jointly continuous version of the local time and
the self-similarity allow us to prove the following renormalization result. The case d = 1 has
been proved in Russo and Tudor (2006).

Proposition 4.5 If 1/(HK) > d, then for any integrable function F : Rd → R,

tHKd−1

∫

[0,t]
F

(
BH,K(u)

)
du

(d)−→ F̃ L(0, 1) as t →∞, (4.11)

where F̃ =
∫
Rd F (x) dx.

Proof It holds that
∫

[0,t]
F

(
BH,K(u)

)
du = t

∫

[0,1]
F

(
BH,K(tv)

)
dv

d= t

∫

[0,1]
F

(
tHKBH,K(v)

)
dv. (4.12)

By using the occupation density formula, we derive
∫

[0,t]
F

(
BH,K(u)) du = t

∫

Rd

F
(
tHKx

)
L(x, 1) dx = t1−HKd

∫

Rd

F (y) L(yt−HK , 1) dy. (4.13)

Since the function y 7→ L(y, 1) is almost surely continuous and bounded, the dominated
convergence theorem implies that, as t → ∞, the last integral in (4.13) tends to F̃ L(0, 1)
almost surely. This and (4.12) yield (4.11). ¤
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4.2 Oscillation of bifractional Brownian motion

The oscillations of certain classes of stochastic processes, especially Gaussian processes, in
the measure space ([0, 1], λ1), where λ1 is the Lebesgue measure in R, have been studied,
among others, by Wschebor (1992) and Azäıs and Wschebor (1996). The following is an
analogous result for bifractional Brownian motion.

Proposition 4.6 Let BH,K be a bi-fBm in R with indices H ∈ (0, 1) and K ∈ (0, 1]. For
every t ∈ [0, 1], let

Zε(t) =
BH,K(t + ε)−BH,K(t)

εHK
.

Then the following statements hold:

(i) For every integer k ≥ 1, almost surely,
∫ 1

0

(
Zε(t)

)k
dt → E(ρk) as ε → 0,

where ρ is a centered normal random variable with variance σ2 = 21−K .

(ii) For every interval J ⊂ [0, 1], almost surely, for every x ∈ R

λ1{t ∈ J : Zε(t) ≤ x} → λ1(J)P(ρ ≤ x) as ε → 0.

Proof Let us denote

Y ε,k =
∫ 1

0
(Zε(t))

k dt.

It is sufficient to prove that

Var
(
Y ε,k

) ≤ c(k) εβ for some c(k) and β > 0. (4.14)

Then the conclusions (i) and (ii) will follow as in Azäıs and Wschebor (1996) by the means
of a Borel-Cantelli argument.

Note that

Var
(
Y ε,k

)
=

∫ 1

0

∫ 1

0
Cov

(
Zε(u)k, Zε(u)k

)
dudv.

We will make use of the fact that for a centered Gaussian vector (U, V ),

Cov
(
Uk, V k

)
=

∑

1≤p≤k

c(p, k)
[
Cov(U, V )

]p [
Var(U)Var(V )

]k−p
.

Since the random variable Zε has clearly bounded variance [cf. Lemma 2.3], it suffices to
show that for every 1 ≤ p ≤ k,

∫ 1

0

∫ 1

0

[
E

(
Zε(u)Zε(v)

)]p
dudv ≤ c4,6 εβ (4.15)
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We can write
∫ 1

0

∫ 1

0

[
E

(
Zε(u)Zε(v)

)]p
dvdu = 2

∫ 1

0

∫ u

0
1l(u−v<ε)

[
E

(
Zε(u)Zε(v)

)]p
dvdu

+ 2
∫ 1

0

∫ u

0
1l(u−v≥ε)

[
E

(
Zε(u)Zε(v)

)]p
dvdu

:= A + B.

Clearly A ≤ c ε, hence it suffices to bound the term B. Note that

E
(
Zε(u)Zε(v)

)
=

1
ε2HK

∫ u

u−ε

∫ v

v−ε

∂2R

∂a∂b
dbda.

Since
∂2R

∂a∂b
(a, b) =

2HK

2K

[(
a2H + b2H

)K−2
a2H−1b2H−1 − (2HK − 1)|a− b|2HK−2

]
,

we have

B ≤ c(p,H,K)
∫ 1

0

∫ u−ε

0

[
1

ε2HK

∫ u

u−ε

∫ v

v−ε

(
a2H + b2H

)K−2
a2H−1b2H−1 dbda

]p

dvdu

+ c(p, H, K)
∫ 1

0

∫ u−ε

0

[
1

ε2HK

∫ u

u−ε

∫ v

v−ε
|a− b|2HK−2dbda

]p

dvdu

:= B1 + B2.

The term B2 can be treated as in the fBm case [see Azäıs and Wschebor (1996), Proposition
2.1] and we get B2 ≤ c εβ for some constant β > 0. Finally, since a2HK + b2HK ≥ aHKbHK ,
we can write

B1 ≤ c(p,H,K)
∫ 1

0

∫ u−ε

0

[
1

ε2HK

∫ u

u−ε

∫ v

v−ε
aHK−1bHK−1 dbda

]p

dvdu

= c(p,H,K)
∫ 1

0

∫ u−ε

0

(
uHK − (u− ε)HK

εHK

)p (
vHK − (v − ε)HK

εHK

)p

dvdu

≤ c

[∫ 1

0

(
uHK − (u− ε)HK

εHK

)p

dvdu

]2

.

A change of variable shows that B1 ≤ c ε2(1−HK). Combining the above yields (4.15). There-
fore, we have proved (4.14), and the proposition. ¤

The above result can be extended to obtain the almost sure weak approximation of the
occupation measure of the bi-fBm BH,K by means of normalized number of crossing of BH,K

ε ,
where BH,K

ε represents the convolution of BH,K with an approximation of the identity Φε(t) =
1
εΦ

(
t
ε

)
with Φ = 1l[−1,0]. If g is a real function defined on an interval I, then the number of

crossing of level u is
Nu(g, I) = #{t ∈ I : g(t) = u},

where #E denotes the cardinality of E.
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Proposition 4.7 Almost surely for every continuous function f and for every bounded in-
terval I ⊂ R+,

(π

2

)1/2
ε1−HK

∫ ∞

−∞
f(u)Nu(BH,K

ε , I) du →
∫ ∞

−∞
f(u)L(u, I) du as ε → 0.

Proof The arguments in Azäıs and Wschebor (1996, Section 5) apply. Details are left to
the reader. ¤

4.3 The multi-parameter case

For any given vectors H = (H1, . . . , HN ) ∈ (0, 1)N and K = (K1, . . . , KN ) ∈ (0, 1]N , an
(N, d)-bifractional Brownian sheet BH,K = {BH,K(t), t ∈ RN

+} is a centered Gaussian random
field in Rd with i.i.d. components whose covariance functions are given by

E
(
BH,K

1 (s)BH,K
1 (t)

)
=

N∏

j=1

1
2Kj

[(
s
2Hj

j + t
2Hj

j

)Kj − |tj − sj |2HjKj

]
. (4.16)

It follows from (4.16) that, similar to an (N, d)-fractional Brownian sheet [cf. Xiao and
Zhang (2002), Ayache and Xiao (2005)], BH,K is operator-self-similar in the sense that for
all constants c > 0,

{
BH,K(cAt), t ∈ RN

} d=
{

cN BH,K(t), t ∈ RN
}

, (4.17)

where A = (aij) is the N × N diagonal matrix with aii = 1/(HiKi) for all 1 ≤ i ≤ N and

aij = 0 if i 6= j, and X
d= Y means that the two processes have the same finite dimensional

distributions. However, it does not have convenient stochastic integral representations which
have played essential rôles in the studies of fractional Brownian sheets. Nevertheless, we
will prove that the sample path properties of BH,K are very similar to those of fractional
Brownian sheets, and we can describe the anisotropic properties of BH,K in terms of the
vectors H and K.

We start with the following useful lemma.

Lemma 4.8 For any ε > 0, there exist positive and finite constants c4,7 and c4,8 such that
for all s, t ∈ [ε, 1]N ,

c4,7

N∑

j=1

|sj − tj |2HjKj ≤ E
[(

BH,K
1 (s)−BH,K

1 (t)
)2

]
≤ c4,8

N∑

j=1

|sj − tj |2HjKj , (4.18)

and

c4,7

N∑

j=1

|sj − tj |2HjKj ≤ detCov
(
BH,K

1 (s), BH,K
1 (t)

)
≤ c4,8

N∑

j=1

|sj − tj |2HjKj . (4.19)

Here and in the sequel, detCov denotes determinant of the covariance matrix.
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Proof We will make use of the following easily verifiable fact: For any Gaussian random
vector (Z1, Z2),

detCov(Z1, Z2) = Var(Z1)Var(Z2|Z1), (4.20)

where Var(Z1) and Var(Z2|Z1) denote the variance of Z1 and the conditional variance of Z2,
given Z1, respectively.

By (4.20) we see that for all s, t ∈ [ε, 1]N ,

detCov
(
BH,K

1 (s), BH,K
1 (t)

)
= E

[
BH,K

1 (s)2
]
Var

(
BH,K

1 (t)
∣∣BH,K

1 (s)
)

≤ E
[
BH,K

1 (s)2
]
E

[(
BH,K

1 (s)−BH,K
1 (t)

)2
]
.

(4.21)

Since Var
(
BH,K

1 (s)
)

is bounded from above and below by positive and finite constants, it is
sufficient to prove the upper bound in (4.18) and the lower bound in (4.19). Both of them
are proven by induction.

When N = 1, Lemma 2.3, Proposition 2.1 and (4.20) imply that both (4.18) and (4.19)
hold. Next we show that, if the lemma holds for any BH,K with at most n parameters, then
it holds for BH,K with n + 1 parameters.

We verify the upper bound in (4.18) first. For any s, t ∈ [ε, 1]n+1, let s′ = (s1, . . . , sn, tn+1).
Then we have

E
[(

BH,K
1 (s)−BH,K

1 (t)
)2

]
≤ 2E

[(
BH,K

1 (s)−BH,K
1 (s′)

)2
]

+ 2E
[(

BH,K
1 (s′)−BH,K

1 (t)
)2

]
.

(4.22)

For the first term, we note that whenever s1, . . . , sn ∈ [ε, 1] are fixed, BH,K is a (rescaled)
bifractional Brownian motion in sn+1. Hence Lemma 2.3 implies the first term in the right-
hand side of (4.22) is bounded by c |tn − sn|2Hn+1Kn+1 , where the constant c is independent
of s1, . . . , sn ∈ [ε, 1]. On the other hand, when tn+1 ∈ [ε, 1] is fixed, BH,K is a (rescaled)
(N, d)-bifractional Brownian sheet. Hence the induction hypothesis implies the second term
in the right-hand side of (4.22) is bounded by c

∑n
j=1 |tj−sj |2HjKj . This and (4.22) together

prove the upper bound in (4.18).
Suppose the lower bound in (4.19) holds for any BH,K with at most n parameters. For

N = n + 1, we have

detCov
(
BH,K

1 (s), BH,K
1 (t)

)
=

n+1∏

j=1

t
2HjKj

j s
2HjKj

j

−
n+1∏

j=1

1
22Kj

[(
t
2Hj

j + s
2Hj

j

)Kj − |tj − sj |2HjKj

]2
.

(4.23)

By splitting the right-hand side or (4.23) and using the induction hypothesis, we derive
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that

detCov
(
BH,K

1 (s), BH,K
1 (t)

)

=
n+1∏

j=2

t
2HjKj

j s
2HjKj

j

{
s2H1K1
1 t2H1K1

1 − 1
22K1

[(
t2H1
1 + s2H1

1

)K1 − |t1 − s1|2H1K1

]2
}

+
1

22K1

[(
t2H1
1 + s2H1

1

)K1 − |t1 − s1|2H1K1

]2

×
{ n+1∏

j=2

t
2HjKj

j s
2HjKj

j −
n+1∏

j=2

1
22Kj

[(
t
2Hj

j + s
2Hj

j

)Kj − |tj − sj |2HjKj

]2
}

≥ c

n+1∑

j=1

|sj − tj |2HjKj

(4.24)

for all s, t ∈ [ε, 1]N . This proves the lower bound in (4.19). ¤

Applying Lemma 4.8, we can prove that many results in Xiao and Zhang (2002), Ayache
and Xiao (2005) on sample path properties of fractional Brownian sheets, such as the Haus-
dorff dimensions of the range, graph and level sets and the existence local times, hold for
BH,K as well.

Theorem 4.9 is concerned with the existence of local times of BH,K .

Theorem 4.9 Let BH,K =
{
BH,K(t), t ∈ RN

+

}
be an (N, d)-bifractional Brownian sheet with

parameters H ∈ (0, 1)N and K ∈ (0, 1]N . If d <
∑N

j=1
1

HjKj
then for any N -dimensional

closed interval I ⊂ (0,∞)N , BH,K has a local time L(x, I), x ∈ Rd. Moreover, the local time
admits the following L2-representation

L(x, I) = (2π)−d

∫

Rd

e−i〈y,x〉
∫

I
ei〈y,BH,K(s)〉 dsdy, x ∈ Rd. (4.25)

Remark 4.10 Although the existence of local times can also be proved by using the Malliavin
calculus [see Proposition 4.15 below], we prefer to provide a Fourier analytic proof because:
1) we can compare in this way the two methods and 2) the above theorem gives in addition
the representation (4.25).

Proof Without loss of generality, we may assume that I = [ε, 1]N where ε > 0. Let λN be
the Lebesgue measure on I. We denote by µ the image measure of λN under the mapping
t 7→ BH,K(t). That is, µ(A) = λN{t ∈ I : BH,K(t) ∈ A} for all Borel sets A ⊆ Rd. Then the
Fourier transform of µ is

µ̂(ξ) =
∫

I
ei〈ξ, BH,K(t)〉 dt. (4.26)
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It follows from Fubini’s theorem and (4.18) that

E
∫

Rd

∣∣µ̂(ξ)
∣∣2 dξ =

∫

I

∫

I

∫

Rd

E
(
ei〈ξ, BH,K(s)−BH,K(t)〉

)
dξ dsdt

= c

∫

I

∫

I

1
[
E

(
BH,K

1 (s)−BH,K
1 (t)

)2]d/2
dsdt

≤ c

∫

I

∫

I

1
[∑N

j=1 |sj − tj |2HjKj
]d/2

dsdt.

(4.27)

The same argument in Xiao and Zhang (2002, p. 214) shows that the last integral is finite
whenever d <

∑N
j=1

1
HjKj

. Hence, in this case, µ̂ ∈ L2(Rd) a.s. and Theorem 4.9 follows from
the Plancherel theorem. ¤

Remark 4.11 Recently, Ayache, Wu and Xiao (2007) have shown that fractional Brownian
sheets have jointly continuous local times based on the “sectorial local nondeterminism”.
It would be interesting to prove that BH,K is sectorially locally nondeterministic and to
establish joint continuity and sharp Hölder conditions for the local times of BH,K .

Now we consider the Hausdorff and packing dimensions of the image, graph and level set
of BH,K . In order to state our theorems conveniently, we assume

0 < H1K1 ≤ . . . ≤ HNKN < 1. (4.28)

We denote packing dimension by dimP ; see Falconer (1990) for its definition and proper-
ties. The following theorems can be proved by using Lemma 4.8 and the same arguments as
in Ayache and Xiao (2005, Section 3). We leave the details to the interested reader.

Theorem 4.12 With probability 1,

dimHBH,K
(
[0, 1]N

)
= dimPBH,K

(
[0, 1]N

)
= min

{
d;

N∑

j=1

1
HjKj

}
(4.29)

and

dimHGrBH,K
(
[0, 1]N

)
= dimPGrBH,K

(
[0, 1]N

)

=

{ ∑N
j=1

1
HjKj

if
∑N

j=1
1

HjKj
≤ d,∑k

j=1
HkKk
HjKj

+ N − k + (1−HkKk)d if
∑k−1

j=1
1

HjKj
≤ d <

∑k
j=1

1
HjKj

,

(4.30)

where
∑0

j=1
1

HjKj
:= 0.

Theorem 4.13 Let Lx = {t ∈ (0,∞)N : BH,K(t) = x} be the level set of BH,K . The
following statements hold:
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(i) If
∑N

j=1
1

Hj
< d, then for every x ∈ Rd we have Lx = ∅ a.s.

(ii) If
∑N

j=1
1

Hj
> d, then for every x ∈ Rd and 0 < ε < 1, with positive probability

dimH

(
Lx ∩ [ε, 1]N

)
= dimP

(
Lx ∩ [ε, 1]N

)

= min
{ k∑

j=1

Hk

Hj
+ N − k −Hkd, 1 ≤ k ≤ N

}

=
k∑

j=1

Hk

Hj
+ N − k −Hkd, if

k−1∑

j=1

1
Hj

≤ d <
k∑

j=1

1
Hj

.

(4.31)

4.4 A Malliavin calculus approach

Using the Malliavin calculus approach, we can study the local times of more general bifrac-
tional Brownian sheets. Consider the (N × d)-matrices

H = (H1, . . . ,Hd) and K = (K1, . . . ,Kd),

where for any i = 1, . . . , d

H i = (Hi,1, . . . , Hi,N ) and Ki = (Ki,1, . . . ,Ki,N )

with Hi,j ∈ (0, 1) and Ki,j ∈ (0, 1] for every i = 1, . . . , d and j = 1, . . . , N .

We will say that the Gaussian field BH,K is an (N, d)-bifractional Brownian sheet with
indices H and K if

BH,K(t) =
(
BH1(t), . . . , BHd(t)

)
, t ∈ [0,∞)N

and for every i = 1, . . . , d, the random field {BHi(t), t ∈ RN
+} is centered and has covariance

function

E
(
BHi,Ki(t)BHi,Ki(s)

)
= RHi,Ki(s, t) =

N∏

j=1

RHi,j ,Ki,j (sj , tj).

As in Subsection 4.1, the local time L(x, t) (t ∈ RN
+ and x ∈ Rd) of BH,K is defined as

the density of the occupation measure µt, defined by

µt(A) =
∫

[0,t]
1lA

(
BH,K(s)

)
ds, A ∈ B(Rd).

Formally, we can write

L(x, t) =
∫

[0,t]
δx

(
BH,K(s)

)
ds,
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where δx denotes the Dirac function and δx(BH,K
s ) is therefore a distribution in the Watanabe

sense (see Watanabe (1984)).
We need some notation. For x ∈ R, let pσ(x) be the centered Gaussian kernel with

variance σ > 0. Consider also the Gaussian kernel on Rd given by

pd
σ(x) =

d∏

i=1

pσ(xi), x = (x1, . . . , xd) ∈ Rd.

Denote by Hn(x) the n–th Hermite polynomial defined by H0(x) = 1 and for n ≥ 1,

Hn(x) =
(−1)n

n!
exp

(x2

2

) dn

dxn
exp

(
−x2

2

)
, x ∈ R.

We will make use of the following technical lemma.

Lemma 4.14 For any H ∈ (0, 1) and K ∈ (0, 1], let us define the function

QH,K(z) =
RH,K(1, z)

zHK
, z ∈ (0, 1]

and QH,K(0) = 0. Then the function QH,K takes values in [0, 1], QH,K(1) = 1 and it is
strictly increasing. Moreover, there exists a constant δ > 0 such that for all z ∈ (1− δ, 1),

(QH,K(z))n ≤ exp
(−c(δ,H, K)n (1− z)2HK

)
. (4.32)

Proof Clearly, the Cauchy-Schwarz inequality implies 0 ≤ QH,K(z) ≤ 1. Let us prove
that the function QH,K is strictly increasing. By computing the derivative Q′

H,K(z) and
multiplying this by zHK+1, we observe that it is sufficient to show

(1− z)2HK−1(1 + z)− (1 + z2H)K−1(1− z2H) > 0 for all z ∈ (0, 1). (4.33)

If HK ≤ 1
2 , since (1 + z2H)K−1 ≤ 1 + z, the left side in (4.33) can be minorized by

(1 + z2H)K
(
(1− z)2HK−1 − 1 + z2H

)
and this is positive since (1− z)2HK−1 ≥ 1.

If HK > 1
2 , we note that

(1− z)2HK−1(1 + z) + (1 + z2H)K−1z2H ≥ (1− z)(1 + z) + (1 + z2H)K−1z2

≥ (1 + z2H)K−1(1− z2) + (1 + z2H)K−1z2 ≥ (1 + z2H)K−1.

and this implies (4.33). Concerning the inequality (4.32), we note that

QH,K(z)n = exp (n log QH,K(z)) ≥ exp (−n(1−QH,K(z))) .

Now by Taylor’s formula

(1 + z2H)Kz−HK ≤ 2K + c(H, K, δ)(1− z)2
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and therefore

QH,K(z) ≤ 1 + c(H, K, δ)(1− z)2 − 1
2K

(1− z)2HK

≤ 1 + c(H, K, δ)(1− z)2HKδ2−2HK − 1
2K

(1− z)2HK .

The conclusion follows as in the proof of Lemma 2 in Eddahbi et al. (2005), since

1−QH,K(z) ≥ 1
2K

(1− z)2HK(1− c(H, K, δ))

for any z ∈ (1− δ, 1) with δ close to zero and with c(H, K, δ) tending to zero as δ → 0. ¤

The following proposition gives a chaotic expansion of the local time of the (N, d)-
bifractional Brownian sheet. The stochastic integral In(h) appeared below is the multiple
Wiener-Itô integral of order n of the function h of nN variables with respect to an (N, 1)
bifractional Brownian motion with parameters H = (H1, . . . ,HN ) and K = (K1, . . . , KN ) .
Recall that such integrals can be constructed in general on a Gaussian space [see, for example,
Major (1981), or Nualart (1995)]. We will only need the following isometry formula:

E
(
In(1l⊗n

[0,t])Im(1l⊗m
[0,s])

)
= n!RH,K(t, s)n1l(n=m) = n!

N∏

j=1

(
RHj ,Kj (tj , sj)

)n
1l(n=m) (4.34)

for all s, t ∈ RN
+ .

Proposition 4.15 For any x ∈ Rd and t ∈ (0, ∞)N , the local times L(x, t) admits the
following chaotic expansion

L(x, t) =
∑

n1,...,nd≥0

∫

[0, t]

d∏

i=1

p
s2HiKi

(xi)

sniHiKi
Hni

( xi

sHi

)
Ii
ni

(1l[0,s](·)⊗ni) ds, (4.35)

where s = s1 · · · sN and sHiKi =
∏N

j=1 s
Hi,jKi,j

j . The integrals Ii
ni

denotes the multiple Itô
stochastic integrals with respect to the independent N -parameter bifractional Brownian motion
BHi,Ki.

Moreover, if
∑N

j=1
1

H∗
j K∗

j
> d, where H∗

j = max{Hi,j : i = 1, . . . , d} and K∗
j = max{Ki,j :

i = 1, . . . , d}, then L(x, t) is a random variable in L2(Ω).

Proof The chaotic expression (4.35) can be obtained similarly as in Eddahbi et al. (2005)
or Russo and Tudor (2006). It is based on the approximation of the Dirac delta function
by Gaussian kernels with variance converging to zero. Let us evaluate the L2(Ω) norm of
L(x, t). By the independence of components and the isometry of multiple stochastic integrals,
we obtain

‖L(x, t)‖2
2 =

∑

m≥0

∑
n1+···+nd=m

∫

[0,t]
du

∫

[0,t]
dv

d∏

i=1

βni(u)βni(v)RHi,Ki(u, v)ni , (4.36)
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where

βni(u) =
p

s2HiKi
(xi)

sniHiKi
Hni

(
xi

sHiKi

)
.

By Propositions 3 and 6 in Imkeller et al. (1995) [see also Lemma 11 in Eddahbi et al.
(1995)], we have the bound

βni(u)βni(v) ≤ c4,9

1

(ni ∨ 1)
8β−1

6

1
uniHiKivniHiKi

(4.37)

for any β ∈ [14 , 1
2). Using the inequality (4.37), we derive from (4.36) that ‖L(x, t)‖2

2 is at
most

c
∑

m≥0

∑
n1+···+nd=m

( d∏

i=1

1

(ni ∨ 1)
8β−1

6

) ∫

[0,t]
du

∫

[0,u]
dv

d∏

i=1

N∏

j=1

RHi,j ,Ki,j (uj , vj)ni

(ujvj)niHi,jKi,j

= c
∑

m≥0

∑
n1+···+nd=m

( d∏

i=1

1

(ni ∨ 1)
8β−1

6

) N∏

j=1

∫ tj

0
ujduj

∫ 1

0

( d∏

i=1

QHi,j ,Ki,j (z)ni

)
dz

= c4,10 t2
∑

m≥0

∑
n1+···+nd=m

( d∏

i=1

1

(ni ∨ 1)
8β−1

6

) N∏

j=1

∫ 1

0

( d∏

i=1

QHi,j ,Ki,j (z)ni

)
dz,

(4.38)

where we have used the change of variables uj = uj and vj = zjuj . Using the above lemma
and as in the proof of Lemma 2 in Eddahbi et al. (2005), we can prove the bound

∫ 1

0

( d∏

i=1

QHi,j ,Ki,j (z)ni

)
dz ≤ c4,11 m

− 1
2H∗

j
K∗

j . (4.39)

Here c4,11 = c4,11(H,K) depends on H,K. Finally, (4.39) implies that

‖L(x, t)‖2
2 ≤ c4,12

∑

m≥1

( N∏

j=1

m
− 1

2H∗
j

K∗
j

) ∑
n1+···+nd=m

( d∏

i=1

1

(ni ∨ 1)
8β−1

6

)

≤ c4,13

∑

m≥1

m
−PN

j=1
1

2H∗
j

K∗
j

+d(1− 8β−1
6

)−1
,

(4.40)

where c4,12 and c4,13 depend on H,K and t only. The last series in (4.40) converges if

N∑

j=1

1
2H∗

j K∗
j

> d

(
1− 8β − 1

6

)
. (4.41)

To conclude, observe that by choosing β close to 1
2 ,

∑N
j=1

1
H∗

j K∗
j

> d implies the required

condition (4.41). ¤
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We recall that a random variable F =
∑

n In(fn) belongs to the Watanabe space Dα,2 if

‖F‖2
α,2 :=

∑

n≥0

(1 + m)α ‖In(fn)‖2
2 < ∞.

Corollary 4.16 For every t ∈ (0,∞)N and x ∈ Rd, the local time L(x, t) of the (N, d)-
bifractional Brownian sheet BH,K belongs to the Watanabe space Dα,2 for every 0 < α <∑N

j=1
1

2H∗
j K∗

j
− d

2 .

Proof This is a consequence of the proof of Proposition 4.15. Using the computation
contained there, we obtain for any β ∈ [14 , 1

2),

‖L(x, t)‖2
α,2 ≤ c4,14(H,K, d, t)

∑

m≥1

(1 + m)α m
d(1− 8β−1

6
)−1−PN

j=1
1

2H∗
j

K∗
j ,

which is convergent if α <
∑N

j=1
1

2H∗
j K∗

j
− d(1− 8β−1

6 ) − 1−∑N
j=1

1
2H∗

j K∗
j
. Choosing β close

to 1
2 , we get the conclusion. ¤
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