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Let X (t) (t € Ry) be an a-self-similar Markov process on R or R%. For two types of
such processes, the lower functions for X (¢) are studied. As a consequence, the results of
Khoshnevisan (1996) and Knight (1973) on the lower class of the maximum of Brownian
motion normalized by its local time at 0 are recovered.

1. Introduction

The class of a-self-similar (a-s.s.) Markov processes on (0, 00) and on [0, oc) were intro-
duced and studied by Lamperti [14], who used the name “semi-stable”. A very important
and useful result in Lamperti [14] is Theorem 4.1, which relates, through random time
change, a [0, 00)-valued self-similar Markov process with a real-valued Lévy process and
hence makes it possible to study sample path properties of a-s.s. Markov processes [0, c0)
by using known results for Lévy processes. See Lamperti [14], Vuolle-Apiala [24], Liu [16],
Li et al [15], Xiao and Liu [28], and the references therein.

Graversen and Vuolle-Apiala [6] generalized some of Lamperti’s results, including the
above mentioned Theorem 4.1, to R%valued isotropic a-s.s. Markov processes. See also
Kiu [11]. Vuolle-Apiala and Graversen [26], based on the results in [6], studied the duality
of isotropic a-s.s. Markov processes on R%\{0}. However, it seems very difficult to apply
the results of Graversen and Vuolle-Apiala [6] to study sample path properties such as
lower functions, the exact Hausdorff measure and the local times of (isotropic) Ré-valued
a-s.s. Markov processes via corresponding results for Lévy processes, because one has
to deal with the angular process (see [6]). This consideration motivates us to study the
sample path properties of a-s.s. Markov processes in R? through their Markov property
and transition functions, and it turns out that we can generalize many results about
Brownian motion and stable Lévy processes to more general a-s.s. Markov processes.

In this paper, we study lower functions (escape rates) for certain a-s.s. Markov processes
on R? or R%. There has been a lot of work on the lower functions for Brownian motion
and stable Lévy processes. See Dvoretsky and Erdés [4] and Spitzer [18] for the Brownian
motion case; Takeuchi [19] for symmetric stable processes; Takeuchi [20] and Taylor [23] for
transient stable processes; Takeuchi and Watanabe [21] for the Cauchy process; Fristedt
[5] and Breiman [2] for stable subordinators. The methods in all these papers depend
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heavily on the special properties of Brownian motion or stable Lévy processes and hence
cannot be applied directly to a-s.s. Markov processes. Recently, Khoshnevisan [9] gave
a different method for estimating hitting probabilities of Lévy processes and studied the
escape rates for Lévy processes with stable components.

The rest of the paper is organized as follows. In Section 2 we recall briefly the definition
of a-s.s. Markov processes and prove, by modifying an argument of Khoshnevisan [9], a
basic estimate about the hitting probability of strong Markov processes on R%. In Section
3, we study the escape rates for certain transient a-s.s. Markov processes including stable
Lévy processes and their relatives. Theorem 3.1 generalizes the previous results about
Brownian motion and stable Lévy processes mentioned above. In Section 4, we study the
lower functions of the a-s.s. Markov process in R% defined by

X(t) = (Xu(8), -+, Xa(?))

where X,---.X; are independent copies of the extremal a-s.s. Markov process consid-
ered by Lamperti [13] [14]. As a consequence of Theorem 4.1, we recover the results of
Khoshnevisan [10] and Knight [12] on the lower class of the maximum of Brownian motion
normalized by its local time at 0.

We will use K, Ky, ---, Kg to denote positive and finite constants whose precise values
are not important and may be different in each appearance.

2. Definitions and a Basic Estimate

Throughout this paper, (E,B) denotes R?, R\{0} or R% with the usual Borel o-
algebra, A a point attached to E as an isolated point. {2 denotes the space of all functions
w from [0,00) to E'U {A} having the following properties:

(i) w(t) = A for t > 7, where 7 = inf{t > 0; w(t) = A};
(il) w is right continuous and has a left limit at every t € [0, 00).

Let o > 0 be a given constant. A stochastic process X = (X (t), P*) with state space
E U {A} is called an a-self-similar Markov process if there exists a transition function
P(t,z, A) satisfying

P(0,z,A) = I4(z) forall z€ E, AeB (2.1)
where I4(-) denotes the indicator function of A, and
P(t,z,A) = P(at,a%z,a®A) forall t>0,a>0, z€FE, A€cB (2.2)

such that (X(¢), P*) is a time homogeneous Markov process with a transition function
P(t,z, A) and for every z € E, X (t) € Q P*-almost surely.

For d > 1, X is called an isotropic a-s.s. Markov process if its transition function
further satisfies the following condition

P(t,z, A) =P(t,¢(z),d(A)) forall t>0, z€ E, A€ B, ¢ € O(d) (2.3)

where O(d) denotes the group of orthogonal transformations on R



REMARK Condition (2.2) is equivalent to the statement that for every a > 0, the
Pe_distribution of X (£) (¢t > 0) is equal to the P2 -distribution of a=*X (at) (¢ > 0). We
write this self-similar property as

(X(-), P*) £ (a™*X (a), P**) for every a > 0. (2.4)

It is easy to see that all 1/a-strictly stable Lévy processes on R¢ are a-s.s. Markov
processes and 1/« symmetric stable Lévy processes are isotropic a-s.s. Markov processes.
It is proved by Graversen and Vuolle-Apiala [6] that if X (¢) is an isotropic a-s.s. Markov
process on E, then (|X(t)|, P'*)) is an a-s.s. Markov process on |E|; and if X () is an
a-s.s. Markov process on R¢, then for every v > 0

(X(t)<7>, P$<1/7>)

is also an ary-s.s. Markov process on R¢, where 0<7> = 0 and <?> = x|z|"~! for z # 0.

The Bessel processes form exactly the class of 1/2-s.s. diffusions on (0,00). We refer
to Revuz and Yor [17] for the definition and properties of Bessel processes.

More examples of a-s.s. Markov processes can be found in Lamperti [14], Graversen
and Vuolle-Apiala [6], Vuolle-Apiala and Graversen [26] and Vuolle-Apiala [25].

From now on, we will only consider a-s.s. Markov processes with the strong Markov
property. It was shown by Lamperti [14] and Graversen and Vuolle-Apiala [6] that every
self-similar Markov process on (0,00) and every isotropic self-similar Markov process on
R?\{0} is automatically a strong Markov process with respect to a right-continuous filter
of o-algebras.

The following estimates on hitting probabilities for strong Markov processes generalize
Theorem 1.1 of Khoshnevisan [9] and will prove to be useful later.

Proposition 2.1 Let X(t) (¢

> 0) be a time homogeneous strong Markov process in R?
with transition function P(t,z, A).

Then for every x € R%, ¢ >b> 0 and r > 0 we have

1 Pz, B(0,r))dt
2 Sup\y|§r fOc P(ta Y, B(07 T))d

P’”(|X(t)| <7r forsome b<t< c>

szc_b P(t: z, B(Oa T))dt
inf|y|§r f()c_b P(t’ Y, B(Oa T))dt

where B(0,7) = {u € R%: |u| <r}.

Proof . Define T =inf{s > b: |X(s)| < r}. Then by the strong Markov property, we
have

2c—b 2¢—b
B [ gxoiendt > BT [EX(T) (/T Lyx@-r |<r}dt) T< C]

inf {/OCbP(t,y, B(O,r))dt} - P*T < ¢)

ly|<r

v

This proves the upper bound in (2.5).



On the other hand, the Cauchy-Schwartz inequality gives
Em/b Lix@icndt = E [/b Lix@icndt T < C]

c 271/2 1/2
=< [Em</b 1{|X(t)|§r}dt> ] -[P“;(TS C)] :

(E“” Iy 1{|X<t>\5r}dt)2
Er (fzf 1{|X(t)\5r}dt)2

The expectation in the denominator of (2.6) is

2 [ds [ Pr(X(s)| <7, |X(0)] < vt
=2 /bc ds /: /|y<r P(t—s,y, B(0,7))P(s,z,dy)dt
=2 /bC ds /|y|<r (/:P(t —s,y, B(0, r))dt)P(s,x,dy)

<2 sup{/OCP(t,y, B(O,r))dt} /bcP(s,x, B(0,r))ds. (2.7)

ly|<r

Thus

P*(T <c¢)>

(2.6)

Combining (2.6) and (2.7) yields the lower bound in (2.5).
We will consider two classes of a-s.s. Markov processes, for which we can get useful
estimates for the hitting probabilities, and study their asymptotic properties.

3. Type I a-s.s. Markov Processes

In this section, we consider a-s.s. Markov processes in R? satisfying the strong Markov
property and the following condition: there exist positive constants 79, 3, K; and K5 such
that for every r > 0 and z € R? with |z| < 1y we have

K;min{1,7’} < P(1,z, B(0,7)) < Ky min{1,7°} . (3.1)

Clearly, Condition (3.1) is satisfied by strictly stable Lévy processes X (t) with 8 = d,
because its transition function is translation invariant and X (1) has a bounded density
function; by X (¢)<7> with § = d/~ and by a Bessel process of dimension § (not necessarily
an integer) with 3 = 4. It should be noticed that the transition functions of the last two
processes are not translation invariant.

The following lemma is a corollary of Proposition 2.1.

Lemma 3.1 Let X(t) (t > 0) be an a-s.s. Markov process in R¢ verifying (3.1). For
any giwen ¢ > b > 0, there exist positive constants 1y, Ks and K, such that for every
0<r<mn and z € R with |z| < n, we have

Ky < P$(|X(t)| <r forsome b<t< c) < Kyrfte (3.2)
if afB > 1; and
K3 K4
< PP|X < <t< < .
og1/r = <| ()| <r for some b_t_c) S Tog1/r (3.3)

if af = 1.



Proof . For any y € R? with |y| < r, by (2.2) and (3.1) we have

/OC_bP(t,y,B(O,r))dt = /Oc_bP(l,y/ta,B(O,r/t"‘))dt

c—b . Tﬂ
> K, /o m1n<1,ta—ﬁ)dt
Krt/e if af >1
{ Krflog1/r if af=1 (34)
On the other hand, by (2.2) and (3.1) we have for a5 > 1
2c—b
/ P(t,z, B(0,r))dt < K1 . (3.5)
b

Now the right inequalities in (3.2) and (3.3) follow from Proposition 2.1, (3.4) and (3.5).
The left inequalities can be proved similarly.
With the help of Lemma 3.1, we can prove the following result in a standard way.

Proposition 3.1 Let X(t) (t > 0) be an a-s.s. Markov process in R® verifying (3.1). If
af3 = 1, then singletons are polar, but (X (t), P°) is neighborhood recurrent. If o > 1,
then X (t) is transient in the sense that for every x € R4

P*(|IX(t)] 00 as t—>00)=1.

It is easy to prove that if af < 1, then X (¢) (¢ > 0) hits points with positive probability
and has a square-integrable local time. These results, together with the joint continuity
and Holder conditions of the local times, will be proved in a subsequent paper.

We will make use of the following extension of the Borel-Cantelli lemma due to Chung
and Erdos [3].

Lemma 3.2 Let {A,} be an infinite sequence of events satisfying the following conditions:
(1) nZy P(An) = oo;

(ii). For every pair h,m € N, h < m, there exist positive constants K(h) and H(h, m) >
m such that for every n > H(h,m),

P(A,|AS N AS, N---NAS) > K(h)P(A,),

where P(A|B) is the conditional probability of A given B and A° denotes the com-
plement of A;

(#i). There exist two absolute positive constants Ky, Kg with the following property: to
each Ay, there corresponds a set (may be infinite) of events Ap,, -+ Am, in {An}
such that

S P(Ap N Am,) < K5P(A,,)
k=1

and that for any other A, than A, (1 <k <s) andn > m,

P(A, N A4,) < KgP(An)P(Ay);



Then P(A, i. 0.) = 1.

Now we prove the main theorem of this section, which extends the results of Dvoretsky
and Erdos [4], Spitzer [18], Takeuchi [19], Taylor [23] and Takeuchi and Watanabe [21].

Theorem 3.1 Let X(t) (t > 0) be an a-s.s. Markov process in R? verifying (3.1). For
any positive non-increasing function ¢ : Ry — R, set

[t e(t)P et if aB>1
I““‘{ [P logd())Mdt  if af=1.

Then P°-almost surely

X (@) :{ 00 if I(¢) < 0
0 if Z(¢) = oo.

Proof . For fixed v > 0 and ¢ > 1, consider the sequence of events
A, = {\X(t)| < yc"P(c") for some " <t < c"“} .

It follows from (2.4) and Lemma 3.1 that
P°(A,) = P°(]X(t)| < vo(c") for some 1<t<c)
< K, ¢(c")p-1e ifaf >1
- K, |log ¢(c™)|~! ifaf=1

When Z(¢) < oo, by the monotonicity of ¢(¢) we have }2°, P%(A,) < oo. By the easy
part of the Borel-Cantelli lemma and the arbitrariness of 7, we obtain

lim inf = oo Pl-almost surely.

Now suppose that Z(¢) = oo. Then (2.4) and Lemma 3.1 imply >, P%(A4,) = cc.
It remains to verify that Conditions (ii) and (iii) of Lemma 3.2 are satisfied. We only
consider the case of a8 > 1 and the proof for the case ad = 1 is similar. For any fixed
pair (h,m) of integers with h < m, we choose a positive constant ay ,, such that

1
P (AN A5, N NAS N By) > 5PO(A;rm;Hm...mAfn),
where B, = {|X(¢™™)| < apm}. Then for every n > m,
1
PO (AnA5 N A5 NN AL) > 5 P7 (Aul A5 0N AL N By) (3.6)

By the Markov property, we have
PY(A,nASN---NA° N By)
=FE° [PX(CmH) (|X(t — ™| < ye"¢(c) for some " < t < c"“) ;

Apn---NA;, N By, (3.7)



On event B,,, we have
pXeEh (\X(t — ™| < e p(c”) for some <t < c”+1)

> inf PY (\X(t — ™| < e ¢(c") for some ¢ < t < c"“)

B ‘y|§ah,m

= inf PY¢©

‘y|Sah,m

no

(\X(t — ™| < y¢(c") for some 1 <t < c) (3.8)

where the last equality follows from the self-similarity (2.4). We choose H(h,m) large
enough such that for every n > H(h, m), we have ap,c¢™"* < n;. It follows from Lemma
3.1 that (3.8) is at least

KP°(|X(t)] < vé(c") for some 1 <t <c)=KP’A,). (3.9)
Combining (3.6) - (3.9), we have for every n > H(h, m)
P (An|Af 0 A5y - NAS) > K PY(Ay)

Hence condition (ii) of Lemma 3.2 is verified. To verify condition (iii), we define, as in
Takeuchi [19]

_f inf{t € [¢", " | X(t)] < e o(c™)} if there is such a ¢
R B S | otherwise

Then for any m < n, it follows from the strong Markov property that
P'(AnN4,) = P°(on <™ 0, <)

cm+1
= / P° (O'n < "oy, = s) P°(o,, € ds)
Cm
m—+1

< [0 pxew (|X(t)| < 4™ (™) for some
-t <t <M - cm> P%(a,, € ds)
< sup Py<|X ()] < vc"¢(c") for some
ly|<vemep(cm)
- ™ < < M - cm) P°(An) . (3.10)

Similar to (3.8) and (3.9), by (2.4) and Lemma 3.1 we see that when m —n is large enough,
say n — m > ngy, we have

P°(A,NA,) < KP(A,)P°(A,) . (3.11)

On the other hand, for m < n < ng, P°(A,, N A4,) < P°(A,;). Thus condition (iii) of
Lemma 3.2 is satisfied. Finally since v > 0 is arbitrary, we have proved that PY-almost

surely
X
lim inf M =0.
t—o0 ta¢(t)
This completes the proof of Theorem 3.1.
REMARK Theorem 3.1 also holds for ¢ — 0. The proof is easier, we only need to verify

(i) and (iii) in Lemma 3.2 and then use the Blumenthal zero-one law ([1]).



4. Type II a-s.s. Markov Processes

It is known that stable subordinators on Ry of index (3 are 1/8-s.s. Markov processes
which do not satisfy (3.1) and their lower functions are different from those obtained in
Section 3. See Fristedt [5] and Breiman [2]. In this section we consider another class of
a-s.s. Markov processes in R% whose transition functions do not satisfy (3.1) either and
study their lower functions. We remark that the argument of this section can be applied
to stable subordinators and give a different proof of Theorem 1 of Breiman [2].

Now fix a positive constant . For every ¢ > 0, z € R% and [0, b]= 410, b;], we set

0 if x ¢ [0, 0]
P(t,2,(0,8]) = e 1exp( 17 ) if x € [0, b] (4.1)

l

Then it is easy to verify that P(¢,z, A) is a transition function satisfying (2.1) and (2.2).
It follows from the general theory that there exists an a-s.s. Markov process X (¢) (t > 0)
on R¢ with the above P(t,x, A) as its transition function. Also the form of the transition
function implies that each component of X (¢) is increasing almost surely.

For d = 1, these a-s.s. Markov processes arise in the study of the statistics of extremes
(see Lamperti [13]). In the case of d = 1, @ = 1 and £ = 1 the inverse of X (¢) plays impor-
tant roles in some limit theorems for the occupation times of two-dimensional Brownian
motion and a class of one-dimensional diffusion processes (see Kasahara and Kotani [8]),
and fractional Brownian motion ( Kasahara and Kosugi [7]). Watanabe [27] proved that
X (t) is the limit process for a certain class of sums of i.i.d. random variables.

Even though X (¢) is not isotropic, the strong Markov property is easy to prove.

Lemma 4.1 For each z € R%, X = (X (t), Fyy, P%) is a strong Markov process.

Proof . By Theorem 8.11 in Chapter 1 of Blumenthal and Getoor [1], it is sufficient to
prove that

z = / NP, f(z (4.2)

is continuous for A > 0 and f € Cc(Ri), the space of real continuous functions on Ri
with compact support.
Let z € RY and f € C.(R%) be fixed. We first prove that for each ¢ > 0

lim P (y) = Pef(s) (1)
By (4.1) and a change of variables, we have for any ¢ > 0

- /Rn (ff)dﬁ[exp(-u?a)uf e

=1

= /R . “"‘y_m)(g)dﬁ[exl)(_(ui+yi§t—$i)l/a>

=1

(i i — xi)ll/a]du . (4.4)



Since f(u) is continuous with compact support, we have

d
. &t
lim _ I I _
yl—m f(u + Y ,’13) =1 exp( (Uz =+ Yi — T;

’ &\ . 1-1/a
:f(u)i_l—[lexp(—ui/a> -, 1-1/

for each u € R% N [z,00). Hence (4.3) follows from (4.4) and the dominated convergence
theorem. Using the dominated convergence theorem again proves the continuity of the
function in (4.2).

From now on, we take £ = 1 and we will not distinguish [0, 7]¢ from B(0,7) N"R%. The
following lemma is also a corollary of Proposition 2.1 and Lemma 4.1, which we state
without proof.

)1/a) u oy — ) M

Lemma 4.2 Let X (t) (t > 0) be an a-s.s. Markov process in R% with transition function
(4.1). For given constants ¢ >b >0, r >0 and z € R% with |z| < r we have

bd
eXp<_ 1/ ) < Pz<|X(t)| <r for some b<t< c)
T o
o2 D) )
1 — exp(—(c — b)d/rl/*) rlja)
Now we state the main result of this section. An argument of Talagrand [22] makes

it possible for us to drop the “classical” monotonicity assumption on ¢ for this kind of
results.

(4.5)

Theorem 4.1 Let X (t) (t > 0) be an a-s.s. Markov Process in R with transition func-
tion (4.1). Consider a positive bounded function ¢ : Ry — R, such that t*¢(t) is

nondecreasing. Then P°-almost surely | X (t)| > t*¢(t) for all t large enough if and only
if

1 d )dt

— < 0

76 = [ g ma)

Proof of Sufficiency. Suppose that J(¢) < oo and, without loss of generality, t*¢(t) is
right continuous. Then similar to Lemma 3.1 of Talagrand [22], we have

lim ¢(t) =0 . (4.6)

t—00

We define an increasing sequence {t,} inductively as follows. Let ¢, > 1. Having defined
t,, we set

Un+1 = tn (1 + ¢(tn)1/a> (4'7)
Vni1 = inf{v S bt vR(v) > 196 (Hn) (1 + qu(tn)l/a)} , (4.8)

where L > 1 is a constant to be determined later, and define ¢,,1 = min{u, 1, vn11}-
Then by Lemma 3.2 of Talagrand [22],

lim ¢, = o0 . (4.9)

n—oo



For n > 1, consider the event
Ap = {IX(8)] <120(ta) (1 + Lo(tn)"/*) for some t, <t < tnir}.

Since, by (4.7), (4.6) and (4.9), for n large enough, t,.1/t, < 2, it follows from (2.4) and
(4.5) that

P(4,) < PO(\X(t)\ < $(ta)(1 + Lé(t,)%) for some 1§t§2)

< KeXp(_d)(tn)l/a(l -|-dL¢(tn)1/°‘)1/a)
< Kexp<—¢(#d)1/a) (4.10)

for n large enough. Suppose that we have proved

gexp(—ﬁ'glm) <oo, (4.11)

it follows from the Borel-Cantelli lemma that P%-almost surely for n large enough, say,
n > ng

inf | X(t)] > t%(ta) (1 + Lé(t,)"*) . (4.12)

tn <t<tn41

Thus for every t > t,, we can find n > ng such that ¢, < ¢ < t,41. Since t < v,41, by
(4.8) and (4.12) we have

£6(t) < tho(ta) (1 + Lo(tn) /7)) < [X ()] -
It remains to establish (4.11). We start with the following lemma.

Lemma 4.3 (i) Ifn is large enough and t,11 = tupi1 < Vpi1, then

exp (_ﬁd)l/a) < K/:Arl W exp (—qs(t;;ll/o)% ) (4.13)

where K > 0 s a constant depending on o only.

(i) We can choose L large such that if t,+1 = vn+1 and n large enough, we have

exp (‘Wd)wa) < %exp(—m'i)m) . (4.14)

Proof . (i) If tnsr = Uni1 < Uns1, then by (4.7) and (4.8) we have
tnpt — tn = tad(tn) '/ (4.15)
101 P(tns1) < 150 (tn) (1 + Lo(tn) ') . (4.16)

Since t*¢(t) is nondecreasing, we have

>

I

/tn+1 1 exp(— d >@> thy1 — tn exp(— tny1d )
o B p®)V) t T tnpag(tna) e tn(ta)t/e/



It follows from (4.6), (4.15) and (4.16) that for n large enough
b (tn)'/° ( d ) d
I, > exp{—d— ———— | > Kexp(—7> .
e AN VR ot

This proves (4.13).
(11) If tn_|_1 = Un+1, then

£ Otsn) = £20(tn) (L + Lo(ta) ") . (4.17)

Since t,, 11 < Up41, Wwe have

ln
t“ < 14 ¢(t,)Ve . (4.18)

It follows from (4.17) and (4.18) that for n large enough

w»(~s) > =gy =y - syt feee)

S
> 2exp (— W‘l)lﬁ)

for suitable chosen L(e. g. L = 2c). This proves (4.14).
To prove (4.11), we set J = {n : t,11 = Uns1 < Uny1}- Then by (4.13) we have
d
exp (—7) < 0. 4.19
2P\ 19

We denote the elements of J by n(j) (j > 1). Then for every k£ with n(j — 1) < k < n(j),
by (4.14) we have

e ( d ) <2k exp( d )
xpl ————— ) < _—.
S(tx)H® A(tn() "
S0 J 4
Y e[t Yool t )
n(j—1)<k<n(j) o(t)"/ (tn(s))"/
Combining (4.19) and (4.20) proves (4.11).
Now we proceed to prove the necessity of J(¢) < oo.
Lemma 4.4 We can assume that lim;_,, ¢(t) = 0.

Proof . If limsup,_, ., ¢(t) > 0, then there exists a sequence of positive numbers {t,}

such that
tn—|—1

tn
for some § > 0. Then by Lemma 4.2 we have

>2 and B(tn) > 6

> PO(IX(t)] <t2 for some t, <t <tny) =00,
n=1

Now the same proof as that of Theorem 3.1 yields P%-almost surely X (t,) < t%¢(t,)
infinitely often.



Lemma 4.5 Without loss of generality, we can further assume that t*¢(t) is continuous
and ¢(t) > (2loglogt)~.

Proof . Since t*¢(t) is non-decreasing and hence it only has countably many discontinu-
ities, we can define a continuous, non-decreasing function t*1(t) such that t*1(t) < t*¢(t)
and J (1) = co. The proof of the second part is very similar to the proof of Lemma 7 of
Takeuchi [19].

Lemma 4.6 Suppose that J(¢) = oo and the conditions in Lemmas 4.4 and 4.5 are
satisfied. Then there exists a sequence {t,} with the following properties:

g«lexp (_gb(#d)l/a =00 (4.21)

tnpr > to (14 @(t,)"9) (4.22)

and for n large enough
m<n = $(tn) < 2¢(tm) : (4.23)

B i

Proof . We construct a sequence {t¢,} inductively. Let ¢, = 1. Having defined ¢,, we
choose s, > t, such that

t n
sup{? it > tn} = ¢(5n) , (4.24)
(07 S,,O{
which is possible because of Lemma 4.4 and the continuity of ¢, and define
tn—l—l = Sn(l + ¢(3n)1/a) . (425)

Clearly (4.22) holds. To derive (4.23), we notice that by (4.24), for m <n
Blla) _ Blom )

4.26
ta  Sma1 ( )
Also 2 _1¢(sm_1) < t2d(t,) and 22 < 252 | for m large enough. Hence we have
) bt t
lonct) _ 1500t _ 49(tn) (1.27)
Sm—1 Sm1 tm

Combining (4.26) and (4.27) yields (4.23). In order to prove (4.21), it is enough to show

I, = /:H ¢(t;1/“ exp (—ﬁ%)% < Kexp (-W) . (4.28)

Sn tn
In:/ +/ — 1412
tn Sn

Then by the monotonicity of t*¢(t) and (4.25) we have

We write

12 tn—i—l — Sn
n

Spd
7e p—
= 50p(sn) 1/ Xp( tn+1¢<tn+1>1/a)

< Kexp(—m) : (4.29)




To estimate I}, we notice that by (4.24)

ta¢(5n) ‘

th <t<s, = o)<
5%

(4.30)

It follows from (4.30), the fact that x — ze™* is decreasing for z large and a change of
variable that

sn s Spd

B ] wgtayr i)
1 1 d
< |, watey i)

- Lol gl

< Kexp(—W) , (4.31)

where the last inequality follows from the monotonicity of t“¢(¢) and (4.25). By (4.29)
and (4.31) we obtain (4.28), and hence (4.21).

Even though the sequence {t,} constructed above increases to infinity, it may not
increase fast enough. So we need an extra procedure to obtain the appropriate sequence.

For each n, let £(n) be defined by

2k(n) < k(n)+1

1
~ o(ta)Ve

and let I = {n: k(n) = k}. Then by Lemma 4.4 each I is finite. For each k£ > 1, we
denote N, = exp(d2*~2).

Lemma 4.7 There exists a set J C N with the following properties:
d
> exp( l/a) = 00 (4.32)
neJ )

and for every pair m,n € J, m <n, such that
#(Ik(n) n [m, TL]) > Nk(n) (433)

where #A denotes the cardinality of A, we have
tn _
i > exp (exp(ko(”) 3)) . (4.34)

m

Proof . By the definition of k(n) we have

exp(—d2¥™M+1) < exp (— < exp(—d2FM) (4.35)

o(t O‘)
Given m, k € N, we define

Um,k = {Z <m: 1€ Ik, #(Ikﬂ [z,m)) < Nk} .



Then by (4.35)

Z exp(—qb(t%.;l/a) < Ny exp(—d2*) < eXp(_de(kfl))-

iEUm,k

Thus

> Y eo(-g0hm)

k>k(m)+3 i€Um i

< Y exp(—d2- )
k>k(m)+3

d ~ o
S exp <—W) Z exp (d2k( )+l d2 (k 1))

k>k(m)+3

< exp (-ﬁ) D exp (d2k( (2 — 1))

>1

<% p(—ﬁ'l)l/a) . (4.36)

We set
Vi = U Unk -

k>k(m)+3
Then (4.36) implies
Z Z Z eXp< d1/a) <3 Z Z exp( d)1/a) (4.37)
I<p mEl i€Vim I<p mel,
Now let -
J =N\ U Vin

We observe that if i € V,,,, then k(i) > k(m) + 3 and hence

( ) (U fz) c U Vi
I<p m)<p
Thus by (4.37) we have

3., (aa)

i¢Jk(i)<p

IN

s = eo(~gm)
- exp( —————) .
24 o(t:)1/

IA

P

This implies

v

% > exp(—qj(%‘;l/a) .

k(i)<p

> exp (—W)

i€ k(1) <p

Letting p — oo, we get (4.32).
Now we prove (4.34). Consider m,n € J, m < n and denote k£ = k(n). By (4.25) for
each 7 € I, we have
tir > (14 o)) > t;(1+27F1) .



Thus, when (4.33) holds, we see that for m, hence k, large enough

TS

m

Proof of Necessity of Theorem 4.1. For each n € J, let
A, ={IX ()| <t5p(t,) for some t, <t <tn,i1} .

Then by Lemma 4.2 we have

P°(An) > exp (—W) ,

and by (4.32)
> P'(4,) =cc. (4.38)

neJ

It remains to verify that conditions (ii) and (iii) of Lemma 3.2 are satisfied. Since the
verification of condition (ii) is the same as in the proof of Theorem 3.1, we will omit it.
To verify condition (iii), we set

J={neJ: ty <ty <2ni}
and for each £ > 1, let
Je={neJNI: t, > 2ty and #(pN[m,n]) < N} .
Finally we set

7r=an(ru U %)

k=1

It is sufficient to prove the following: for every m € J

> P'(An N A4,) < KP(Ay) (4.39)
S P4, N Ay) < KP(A,) (4.40)

and
3 PY(A,NA,) < KP(A,)P(A,) . (4.41)

To prove (4.39), we notice, by (4.23), that for n € J' with t,, < t,, < 2t,;,,41 we have
tﬁﬁb(tn) S 22a+1t$n+1¢(tm+1) . (442)
It follows from (4.22) that

tn — tmer > (0 —m — D1 d(tmgr) V. (4.43)



Hence by (3.11), (4.5), (4.42) and (4.43), we have

(tn - tm—}—l)d
PY(AnNA,) < KgP%(Ap)exp (_W>

< KgP'A,)exp(—(n—m —1)/K) .
This implies (4.39) immediately.
Suppose now t,, > 2t;,11, then

(tn - tm—l—l)d
P(A,NA,;) < KgP°(Ay)exp (_W)

d
< °(A4,, (—7)
< KgP"(A,,)exp YIUNIE
Thus

k
> P(AnnA4,) < KNkPO(Am)eXp<_M)

neJy, 2
< KP°A,,)exp(—d2¥)

and (4.40) follows.
For every n € J", we denote k = k(n) and &' = k(m). Since n ¢ J we have

#(Ik N [m7 TL]) > Nk:
and hence (4.34) holds. Thus

(tn - tm—l—l)d
PY(AnNA,) < KgP’(Ap)exp (—W)

KPO(Am)PO(An) eXp<th?Z:)Cf/a>
K P"(A4,) P°(A,) exp (exp(— exp(2k))2k+1d>
< KP°A,)P°4,) .

This proves (4.41) and hence Theorem 4.1.
As an immediate corollary, we have the following Chung type law of iterated logarithm.

IN

IN

Theorem 4.2 Let X(t) (t > 0) be an a-s.s. Markov process in R with transition func-
tion (4.1). Then P°-almost surely

lim inf —|X(t)| =
t—oo t*/(loglogt)®

An application of Theorem 4.1 is to recover and improve the following result of Khosh-
nevisan [10] and Knight [12] for the lower class of the maximum of Brownian motion
normalized by its local time at 0.

Let B(t) (¢t > 0) be a real-valued Brownian motion starting from 0. We denote

M(t) = max B(s)

and [(t) the local time of B(t) at the level 0.



Corollary 4.1 Consider a positive bounded function ¢ : Ry — R, such that té(t) is
nondecreasing. Then P°-almost surely M(t) > 1(t)¢(l(t)) for all t large enough if and

only if
o ] . ( 1 )dt<
——exp|{———~ | — < 0.
L)\ 6
In particular,
logl
lim inf 2810810 yroy

Proof . Let d = 1 and o = 1 in Theorem 4.1, then X(¢) is the canonical extremal
process. It follows from Theorem 2.1 in Watanabe [27] that

(M7 (), P7) £ (X (), P7)

where [71(t) is the right continuous inverse function of I(¢). Hence Corollary 4.1 follows
immediately from Theorem 4.1.

REMARK With a little more effort, similar results can be proved for a symmetric 1/a-
stable Lévy process with @ € (1,2]. See Khoshnevisan [11] for more general results using
a different approach.

Acknowledgment I am indebted to Luqin Liu and D. Khoshnevisan for very stimu-
lating conversations.
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