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Université Lille 1

Dongsheng Wu ∗

University of Alabama in Huntsville

Yimin Xiao †

Michigan State University

March 30, 2007

Abstract

Let BH = {BH(t), t ∈ RN
+} be an (N, d)-fractional Brownian sheet with index

H = (H1, . . . ,HN ) ∈ (0, 1)N defined by BH(t) = (BH
1 (t), . . . , BH

d (t)), (t ∈ RN
+ ), where

BH
1 , . . . , BH

d are independent copies of a real-valued fractional Brownian sheet BH
0 . We

prove that if d <
∑N

`=1 H−1
` , then the local times of BH are jointly continuous. This

verifies a conjecture of Xiao and Zhang (2002).
We also establish sharp local and global Hölder conditions for the local times of BH .

These results are applied to study analytic and geometric properties of the sample paths
of BH .

Résumé

Désignons par BH = {BH(t), t ∈ RN
+} le (N, d)-drap Brownien fractionnaire de paramètre

H = (H1, . . . ,HN ) ∈ (0, 1)N défini par BH(t) = (BH
1 (t), . . . , BH

d (t)), (t ∈ RN
+ ), où

BH
1 , . . . , BH

d sont des copies indépendantes du drap Brownien fractionnaire à valeurs
réelles BH

0 . Nous montrons que le temps local de BH est bicontinu lorsque d <
∑N

`=1 H−1
` .

Cela résout une conjecture de Xiao et Zhang (2002). Nous obtenons aussi des résultats fins
concernant la régularité Hölderienne, locale et globale, du temps local. Ces résultats nous
permettent d’étudier certaines propriétés analytiques et géométriques des trajectoires de
BH .
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1 Introduction

For a given vector H = (H1, . . . ,HN ) ∈ (0, 1)N , a real-valued fractional Brownian sheet
BH

0 = {BH
0 (t), t ∈ RN

+} with index H is a centered Gaussian random field with covariance
function given by

E
[
BH

0 (s)BH
0 (t)

]
=

N∏

`=1

1
2

(
s2H`
` + t2H`

` − |s` − t`|2H`

)
, s, t ∈ RN

+ . (1.1)

It follows from (1.1) that BH
0 (t) = 0 a.s. for every t ∈ ∂RN

+ , where ∂RN
+ denotes the boundary

of RN
+ .
We will make use of the following stochastic integral representation of BH

0 [cf. Ayache,
et al. (2002)]:

BH
0 (t) = κ−1

H

∫ t1

−∞
· · ·

∫ tN

−∞

N∏

`=1

gH`
(t`, s`)W (ds), (1.2)

where W = {W (s), s ∈ RN} is a standard real-valued Brownian sheet and where, for every
` = 1, . . . , N ,

gH`
(t`, s`) =

(
(t` − s`)+

)H`− 1
2 − (

(−s`)+
)H`− 1

2 .

In the above, a+ = max{a, 0} for all a ∈ R and κH is the normalization constant given by

κ2
H =

∫ 1

−∞
· · ·

∫ 1

−∞

[ N∏

`=1

gH`
(1, s`)

]2

ds.

Note that if H`0 = 1/2 for some `0, then we assume that gH`0
(t`0 , s`0) = 1l[0,t`0 ](s`0), where

1l[0,t`0 ] is the indicator of the interval [0, t`0 ].
Let BH

1 , . . . , BH
d be d independent copies of BH

0 . Then the Gaussian random field BH =
{BH(t) : t ∈ RN

+} with values in Rd defined by

BH(t) =
(
BH

1 (t), . . . , BH
d (t)

)
, ∀ t ∈ RN

+ (1.3)

is called an (N, d)-fractional Brownian sheet with index H = (H1, . . . ,HN ).
Note that if N = 1, then BH is a fractional Brownian motion in Rd with Hurst index H1 ∈

(0, 1); if N > 1 and H1 = · · · = HN = 1/2, then BH is the (N, d)-Brownian sheet. However,
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when H1, . . . , HN are not the same, BH is anisotropic and has the following operator-self-
similarity [This can be verified easily using (1.1)]: For any N ×N diagonal matrix A = (aij)
with aii = ai > 0 for all 1 ≤ i ≤ N and aij = 0 if i 6= j, we have

{
BH(At), t ∈ RN

+

} d=
{ N∏

j=1

a
Hj

j BH(t), t ∈ RN
+

}
, (1.4)

where X
d= Y means that the two processes have the same finite dimensional distributions.

These features of BH make it a possible model for bone structure [Bonami and Estrade
(2003)] and aquifer structure in hydrology [Benson et al. (2006)].

Many authors have studied various properties of fractional Brownian sheets. See, for
example, Dunker (2000), Mason and Shi (2001), Øksendal and Zhang (2000), Xiao and
Zhang (2002), Ayache and Xiao (2005), Wu and Xiao (2007) and the references therein for
further information. This paper is concerned with regularity of the local times of an (N, d)-
fractional Brownian sheet BH . After having proved that a necessary and sufficient condition
for the existence of L2(P × λd) local times of BH is d <

∑N
`=1

1
H`

, Xiao and Zhang (2002)
give a sufficient condition for the joint continuity of the local times. However, their sufficient
condition is not sharp and they have conjectured that BH has jointly continuous local times
whenever the condition d <

∑N
`=1

1
H`

is satisfied. The main objective of this paper is to verify
this conjecture; see Theorem 3.1. The new ingredients for proving this result is the property
of sectorial local nondeterminism of BH

0 established in Wu and Xiao (2007) [see Lemma 3.2
below] and a similar result for the fractional Liouville sheet proved in Section 2. The results
and techniques developed in this paper are applicable to more general anisotropic Gaussian
random fields with the property of sectorial local nondeterminism; see Xiao (2007) for further
development.

The rest of this paper is organized as follows. In Section 2, we prove some basic results
on the fractional Liouville sheets that will be useful to our arguments. In Section 3, we
prove that the sufficient condition for the existence of L2(P× λd) local times of BH in Xiao
and Zhang (2002) actually implies the joint continuity of the local times. This verifies their
conjecture in Remark 4.11. Section 4 is on the local and uniform Hölder conditions for the
local times and their implications to sample path properties of BH . In particular, we derive
some results on the Hausdorff measure of the level sets and on the Chung-type law of the
iterated logarithm for the sample function BH(t). The latter improves Theorem 3 of Ayache
and Xiao (2005).

We end the Introduction with some notation. Throughout this paper, the underlying
parameter space is RN or RN

+ = [0,∞)N . A parameter t ∈ RN is written as t = (t1, . . . , tN ),
or as 〈c〉, if t1 = · · · = tN = c. For any s, t ∈ RN such that sj < tj (j = 1, . . . , N), we define
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the closed interval (or rectangle) [s, t] =
∏N

j=1 [sj , tj ]. We will let A denote the class of all
closed intervals I ⊂ (0,∞)N . We always write λm for Lebesgue’s measure on Rm, and use
〈·, ·〉 and |·| to denote the ordinary scalar product and the Euclidean norm in Rm respectively,
no matter the value of the integer m.

An unspecified positive and finite constant will be denoted by c, which may not be the
same in each occurrence. More specific constants in Section i are numbered as ci,1 , ci,2 , . . ..

2 Fractional Liouville Sheet

One of the main obstacles in studying the local times and other properties of fractional
Brownian sheets is their complicated dependence structure. Unlike the Brownian sheet or
fractional Brownian motion, fractional Brownian sheets have neither the property of inde-
pendent increments nor the local nondeterminism.

To be more specific, we recall that fractional Brownian motion Zα = {Zα(t), t ∈ RN}
(0 < α < 1) in R has the following property of strong local nondeterminism proved by Pitt
(1978): For every interval I ⊆ RN , there exist positive constants c2,1 and r0 such that for all
t ∈ I and all 0 < r ≤ min{|t|, r0},

Var
(
Zα(t)|Zα(s) : s ∈ I, r ≤ |s− t| ≤ r0

) ≥ c2,1 r2α. (2.1)

This property has played important rôles in studying the local times and many other prop-
erties of Zα; see Xiao (2006) and the references therein for more information. On the other
hand, it is known that the Brownian sheet W = {W (t), t ∈ RN

+} does not have the prop-
erty of local nondeterminism. In order to see this, we consider the Brownian sheet with
N = 2 and I = [0, 1]2. For any constant ε ∈ (0, 1), let T ⊆ I be an interval with side-
length ε. Let t denote the upper-right vertex of T and let s1, s2, s3 be other vertices of
T . For example, t = (1, 1), s1 = (1 − ε, 1), s2 = (1, 1 − ε) and s3 = (1 − ε, 1 − ε). Then
|t − sj | ≥ ε for j = 1, 2, 3. Considering the increment of W over the square T , we see that
Var

(
W (t)|W (s1),W (s2),W (s3)

) ≤ ε2. Hence the Brownian sheet W does not satisfy (2.1)
[This also proves that the fractional Brownian sheet BH

0 is not locally nondeterministic].
This is the main reason why, in most literature, the methods for studying various proper-
ties of the Brownian sheet are different from those for fractional Brownian motion. The
property of independent increments of W has been crucial in studying the local times and
self-intersection local times of W ; see Ehm (1981), Rosen (1984) and Mountford (1989). In
solving an open problem in Mountford (1989), Khoshnevisan and Xiao (2007) showed that
W satisfies a type of sectorial local nondeterminism and applied this property to study geo-
metric properties of the Brownian sheet by using methods that are reminiscent to those for
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fractional Brownian motion; see Khoshnevisan, Wu and Xiao (2006) for further applications
of the sectorial local nondeterminism. Recently, Wu and Xiao (2007) have extended several
results in Khoshnevisan and Xiao (2007), Khoshnevisan, Wu and Xiao (2006) to fractional
Brownian sheets.

In this paper we continue the above line of research and study the regularity of the local
times of fractional Brownian sheets. To overcome the difficulty due to the lack of local
nondeterminism of BH , we will not only make use of the sectorial local nondeterministic
property of BH established in Wu and Xiao (2007) [see Lemma 3.2 below], but also the
analogous properties of the so-called fractional Liouville sheet.

Given any vector α = (α1, . . . , αN ) ∈ (0,∞)N , the centered Gaussian random field Xα
0 =

{Xα
0 (t), t ∈ RN

+} defined by

Xα
0 (t) =

∫

[0, t]

N∏

`=1

(t` − s`)α`− 1
2 W (ds), t ∈ RN

+ (2.2)

is called a fractional Liouville sheet with parameter α. It is easy to see that, when α1, . . . , αN

are not the same, Xα
0 = {Xα

0 (t) : t ∈ RN
+} is an anisotropic Gaussian field which has the

same operator self-similarity as in (1.4).
For the purpose of this paper, we will only be interested in the case α = H ∈ (0, 1)N . It

follows from (1.2) that for every t ∈ RN
+ ,

BH
0 (t) = κ−1

H XH
0 (t) + κ−1

H

∫

(−∞,t]\[0, t]

N∏

`=1

gH`
(t`, s`)W (ds), (2.3)

and the two processes on the right-hand side of (2.3) are independent. We will show that in
studying the regularity properties of the local times of BH , the Liouville sheet XH

0 plays a
crucial role and the second process in (2.3) can be neglected. More precisely, we will make
use of the following property: For all integers n ≥ 2, t1, . . . , tn ∈ RN

+ and u1, . . . , un ∈ R, we
have

Var
( n∑

j=1

ujB
H
0 (tj)

)
≥ κ−2

H Var
( n∑

j=1

uj XH
0 (tj)

)
. (2.4)

Here and in the sequel, Var(ξ) denotes the variance of the random variable ξ.
Next we use an argument in Ayache and Xiao (2005) to provide a useful decomposition

for XH
0 (t). Let ε > 0 be fixed. For every t ∈ [ε,∞)N , we decompose the rectangle [0, t] into

the following disjoint union of sub-rectangles:

[0, t] = [0, ε]N ∪
N⋃

`=1

R`(t) ∪∆(ε, t), (2.5)
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where R`(t) := R`(ε, t) = {r ∈ [0, t]N : 0 ≤ ri ≤ ε if i 6= `, ε < r` ≤ t`} and ∆(ε, t) can be
written as a union of 2N − N − 1 sub-rectangles of [0, t]. Denote the integrand in (2.2) by
g(t, r). It follows from (2.5) that for every t ∈ [ε,∞)N ,

XH
0 (t) =

∫

[0,ε]N
g(t, r)W (dr) +

N∑

`=1

∫

R`(t)
g(t, r)W (dr) +

∫

∆(ε,t)
g(t, r)W (dr)

:= X(ε, t) +
N∑

`=1

Y`(t) + Z(ε, t). (2.6)

Since {X(ε, t), t ∈ [ε,∞)N}, {Y`(t), t ∈ [ε,∞)N} (1 ≤ ` ≤ N) and {Z(ε, t), t ∈ [ε,∞)N} are
defined by the stochastic integrals w.r.t. W over disjoint sets, they are independent Gaussian
random fields.

The following lemma shows that every process Y`(t) has the property of strong local
nondeterminism along the `th direction. It will be essential to our proofs.

Lemma 2.1 Let ` ∈ {1, 2, . . . , N} and let I = [a, b] ∈ A be a fixed interval. For any integer
n ≥ 2, t1, . . . , tn ∈ [a, b] such that

t1` ≤ t2` ≤ · · · ≤ tn` ,

the following inequality for the conditional variance holds:

Var
(
Y`(tn)

∣∣∣Y`(tj) : 1 ≤ j ≤ n− 1
)
≥ c2,2 |tn` − tn−1

` |2H` , (2.7)

where c2,2 > 0 is a constant depending on ε, I and H only.

Proof Working in the Hilbert space setting, the conditional variance in (2.7) is the square of
the L2(P)-distance of Y`(tn) from the subspace generated by Y`(tj) (1 ≤ j ≤ n− 1). Hence it
is sufficient to show that there exists a constant c2,2 such that for all aj ∈ R (j = 1, . . . , n−1),

E
(

Y`(tn)−
n−1∑

j=1

ajY`(tj)
)2

≥ c2,2 |tn` − tn−1
` |2H` . (2.8)

However, by splitting R`(tn) into two disjoint parts and using the independence, we derive
that

E
(

Y`(tn)−
n−1∑

j=1

ajY`(tj)
)2

≥ E
(∫

R`(tn)\R`(tn−1)
g(tn, r) W (dr)

)2

=
∫ ε

0
· · ·

∫ tn`

tn−1
`

· · ·
∫ ε

0

N∏

k=1

(tnk − rk)2Hk−1 dr

≥ c2,2 |tn` − tn−1
` |2H` .

(2.9)
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This proves (2.8) and hence Lemma 2.1. ¤

The following lemma relates the fractional Brownian sheet BH
0 to the independent Gaussian

random fields Y` (` = 1, . . . , N).

Lemma 2.2 Let I = [a, b] ∈ A be a fixed interval. For every integer n ≥ 2, t1, . . . , tn ∈ [a, b]
and u1, . . . , un ∈ R, we have

Var
( n∑

j=1

ujB
H
0 (tj)

)
≥ κ−2

H

N∑

`=1

Var
( n∑

j=1

ujY`(tj)
)

. (2.10)

Moreover, for every k ∈ {1, . . . , N} and positive numbers p1, . . . , pk ≥ 1 satisfying
∑k

`=1 p−1
`

= 1, we have

1
[detCov(BH

0 (t1), . . . , BH
0 (tn))]1/2

≤
k∏

`=1

cn
2,3

[detCov(Y`(t1), . . . , Y`(tn))]1/(2p`)
, (2.11)

where detCov(Z1, · · · , Zn) denotes the determinant of the covariance matrix of the Gaussian
random vector (Z1, . . . , Zn).

Proof The inequality (2.10) follows directly from (2.4), (2.6) and the independence of Y`

(` = 1, . . . , N). To prove (2.11), we note that for any positive definite n× n matrix Γ,
∫

Rn

[det(Γ)]1/2

(2π)n/2
exp

(
− 1

2
x′Γx

)
dx = 1. (2.12)

It follows from (2.12), (2.10) and the generalized Hölder inequality [see, e.g., Hardy (1934),
p.140] that

1
[detCov(BH

0 (t1), . . . , BH
0 (tn))]1/2

=
1

(2π)n/2

∫

Rn

exp
[
− 1

2
Var

( n∑

j=1

ujB
H
0 (tj)

)]
du1 · · · dun

≤ 1
(2π)n/2

∫

Rn

exp
[
− c

N∑

`=1

Var
( n∑

j=1

ujY`(tj)
)]

du1 · · · dun

≤ 1
(2π)n/2

k∏

`=1





∫

Rn

exp
[
− c Var

( n∑

j=1

ujY`(tj)
)]

du1 · · · dun





1/p`

≤
k∏

`=1

cn
2,4

[detCov(Y`(t1), . . . , Y`(tn))]1/(2p`)
.

(2.13)

This yields (2.11) and the lemma is proved. ¤
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3 Joint Continuity of the Local Times

We start by briefly recalling some aspects of the theory of local times. For excellent surveys
on local times of random and deterministic vector fields, we refer to Geman and Horowitz
(1980) and Dozzi (2002).

Let X(t) be a Borel vector field on RN with values in Rd. For any Borel set T ⊆ RN , the
occupation measure of X on T is defined as the following measure on Rd:

µT (•) = λN

{
t ∈ T : X(t) ∈ •}.

If µT is absolutely continuous with respect to λd, we say that X(t) has local times on T ,
and define its local times, L(•, T ), as the Radon–Nikodým derivative of µT with respect to
λd, i.e.,

L(x, T ) =
dµT

dλd
(x), ∀x ∈ Rd.

In the above, x is the so-called space variable, and T is the time variable of the local times.
Sometimes, we write L(x, t) in place of L(x, [0, t]). Note that if X has local times on T then
for every Borel set S ⊆ T , L(x, S) also exists.

By standard martingale and monotone class arguments, one can deduce that the local
times have a version, still denoted by L(x, T ), such that it is a kernel in the following sense:

(i). For each fixed S ∈ B(T ), where B(T ) is the family of Borel subsets of T , the function
x 7→ L(x, S) is Borel measurable in x ∈ Rd.

(ii). For every x ∈ Rd, L(x, ·) is Borel measure on B(T ).

Moreover, L(x, T ) satisfies the following occupation density formula: For every Borel set
T ⊆ RN , and for every measurable function f : Rd → R+,

∫

T
f(X(t)) dt =

∫

Rd

f(x)L(x, T ) dx. (3.1)

See Theorems 6.3 and 6.4 in Geman and Horowitz (1980).
Suppose we fix a rectangle I =

∏N
i=1[ai, ai + hi] in A. Then, whenever we can choose a

version of the local time, still denoted by L(x,
∏N

i=1[ai, ai + ti]), such that it is a continuous
function of (x, t1, · · · , tN ) ∈ Rd×∏N

i=1[0, hi], X is said to have a jointly continuous local time
on I. When a local time is jointly continuous, L(x, •) can be extended to be a finite Borel
measure supported on the level set

X−1(x) ∩ I = {t ∈ I : X(t) = x}; (3.2)
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see Adler (1981) for details. In other words, local times often act as a natural measure on
the level sets of X. As such, they are useful in studying the various fractal properties of level
sets and inverse images of the vector field X. In this regard, we refer to Berman (1972), Ehm
(1981), Rosen (1984) and Xiao (1997).

Berman (1969–1973) developed Fourier analytic methods for studying the existence and
regularity of the local times of Gaussian processes. His methods were extended by Pitt (1978)
and Geman and Horowitz (1980) to Gaussian random fields. Let X = {X(t), t ∈ RN} be
a Gaussian random field with values in Rd. It follows from (25.5) and (25.7) in Geman
and Horowitz (1980) [see also Geman, Horowitz and Rosen (1984), Pitt (1978)] that for all
x, y ∈ Rd, T ∈ A and all integers n ≥ 1,

E
[
L(x, T )n

]
= (2π)−nd

∫

T n

∫

Rnd

exp
(
− i

n∑

j=1

〈uj , x〉
)

×E exp
(

i

n∑

j=1

〈uj , X(tj)〉
)

du dt (3.3)

and for all even integers n ≥ 2,

E
[
(L(x, T )− L(y, T ))n

]
=(2π)−nd

∫

T n

∫

Rnd

n∏

j=1

[
e−i〈uj ,x〉 − e−i〈uj ,y〉

]

× E exp
(

i

n∑

j=1

〈uj , X(tj)〉
)

du dt,

(3.4)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ T ⊂ (0,∞)N . In the
coordinate notation we then write uj = (uj

1, . . . , u
j
d). These identities are also very useful for

studying the local times of infinitely divisible random fields as well; see Ehm (1981), Dozzi
(2002), and Khoshnevisan, Xiao and Zhong (2003).

Xiao and Zhang (2002) have proved that if d <
∑N

`=1
1

H`
, then for all intervals I ∈ A, BH

has local times {L(x, I), x ∈ Rd} on I and L(·, I) ∈ L2(P× λd). In the following, we prove
that under the same condition, the local time has a version that is jointly continuous in both
space and time variables.

Theorem 3.1 Let BH = {BH(t), t ∈ RN
+} be a fractional Brownian sheet in Rd with index

H = (H1, . . . , HN ) ∈ (0, 1)N . If d <
∑N

`=1
1

H`
, then for all intervals I ∈ A, BH has a jointly

continuous local time on I almost surely.

To prove Theorem 3.1 we will, similar to Ehm (1981), Xiao (1997), Xiao and Zhang (2002),
first use the Fourier analytic arguments to derive estimates on the moments of the local times
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[see Lemmas 3.7 and 3.10 below] and then apply a multiparameter version of Kolmogorov
continuity theorem [cf. Khoshnevisan (2002)]. The new ingredients in this paper are the
“sectorial local nondeterministic” properties of fractional Brownian sheets proved in Wu and
Xiao (2007) and the results on fractional Liouville sheets proved in Section 2.

We will also make use of the following lemmas. Among them, Lemma 3.2 is proved in
Wu and Xiao (2007) and Lemma 3.3 is essentially due to Cuzick and DuPreez (1982) [see
also Khoshnevisan and Xiao (2007)].

Lemma 3.2 Let BH
0 = {BH

0 (t), t ∈ RN
+} be a fractional Brownian sheet in R with index

H = (H1, . . . , HN ) ∈ (0, 1)N . Then for every ε > 0, there is a constant c3,1 > 0 such that for
all integers n ≥ 2, t1, . . . , tn ∈ [ε,∞)N ,

Var
(
BH

0 (tn)
∣∣∣BH

0 (tj), j 6= n
)
≥ c3,1

N∑

`=1

min
{
|tn` − tj` |2H` , 0 ≤ j ≤ n− 1

}
, (3.5)

where t0` = 0 for ` = 1, . . . , N .

Lemma 3.3 Let Z1, . . . , Zn be mean zero Gaussian variables which are linearly independent,
then for any nonnegative function g : R→ R+,

∫

Rn

g(v1) exp
[
−1

2
Var

( n∑

j=1

vjZj

)]
dv1 · · · dvn

=
(2π)(n−1)/2

(detCov(Z1, · · · , Zn))1/2

∫ ∞

−∞
g
( v

σ1

)
e−v2/2 dv,

where σ2
1 = Var(Z1|Z2, . . . , Zn) is the conditional variance of Z1 given Z2, . . . , Zn.

The following technical lemma is essential in establishing the moment estimates for the
local times L(x, T ). Since it may be of independent interest, we state it in a more general
form than is needed in this paper.

Lemma 3.4 For any q ∈ [
0,

∑N
`=1 H−1

`

)
, let τ ∈ {1, . . . , N} be the integer such that

τ−1∑

`=1

1
H`

≤ q <

τ∑

`=1

1
H`

(3.6)

with the convention that
∑0

`=1
1

H`
:= 0. Then there exists a positive constant δτ ≤ 1 depending

on (H1, . . . , HN ) only such that for every δ ∈ (0, δτ ), we can find τ real numbers p` ≥ 1
(1 ≤ ` ≤ τ) satisfying the following properties:

τ∑

`=1

1
p`

= 1,
H` q

p`
< 1, ∀ ` = 1, . . . , τ (3.7)
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and

(1− δ)
τ∑

`=1

H` q

p`
≤ Hτ q + τ −

τ∑

`=1

Hτ

H`
. (3.8)

Furthermore, if we denote ατ :=
∑τ

`=1
1

H`
− q > 0, then for any positive number ρ ∈ (

0, ατ
2τ

)
,

there exists an index `0 ∈ {1, . . . , τ} such that

H`0q

p`0

+ 2H`0ρ < 1. (3.9)

Remark 3.5 It is important to note that the choice of the numbers p` ≥ 1 (1 ≤ ` ≤ τ)
depends on δ. Moreover, it follows from the proof below that, except for the case of τ = 2,
we can always take δτ = 1. ¤

Proof First we prove (3.7) and (3.8). If (3.6) holds for τ = 1, then for all 0 < δ < δ1 := 1,
we can take p1 = 1 and both (3.7) and (3.8) hold automatically.

We now prove the cases of τ ≥ 2 by induction. Our proof provides a general procedure
for constructing a sequence {p`, 1 ≤ ` ≤ τ} of real numbers p` ≥ 1 satisfying (3.7) and (3.8)
[there are many possible choices].

Assume that (3.6) holds for τ = 2. We distinguish two cases: (i) H1 = H2 and (ii)
H1 6= H2. In the first case, we have H1

−1 ≤ q < 2H1
−1. We choose η > 0 such that

0 < η <
(2−H1 q)H1 q

H1 q − 1

[if H1q = 1, then η > 0 can be arbitrarily chosen] and define

1
p1

=
1

H1 q + η
and

1
p2

= 1− 1
p1

.

Then a few lines of calculation verify that p1 and p2 satisfy (3.7) and (3.8) for all δ ∈ (0, 1).
To consider the case (ii) we may and will assume, without loss of generality, that H1 < H2.

Since q < H−1
1 + H−1

2 , there exists δ2 > 0 such that for all δ ∈ (0, δ2),

H1 H2 q (H2 −H1 + δH1) < (H2 −H1)(H2 + H1 − δH1). (3.10)

For each fixed δ ∈ (0, δ2), we define

1
p1

=
1

1− δ
· 1
H1 q

− δ

1− δ
· H2

H2 −H1
and

1
p2

= 1− 1
p1

.

Then (3.7) follows from (3.6) and (3.10), and the equality sign in (3.8) holds.
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Now we assume that the properties (3.7) and (3.8) hold for τ = n ∈ {2, . . . , N − 1} and
consider the case of τ = n + 1. Then we have

n∑

`=2

1
H`

≤ q − 1
H1

<
n+1∑

`=2

1
H`

. (3.11)

Let δ ∈ (0, 1) be fixed and we choose δ ′ ∈ (0, δ ∧ δn). Then it follows from (3.11) and the
induction hypothesis that there exist n constants p`

′ ≥ 1 (` = 2, . . . , n + 1) such that

n+1∑

`=2

1
p`
′ = 1,

(q − 1
H1

) H`

p`
′ < 1, ∀ ` = 2, . . . , n + 1 (3.12)

and

(1− δ ′)
n+1∑

`=2

H` (q − 1
H1

)
p`
′ ≤ Hn+1

(
q − 1

H1

)
+ n−

n+1∑

`=2

Hn+1

H`
. (3.13)

To define the constants p1, . . . , pn+1 with the desired properties, we choose a constant
η > 0 small so that

H`q

p`
′
(
1− 1

H1q
+ η

)
< 1, ∀ ` = 2, . . . , n + 1 (3.14)

and
(1− δ)

(
1 + H1 q η

H1 q−1

)

1− δ′
≤ 1. (3.15)

This is possible because of (3.12).
Now we define p` (1 ≤ ` ≤ n + 1) by

1
p`

=
1

p`
′
(
1− 1

H1q
+ η

)
, ∀ ` = 2, . . . , n + 1 (3.16)

and
1
p1

=
1

H1q
− η. (3.17)

It follows from this definition and (3.14) that

n+1∑

`=1

1
p`

= 1 and
H` q

p`
< 1, ∀ ` = 1, 2, . . . , n + 1. (3.18)

That is, (3.7) holds for τ = n + 1. On the other hand, by some elementary calculation and
(3.15) we can verify that

(1− δ)
n+1∑

`=1

H` q

p`
≤ Hn+1 q + (n + 1)−

n+1∑

`=1

Hn+1

H`
. (3.19)
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That is, (3.8) also holds for τ = n + 1. Hence the proof of (3.7) and (3.8) is completed.
Finally we prove (3.9). By (3.7), for every ` ∈ {1, . . . , τ}, ∃ ε` ∈ (0, 1) such that H` q

p`
=

1− ε`. Hence,
τ∑

`=1

ε`

H`
=

τ∑

`=1

1
H`

−
τ∑

`=1

q

p`
=

τ∑

`=1

1
H`

− q = ατ > 0. (3.20)

Hence there exists `0 ∈ {1, . . . , τ} such that ε`0 ≥
H`0

ατ

τ . Note that for every positive number
ρ ∈ (

0, ατ
2τ

)
, we have 2H`0ρ <

H`0
ατ

τ ≤ ε`0 . Therefore

H`0 q

p`0

+ 2H`0ρ = 1− ε`0 + 2H`0ρ < 1, (3.21)

which completes the proof of (3.9). ¤

The following inequalities (3.22) and (3.23) with a = 0 are well-known; see, e.g., Ehm
(1981). The case a > 0 makes it possible for us to apply Lemma 3.4 for proving Lemmas 3.7
and 3.10 below.

Lemma 3.6 For all integers n ≥ 1, positive numbers a, r, 0 < bj < 1 and an arbitrary
s0 ∈ [0, a/2],

∫

a≤s1≤···≤sn≤a+r

n∏

j=1

(sj − sj−1)−bj ds1 · · · dsn ≤ cn
3,2

(n!)
1
n

Pn
j=1 bj−1rn−Pn

j=2 bj , (3.22)

where c3,2 > 0 is a constant depending on a and bj’s only. In particular, if bj = α for all
j = 1, . . . , n, then

∫

a≤s1≤···≤sn≤a+r

n∏

j=1

(sj − sj−1)−α ds1 · · · dsn ≤ cn
3,2

(n!)α−1 rn(1−(1− 1
n

)α). (3.23)

Proof For simplicity, we only give the proof of (3.23) here. The proof of (3.22) is al-
most identical, and thus omitted. By integrating the integral in (3.23) in the order of
dsn, dsn−1, · · · , ds1, and by using a change of variable in each step to construct Beta functions,
we derive

∫

a≤s1≤···≤sn≤a+r

n∏

j=1

(sj − sj−1)−α ds1 · · · dsn

=
1

1− α
· Γ(2− α) [Γ(1− α)]n−2

Γ
(
1 + (n− 1)(1− α)

)
∫ a+r

a
(a + r − s1)(n−1)(1−α)(s1 − s0)−α ds1.

(3.24)

The inequality (3.23) follows from (3.24) and the Stirling’s formula. ¤
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In the rest of this section, we assume that d <
∑N

`=1
1

H`
and I ∈ A is a fixed interval. For

convenience, we further assume in the rest of this paper that

0 < H1 ≤ . . . ≤ HN < 1. (3.25)

We proceed to establish the moment estimates for the local times L(x, T ) which will be
useful for proving the joint continuity of local times.

Lemma 3.7 Let BH = {BH(t), t ∈ RN
+} be a fractional Brownian sheet in Rd with index

H = (H1, . . . , HN ). If for some integer τ ∈ {1, . . . , N} we have
τ−1∑

`=1

1
H`

≤ d <
τ∑

`=1

1
H`

, (3.26)

then there exists a positive and finite constant c3,3, depending on N, d, H and I only, such
that for all intervals T = [a, a + 〈r〉] ⊆ I with edge-length r ∈ (0, 1), all x ∈ Rd and all
integers n ≥ 1,

E
[
L(x, T )n

] ≤ cn
3,3

(n!)N−βτ rn βτ , (3.27)

where βτ = N − τ −Hτd +
∑τ

`=1 Hτ/H`.

Remark 3.8 As we mentioned earlier, the local time L(x, •) may be extended as a random
Borel measure supported on the level set Γx = {t ∈ (0,∞)N : BH(t) = x}. Hence the
moment estimate (3.27) contains a lot of information about the fractal properties of Γx. By
Theorem 5 of Ayache and Xiao (2005), the Hausdorff dimension of the level set is given by

dimHΓx = min
{

N − k −Hkd +
k∑

`=1

Hk

H`
, 1 ≤ k ≤ N

}
, (3.28)

and the minimum is achieved by βτ = N − τ −Hτd +
∑τ

`=1 Hτ/H`, where τ satisfies (3.26).
It is important to note that (3.27) is sharp and can be applied to strengthen the Hausdorff
dimension result (3.28). We believe that the function ϕ1(r) = rβτ

(
log log 1/r

)N−βτ is an
exact Hausdorff measure function for Γx, and we will give a proof for the lower bound of the
ϕ1-Hausdorff measure of Γx in Section 4. However, the upper bound part relies on different
methods, we will have to deal with it elsewhere. ¤

Proof For later use, we will start with an arbitrary closed interval T =
∏N

`=1[a`, a`+r`] ⊆ I.
It follows from (3.3) and the fact that BH

1 , . . . , BH
d are independent copies of BH

0 that for all
integers n ≥ 1,

E
[
L(x, T )n

] ≤ (2π)−nd

∫

T n

d∏

k=1

{ ∫

Rn

exp
[
− 1

2
Var

( n∑

j=1

uj
k BH

0 (tj)
)]

dUk

}
dt, (3.29)
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where Uk = (u1
k, . . . , u

n
k) ∈ Rn. Fix k = 1, . . . , d and denote the inner integral in (3.29) by

Jk. Then by Lemma 2.2, we have

Jk ≤
∫

Rn

exp
[
− 1

2
κ−2

H

N∑

`=1

Var
( n∑

j=1

uj
k Y`(tj)

)]
dUk

≤
∫

Rn

exp
[
− 1

2
κ−2

H

τ∑

`=1

Var
( n∑

j=1

uj
k Y`(tj)

)]
dUk.

(3.30)

Since (3.26) holds, we apply Lemma 3.4 with δ = n−1 and q = d to obtain τ positive numbers
p1, . . . , pτ ≥ 1 satisfying (3.7) and (3.8).

Applying the generalized Hölder inequality [Hardy (1934), p.140] to the last integral in
(3.30), we derive that

Jk ≤
τ∏

`=1

{∫

Rn

exp
[
− p`

2
κ−2

H Var
( n∑

j=1

uj
k Y`(tj)

)]
dUk

} 1
p`

= cn
3,4

τ∏

`=1

[
detCov

(
Y`(t1), . . . , Y`(tn)

) ]− 1
2p` , (3.31)

where the last equality follows from (2.12). Hence it follows from (3.29) and (3.31) that

E
[
L(x, T )n

] ≤ cn
3,5

∫

T n

τ∏

`=1

[
detCov(Y`(t1), . . . , Y`(tn))

]− d
2p` dt. (3.32)

To evaluate the integral in (3.32), we will first integrate [dt1` . . . dtn` ] for ` = 1, . . . , τ . To
this end, we will make use of the following fact about multivariate normal distributions: For
any Gaussian random vector (Z1, . . . , Zn),

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

j=2

Var(Zj |Z1, . . . , Zj−1). (3.33)

By the above fact and Lemma 2.1, we can derive that for every ` ∈ {1, . . . , τ} and for all
t1, . . . , tn ∈ T =

∏N
`=1[a`, a` + r`] satisfying

a` ≤ t
π`(1)
` ≤ t

π`(2)
` ≤ · · · ≤ t

π`(n)
` ≤ a` + r` (3.34)

for some permutation π` of {1, . . . , N}, we have

detCov
(
Y`(t1), . . . , Y`(tn)

) ≥ cn
3,6

n∏

j=1

(
t
π`(j)
` − t

π`(j−1)
`

)2H` , (3.35)
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where t
π`(0)
` := ε [Recall the decomposition (2.6)]. We have chosen ε < 1

2 min{a`, 1 ≤ ` ≤ N}
so that Lemma 3.6 is applicable.

It follows from (3.34) and (3.35) that

∫

[a`, a`+r`]n

[
detCov(Y`(t1), . . . , Y`(tn))

]− d
2p` dt1` · · · dtn`

≤
∑
π`

cn

∫

a`≤t
π`(1)

` ≤···≤t
π`(n)

` ≤a`+r`

n∏

j=1

1
(
t
π`(j)
` − t

π`(j−1)
`

)H`d/p`
dt1` · · · dtn`

≤ cn
3,7

(n!)H`d/p` r
n
(
1−(1− 1

n
)H`d/p`

)
` .

(3.36)

In the above, the last inequality follows from (3.23).
Combining (3.32), (3.36) and continuing to integrate [dt1` . . . dtn` ] for ` = τ + 1, . . . , N , we

obtain

E
[
L(x, T )n

] ≤ cn
3,8

(n!)
Pτ

`=1 H`d/p`

τ∏

`=1

r
n(1−(1− 1

n
)H`d/p`)

` ·
N∏

`=τ+1

rn
` . (3.37)

Now we consider the special case when T = [a, a+ 〈r〉], i.e. r1 = · · · = rN = r. Eq. (3.37)
and (3.8) with δ = n−1 and q = d together yield

E
[
L(x, T )n

] ≤ cn
3,9

(n!)
Pτ

`=1 H`d/p` rn
(
N−(1−n−1)

Pτ
`=1 H`d/p`

)

≤ cn
3,10

(n!)N−βτ rnβτ .
(3.38)

This proves (3.27). ¤

Remark 3.9 In the proof of Lemma 3.7, if we apply the generalized Hölder inequality to
the first integral in (3.30) with N positive numbers p1, . . . , pN defined by

p` =
N∑

i=1

H`

Hi
, (` = 1, . . . , N),

then the above proof leading to (3.37) shows that the following inequality

E
[
L(x, T )n

] ≤ cn
3,11

(n!)N ν λN (T )n(1−ν) (3.39)

holds for every interval T ⊂ I, where ν = d/(
∑N

`=1 H−1
` ) ∈ (0, 1). We will apply this

inequality in the proof of Theorem 3.1 below. ¤

Lemma 3.7 implies that for all n ≥ 1, L(x, T ) ∈ Ln(Rd) a.s. [see Geman and Horowitz
(1980, page 42)]. Our next lemma estimates the moments of the increments of L(x, T ) in x.
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Lemma 3.10 Assume (3.26) holds for some τ ∈ {1, . . . , N}. Then there exists a constant
c3,12, depending on N, d, H and I only, such that for all hypercubes T = [a, a + 〈r〉] ⊆ I,
x, y ∈ Rd with |x− y| ≤ 1, all even integers n ≥ 1 and all γ ∈ (0, 1 ∧ ατ

2τ ),

E
[(

L(x, T )− L(y, T )
)n

]
≤ cn

3,12
(n!)N−βτ+(1+Hτ )γ |x− y|nγ rn(βτ−Hτ γ). (3.40)

Proof Let γ ∈ (0, 1 ∧ ατ
2τ ) be a constant. Note that by the elementary inequalities

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R (3.41)

and |u + v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,

n∏

j=1

∣∣∣e−i〈uj ,x〉 − e−i〈uj ,y〉
∣∣∣ ≤ 2(1−γ)n |x− y|nγ

∑′ n∏

j=1

|uj
kj
|γ , (3.42)

where the summation
∑

´ is taken over all the sequences (k1, · · · , kn) ∈ {1, · · · , d}n.
It follows from (3.4) and (3.42) that for every even integer n ≥ 2,

E
[
(L(x, T )− L(y, T ))n

]
≤ (2π)−nd2(1−γ)n |x− y|nγ

×
∑′ ∫

T n

∫

Rnd

n∏

m=1

|um
km
|γ E exp

(
− i

n∑

j=1

〈uj , BH(tj)〉
)

du dt

≤ cn
3,13
|x− y|nγ

∑′ ∫

T n

dt

×
n∏

m=1

{ ∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , BH(tj)〉
)]

du

}1/n

,

(3.43)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, k2, . . . , kn) ∈ {1, · · · , d}n and n points t1, . . . , tn ∈ T such

that t1` , . . . , t
n
` are all distinct for every 1 ≤ ` ≤ N [the set of such points has full (nN)-

dimensional Lebesgue measure]. Let M = M(k, t, γ) be defined by

M =
n∏

m=1

{ ∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , BH(tj)〉
)]

du

}1/n

. (3.44)

Note that BH
` (1 ≤ ` ≤ N) are independent copies of BH

0 . By Lemma 3.2, the random
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variables BH
` (tj) (1 ≤ ` ≤ N, 1 ≤ j ≤ n) are linearly independent. Hence Lemma 3.3 gives

∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , BH(tj)〉
)]

du

=
(2π)(nd−1)/2

[
detCov

(
BH

0 (t1), . . . , BH
0 (tn)

)]d/2

∫

R

( v

σm

)nγ
e−

v2

2 dv

≤ cn
3,14

(n!)γ

[
detCov

(
BH

0 (t1), . . . , BH
0 (tn)

)]d/2

1
σnγ

m
,

(3.45)

where σ2
m is the conditional variance of BH

km
(tm) given BH

i (tj) (i 6= km or i = km but j 6= m),
and the last inequality follows from Stirling’s formula.

Combining (3.44) and (3.45) we obtain

M ≤ cn
3,15

(n!)γ

[
detCov

(
BH

0 (t1), . . . , BH
0 (tn)

)]d/2

n∏

m=1

1
σγ

m
. (3.46)

For δ = 1/n and q = d, let p` (` = 1, . . . , τ) be the constants as in Lemma 3.4. Observe
that, since γ ∈ (

0, ατ
2τ

)
, there exists an `0 ∈ {1, . . . , τ} such that

H`0d

p`0

+ 2H`0γ < 1. (3.47)

It follows from (3.46) and Lemma 2.2 that

M ≤ cn
3,16

(n!)γ
τ∏

`=1

1
[
detCov

(
Y`(t1), . . . , Y`(tn)

)]d/(2p`)

n∏

m=1

1
σγ

m
. (3.48)

The second product in (3.48) will be treated as a “perturbation” factor and will be
shown to be small when integrated. For this purpose, we use again the independence of the
coordinate processes of BH and Lemma 3.2 to derive

σ2
m = Var

(
BH

km
(tm)

∣∣∣BH
km

(tj), j 6= m
)

≥ c2
3,17

N∑

`=1

min
{|tm` − tj` |2H` : j 6= m

}
.

(3.49)

For any n points t1, . . . , tn ∈ T , let π1, . . . , πN be N permutations of {1, 2, . . . , n} such that
for every 1 ≤ ` ≤ N ,

t
π`(1)
` ≤ t

π`(2)
` ≤ · · · ≤ t

π`(n)
` . (3.50)
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Then, by (3.49) and (3.50) we have

n∏

m=1

1
σγ

m
≤

n∏

m=1

1

c3,18

∑N
`=1

[(
t
π`(m)
` − t

π`(m−1)
`

) ∧ (
t
π`(m+1)
` − t

π`(m)
`

)]H`γ

≤
n∏

m=1

1

c3,18

[(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

) ∧ (
t
π`0

(m+1)

`0
− t

π`0
(m)

`0

)]H`0
γ

≤ c−n
3,18

n∏

m=1

1
(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)qm
`0

H`0
γ
,

(3.51)

for some (q1
`0

, . . . , qn
`0

) ∈ {0, 1, 2}n satisfying
∑n

m=1 qm
`0

= n and q1
`0

= 0. That is, we will only
need to consider the contribution of σm in the `0-th direction.

So far we have obtained all the ingredients for bounding the integral in (3.43) and the
rest of the proof is quite similar to the proof of Lemma 3.7. It follows from (3.48) and (3.51)
that

∫

T n

M(k, t, γ) dt ≤ cn
3,19

(n!)γ

∫

T n

τ∏

`=1

1
[
detCov

(
Y`(t1), . . . , Y`(tn)

)]d/(2p`)

×
n∏

m=1

1
(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)qm
`0

H`0
γ

dt.

(3.52)

To evaluate the above integral, we will first integrate [dt1` . . . dtn` ] for every ` = 1, . . . , τ . Let
us first consider ` = `0. By using Lemma 2.1, (3.33), (3.22) and, thanks to (3.47) and the
nature of qm

`0
, we see that
∫

[a`0
, a`0

+r`0
]n

1
[
detCov(Y`0(t1), . . . , Y`0(tn))

]d/(2p`0
)

×
n∏

m=1

1
(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)qm
`0

H`0
γ

dt1`0 · · · dtn`0

≤
∑
π`0

cn
3,20

∫

a`0
≤t

π`0
(1)

`0
≤···≤t

π`0
(n)

`0
≤a`0

+r`0

(3.53)

n∏

m=1

(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)−(
H`0

d/p`0
+qm

`0
H`0

γ
)

dt1`0 · · · dtn`0

≤ cn
3,21

(n!)H`0
d/p`0

+H`0
γ r

n
[
1−(1− 1

n
)H`0

d/p`0
−H`0

γ
]

`0
. (3.54)

In the above, t
π`0

(0)

`0
= ε as in the proof of Lemma 3.7 and the last inequality follows from

(3.22).
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Meanwhile, recall that, for every ` 6= `0 (` ∈ {1, . . . , τ}), we have shown in (3.36) that
∫

[a`, a`+r`]n

[
detCov(Y`(t1), . . . , Y`(tn))

]− d
2p` dt1` · · · dtn`

≤ cn
3,7

(n!)H`d/p` r
n
(
1−(1− 1

n
)H`d/p`

)
` .

(3.55)

Finally, we proceed to integrate [dt1` . . . dtn` ] for ` = τ +1, . . . , N . It follows from the above
that

∫

T n

M(k, t, γ) dt ≤ cn
3,22

(n!)
Pτ

`=1 H` d/p`+H`0
γ+γ

× r
n
[
1−(1− 1

n
)H`0

d/p`0
−H`0

γ
]

`0
×

τ∏

` 6=`0

r
n
[
1−(1− 1

n
)H` d/p`

]
`

N∏

`=τ+1

rn
` .

(3.56)

In particular, if r1 = · · · = rN = r ≤ 1, we combine (3.43) and (3.56) to obtain

E
[(

L(x, T )− L(y, T )
)n

]

≤ cn
3,23

|x− y|nγ (n!)
Pτ

`=1 H` d/p`+H`0
γ+γ · rn

(
N−(1− 1

n
)
Pτ

`=1 H` d/p`−H`0
γ
)

≤ cn
3,24

(n!)N−βτ+(1+Hτ )γ |x− y|nγ rn(βτ−Hτ γ).

(3.57)

The last inequality follows from the fact that H`0 ≤ Hτ and Lemma 3.4. This finishes the
proof of Lemma 3.10. ¤

Now we are ready to prove Theorem 3.1. It is similar to the proof of Theorem 4.1 in Xiao
and Zhang (2002) and we include it for the sake of completeness.

Proof of Theorem 3.1 Let I ∈ A be fixed. For simplicity, we will assume I = [η, 1]N

for some η > 0, say, η = 2ε [cf. (2.6)]. It follows from Lemma 3.10 and the multiparameter
version of Kolmogorov’s continuity theorem [cf. Khoshnevisan (2002)] that, for every T ∈ A
such that T ⊂ I, BH has almost surely a local time L(x, T ) that is continuous for all x ∈ Rd.

To prove the joint continuity, observe that for all x, y ∈ Rd and s, t ∈ I, we have

E
[(

L(x, [η, s])− L(y, [η, t])
)n

]
≤ 2n−1

{
E

[(
L(x, [η, s])− L(x, [η, t])

)n
]

+ E
[(

L(x, [η, t])− L(y, [η, t])
)n

]}
.

(3.58)

Since the difference L(x, [η, s]) − L(x, [η, t]) can be written as a sum of finite number (only
depends on N) of terms of the form L(x, Tj), where each Tj ∈ A is a closed subinterval of
I with at least one edge length ≤ |s− t|, we can use Lemma 3.7 and Remark 3.9, to bound
the first term in (3.58). On the other hand, the second term in (3.58) can be dealt with
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using Lemma 3.10 as above. Consequently, for some γ ∈ (0, 1) small, the right hand side
of (3.58) is bounded by cn

3,25
(|x − y| + |s − t|)nγ , where n ≥ 2 is an arbitrary even integer.

Therefore the joint continuity of the local times follows again from the multiparameter version
of Kolmogorov’s continuity theorem. This finishes the proof of Theorem 3.1. ¤

We end this section with the following two technical lemmas, which will be useful in the
next section.

Lemma 3.11 Under the conditions of Lemma 3.7, there exist positive and finite constants
c3,26 and c3,27, depending on N, d, H and I only, such that the following hold:

(i) For all a ∈ I and hypercubes T = [a, a + 〈r〉] ⊆ I with edge length r ∈ (0, 1), x ∈ Rd

and all integers n ≥ 1,

E
[
L

(
x + BH(a), T

)n
]
≤ cn

3,26
(n!)N−βτ rn βτ , (3.59)

where βτ = N − τ −Hτd +
∑τ

`=1 Hτ/H`.

(ii) For all a ∈ I and hypercubes T = [a, a + 〈r〉] ⊆ I, x, y ∈ Rd with |x− y| ≤ 1, all even
integers n ≥ 1 and all γ ∈ (0, 1 ∧ ατ

2τ ),

E
[(

L(x + BH(a), T )− L(y + BH(a), T )
)n

]

≤ cn
3,27

(n!)N−βτ+(1+Hτ )γ |x− y|nγ rn(βτ−Hτ γ).
(3.60)

Proof For each fixed a ∈ I, we define the Gaussian random field Y = {Y (t), t ∈ RN
+}

with values in Rd by Y (t) = BH(t) − BH(a). It follows from (3.1) that if BH has a local
time L(x, S) on any Borel set S, then Y also has a local time L̃(x, S) on S and, moreover,
L(x + BH(a), S) = L̃(x, S). With little modification, the proofs of Lemmas 3.7 and 3.10 go
through for the Gaussian field Y . Hence we derive that both (3.59) and (3.60) hold. ¤

The following lemma is a consequence of Lemma 3.11 and Chebyshev’s inequality. The
proof is standard, hence omitted.

Lemma 3.12 Under the conditions of Lemma 3.7, there exist positive constants c3,28 , c3,29,
b1 and b2 > 0 (depending on N , d, I and H only), such that for all a ∈ I, T = [a, a + 〈r〉]
with r ∈ (0, 1), x ∈ Rd and u > 1 large enough, we have

P
{

L
(
x + BH(a), T

) ≥ c3,28 rβτ uN−βτ

}
≤ exp

(−b1 u
)

(3.61)
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and for x, y ∈ Rd with |x− y| ≤ 1 and γ ∈ (0, 1 ∧ ατ
2τ ),

P
{∣∣∣L

(
x + BH(a), T

)− L
(
y + BH(a), T

)∣∣∣

≥ c3,29 |x− y|γ rβτ−Hτ γ uN−βτ+(1+Hτ )γ

}
≤ exp

(−b2 u
)
.

(3.62)

4 Hölder Conditions for the Local Times

In this section we investigate the local and uniform asymptotic behavior of the local time
L(x, T ) at x and the maximum local time L∗(T ) = maxx∈Rd L(x, T ) as diam(T ) → 0. The
results are then applied to study the sample path properties of BH .

4.1 Hölder Conditions for L(x, •)
By applying Lemma 3.7 [more precisely, (3.61) with a = 0] and the Borel-Cantelli lemma,
one can easily derive the following law of the iterated logarithm for the local time L(x, ·): If
(3.26) holds for some τ ∈ {1, . . . , N}, then there exists a positive constant c4,1 such that for
every x ∈ Rd and t ∈ (0,∞)N ,

lim sup
r→0

L(x,U(t, r))
ϕ1(r)

≤ c4,1 , (4.1)

where U(t, r) is the open ball centered at t with radius r and ϕ1(r) = rβτ
(
log log(1/r)

)N−βτ .

It would be interesting to prove the lower bound in (4.1). For such a result for the local times
of a one-parameter fractional Brownian motion, see Mountford and Baraka (2005).

It follows from Fubini’s theorem that, with probability one, (4.1) holds for λN -almost all
t ∈ (0,∞)N . Now we prove a stronger version of this result, which is useful in determining
the exact Hausdorff measure of the level set.

Theorem 4.1 Assume that d <
∑N

`=1
1

H`
. Let τ ∈ {1, . . . , N} be the integer such that (3.26)

holds and let I ∈ A be a fixed interval. For any fixed x ∈ Rd, let L(x, ·) be the local time of
BH(t) at x which is a random measure supported on the level set

(
BH

)−1 (x). Then there
exists a positive and finite constant c4,2 independent of x such that with probability 1,

lim sup
r→0

L(x,U(t, r))
ϕ1(r)

≤ c4,2 (4.2)

holds for L(x, ·)-almost all t ∈ I, where ϕ1(r) = rβτ
(
log log(1/r)

)N−βτ .
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Proof The method of our proof is similar to that of Proposition 4.1 in Xiao (1997). For
every integer k > 0, we consider the random measure Lk(x, •) on the Borel subsets C of I

defined by

Lk(x,C) =
∫

C
(2πk)d/2 exp

(
− k |BH(t)− x|2

2

)
dt

=
∫

C

∫

Rd

exp
(
− |ξ|2

2k
+ i〈ξ,BH(t)− x〉

)
dξ dt.

(4.3)

Then, by the occupation density formula (3.1) and the continuity of the function y 7→ L(y, C),
one can verify that almost surely Lk(x,C) → L(x,C) as k →∞ for every Borel set C ⊂ I.

For every integer m ≥ 1, denote fm(t) = L
(
x, U(t, 2−m)

)
. From the proof of Theorem

3.1 we can see that almost surely the functions fm(t) are continuous and bounded. Hence we
have almost surely, for all integers m, n ≥ 1,

∫

I
[fm(t)]n L(x, dt) = lim

k→∞

∫

I
[fm(t)]n Lk(x, dt). (4.4)

It follows from (4.4), (4.3) and the proof of Proposition 3.1 of Pitt (1978) that for every
positive integer n ≥ 1,

E
∫

I
[fm(t)]n L(x, dt) =

(
1
2π

)(n+1)d ∫

I

∫

U(t,2−m)n

∫

R(n+1)d

exp
(
− i

n+1∑

j=1

〈x, uj〉
)

× E exp
(

i
n+1∑

j=1

〈uj , BH(sj)〉
)

duds,

(4.5)

where u = (u1, . . . , un+1) ∈ R(n+1)d and s = (t, s1, . . . , sn). Similar to the proof of (3.27) we
have that the right hand side of Eq. (4.5) is at most

cn
4,3

∫

I

∫

U(t,2−m)n

ds
[
detCov

(
BH

0 (t), BH
0 (s1), . . . , BH

0 (sn)
)]d/2

≤ cn
4,4

(n!)N−βτ 2−mnβτ , (4.6)

where c4,4 is a positive finite constant depending on N, d, H, and I only.
Let γ > 0 be a constant whose value will be determined later. We consider the random

set
Im(ω) =

{
t ∈ I : fm(t) ≥ γϕ1(2−m)

}
.

Denote by µω the restriction of the random measure L(x, ·) on I, that is, µω(E) = L(x, E∩I)
for every Borel set E ⊂ RN

+ . Now we take n = blog mc, where byc denotes the integer part of
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y. Then by applying (4.6) and Stirling’s formula, we have

Eµω(Im) ≤ E
∫
I [fm(t)]n L(x, dt)
[γϕ1(2−m)]n

≤ cn
4,4

(n!)N−βτ 2−mn βτ

γn2−mn βτ (log m)n(N−βτ )
≤ m−2,

(4.7)

provided γ > 0 is chosen large enough, say, γ ≥ c4,4 e2 := c4,2 . This implies that

E

( ∞∑

m=1

µω(Im)

)
< ∞.

Therefore, with probability 1 for µω almost all t ∈ I, we have

lim sup
m→∞

L(x,U(t, 2−m))
ϕ1(2−m)

≤ c4,2 . (4.8)

Finally, for any r > 0 small enough, there exists an integer m such that 2−m ≤ r < 2−m+1

and (4.8) is applicable. Since ϕ1(r) is increasing near r = 0, (4.2) follows from (4.8) and a
monotonicity argument. ¤

Theorem 4.2 Assume that
∑N

`=1
1

H`
> d and I ∈ A. Then there exists a positive constant

c4,5 such that for every x ∈ Rd,

ϕ1-m
((

BH
)−1

(x) ∩ I
)
≥ c4,5L(x, I), a.s., (4.9)

where ϕ1-m denotes the ϕ1-Hausdorff measure.

Proof As in the proof of Theorem 4.1 in Xiao (1997), (4.9) follows from Theorem 4.1 and
the upper density theorem of Rogers and Taylor (1961). We omit the details. ¤

4.2 Hölder Conditions for L∗(•)
The following theorem establishes sharp Hölder conditions for the maximum local times
L∗(T ) = supx∈Rd L(x, T ) of fractional Brownian sheets as diam(T ) → 0. Similar results for
Brownian motion and some other random fields have been obtained by several authors. See,
for example, Kesten (1964), Ehm (1981), Xiao (1997), Khoshnevisan, Xiao and Zhong (2003).
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Theorem 4.3 Let BH = {BH(t), t ∈ RN
+} be a fractional Brownian sheet in Rd with index

H = (H1, . . . , HN ). We assume that there exists τ ∈ {1, . . . , N} such that H1 = · · · = Hτ

and H1 d < τ . Then, there exist positive constants c4,6 and c4,7 such that for every s ∈ I,

lim sup
r→0

L∗([s− 〈r〉, s + 〈r〉])
rN−H1d(log log r−1)H1d

≤ c4,6 , a.s. (4.10)

and
lim sup

r→0
sup
s∈I

L∗([s− 〈r〉, s + 〈r〉])
rN−H1d(log r−1)H1d

≤ c4,7 , a.s. (4.11)

For proving Theorem 4.3, we will make use of the following lemma, which is a consequence
of Lemma 2.1 in Talagrand (1995) and Lemma 8 in Ayache and Xiao (2005).

Lemma 4.4 Let BH = {BH(t), t ∈ RN
+} be a fractional Brownian sheet in Rd with index

H = (H1, . . . ,HN ) and let I ∈ A be fixed. Then there exist positive constants c4,8 and c4,9

such that for all T = [s, s + 〈h〉] with h ∈ (0, 1) and all u > c4,8h
H1, we have

P
{

sup
t∈T

∣∣BH(t)−BH(s)
∣∣ ≥ u

}
≤ exp

(
− u2

c4,9 h2H1

)
. (4.12)

Proof of Theorem 4.3 As in Ehm (1981), Xiao (1997), Khoshnevisan, Xiao and Zhong
(2003), the proof of Theorem 4.3 is based on Lemma 3.12 and a chaining argument. Hence
we will only sketch a proof of (4.10), indicating the necessary modifications.

Let g(r) = rN−H1d
(
log log r−1

)H1d for r > 0 small enough. In order to prove (4.10) it is
sufficient to show that for every s ∈ I,

lim sup
n→∞

L∗(Cn)
g(2−n)

≤ c4,10 , a.s., (4.13)

where Cn = [s, s + 〈2−n〉] for n ≥ 1.
We divide the proof of (4.13) into four steps.
(a) Pick u = 2−nH1

√
2c4,9 log n in Lemma 4.4, we have

P
{

sup
t∈Cn

∣∣BH(t)−BH(s)
∣∣ ≥ 2−nH1

√
2c4,9 log n

}
≤ exp(−2 log n) = n−2. (4.14)

Hence the Borel-Cantelli lemma implies that a.s. ∃n1 = n1(ω) such that

sup
t∈Cn

∣∣BH(t)−BH(s)
∣∣ ≤ 2−nH1

√
2c4,9 log n, for all n ≥ n1. (4.15)

(b) Let θn = 2−nH1
(
log log 2n

)−(1+H1) for all n ≥ 1, and define

Gn =
{

x ∈ Rd : |x| ≤ 2−nH1

√
2 c4,9 log n with x = θnp for some p ∈ Zd

}
.
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Then, at least when n is large enough, the cardinality of Gn satisfies

]Gn ≤ c4,11 (log n)(2+H1)d . (4.16)

It follows from (3.61) that for any constant c > 0 and integer n large enough,

P
{

max
x∈Gn

L
(
x + BH(s), Cn

) ≥ cH1d g(2−n)
}
≤ c4,12

(
log n

)(2+H1)d
n−c b1 . (4.17)

[Note that βτ = N − H1d under the assumptions of Theorem 4.3.] By choosing c = 2b−1
1

in (4.17) we see that the right hand side of (4.17) is summable. Hence, the Borel-Cantelli
lemma implies that almost surely ∃n2 = n2(ω) such that

max
x∈Gn

L
(
x + BH(s), Cn

) ≤ (2b−1
1 )H1d g(2−n), for all n ≥ n2. (4.18)

(c) Given integers n, k ≥ 1 and x ∈ Gn, we define

F (n, k, x) =
{

y ∈ Rd : y = x + θn

k∑

j=1

εj 2−j , εj ∈ {0, 1}d for 1 ≤ j ≤ k

}
.

A pair of points y1, y2 ∈ F (n, k, x) is said to be linked if y2−y1 = θnε2−k for some ε ∈ {0, 1}d.
We choose γ > 0 small such that (3.62) in Lemma 3.12 holds, and then choose δ > 0 such
that δ (H1d + (1 + H1)γ) < γ. Consider the event Bn defined by

Bn =
⋃

x∈Gn

∞⋃

k=1

⋃
y1,y2

{∣∣L(y1 + BH(s), Cn)− L(y2 + BH(s), Cn)
∣∣

≥ 2−n(N−H1d−H1γ) |y1 − y2|γ
(
c 2δk log n

)H1d+(1+H1)γ
}

,

(4.19)

where
⋃

y1,y2
signifies the union over all the linked pairs y1, y2, and where c > 0 is a constant

whose value will be chosen later.
Note that Hτ = H1, by (3.62) we derive that for n large enough,

P{Bn} ≤ c4,13

(
log n

)(2+H1)d
∞∑

k=1

2(d+1)k exp
(− c b2 2δk log n

)

≤ c4,14

(
log n

)(2+H1)d
n−c b2 .

(4.20)

In the above the last inequality follows from the fact

∞∑

k=1

2(d+1)k exp
(− x 2δk

) ≤ e−x, ∀x > 0 large enough.
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Hence, by choosing c = 2b−1
2 in (4.19), the Borel-Cantelli lemma implies that almost surely,

Bn occurs only finitely many times.
(d) Fix an integer n together with some y ∈ Rd that satisfies |y| ≤ 2−nH1

√
2c4,9 log n, we

can represent y in the form y = limk→∞ yk with

yk = x + θn

k∑

j=1

εj2−j , (4.21)

where y0 = x ∈ Gn and εj ∈ {0, 1}d for j = 1, . . . , k.
Since the local time L is jointly continuous, by expansion (4.21) and the triangular in-

equality, we see that on the event Bc
n,

∣∣L(y + BH(s), Cn)− L(x + BH(s), Cn)
∣∣

≤
∞∑

k=1

∣∣L(yk + BH(s), Cn)− L(yk−1 + BH(s), Cn)
∣∣

≤
∞∑

k=1

2−n(N−H1d−H1γ) |yk − yk−1|γ
(
2b−1

2 2δk log n
)H1d+(1+H1)γ

≤ c4,15 g(2−n).

(4.22)

We combine (4.18) and (4.22) to get that for n large enough,

sup
|x|≤2−nH1

√
2c4,9 log n

L
(
x + BH(s), Cn

) ≤ c4,16 g(2−n). (4.23)

That is
sup

|x−BH(s)|≤2−nH1
√

2c4,9 log n

L
(
x, Cn

) ≤ c4,16 g(2−n). (4.24)

Since L∗(Cn) = sup
{
L(x, Cn) : x ∈ BH(Cn)

}
, (4.13) follows from (4.24). This proves

Theorem 4.3. ¤

The Hölder conditions for the local times of fractional Brownian sheets are closely related
to the irregularity of the sample path of BH(t). To end this paper, we apply Theorem 4.3
to derive results about the degree of oscillation of the sample paths of BH(t), which greatly
improves Theorem 3 of Ayache and Xiao (2005).

Theorem 4.5 Let BH = {BH(t), t ∈ RN
+} be an (N, d)-fractional Brownian sheet and let

I ∈ A be a fixed interval. Then there exists a constant c4,17 > 0 such that for every s ∈ I,

lim inf
r→0

sup
t∈U(s,r)

|BH(t)−BH(s)|
rH1

(
log log r−1

)−H1
≥ c4,17 , a.s. (4.25)
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and

lim inf
r→0

inf
t∈I

sup
t∈U(s,r)

|BH(t)−BH(s)|
rH1

(
log r−1

)−H1
≥ c4,17 , a.s. (4.26)

In particular, the sample function BH(t) is almost surely nowhere differentiable in (0,∞)N .

Proof It is sufficient to prove the results for d = 1. Note that H1 < 1, Theorem 4.3 is
always applicable for d = 1 with τ = 1. For any interval Q ∈ A, we have

λN (Q) =
∫

BH
0 (Q)

L(x,Q) dx ≤ L∗(Q)× sup
u,v∈Q

∣∣BH
0 (u)−BH

0 (v)
∣∣. (4.27)

By taking Q = U(s, r) we see that (4.25) follows immediately from (4.27) and (4.10). Simi-
larly, (4.26) follows from (4.27) and (4.11). ¤
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