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Abstract

Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables taking values in a finite set of
integers, and let Sn = Sn−1 + Xn for n ≥ 1 and S0 = 0, be a random walk on Z, the set
of integers. By using the zeros, together with their multiplicities, of the rational function
f(x) = E(xX)−1, x ∈ C, we characterize the space U of all complex-valued martingales of
the form {g(Sn), n ≥ 0} for some function g : Z→ C. As an application we calculate the
absorption probabilities of the random walk {Sn, n ≥ 0} by applying the optional stopping
theorem simultaneously to a basis of the martingale space U . The advantage of our method
over the classical approach via the Markov chain techniques (cf. Kemeny and Snell (1960))
is in the size of the matrix that is needed to be inverted. It is much smaller by our method.
Some examples are presented.
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1 Introduction and main results

We deal here with a random walk {Sn, n ≥ 0} on Z. Specifically:

Sn = Sn−1 + Xn for n ≥ 1 and S0 = 0,

where {X, Xn, n ≥ 1} are i.i.d. random variables on some probability space (Ω,F ,P) taking
values in a finite subset of Z. We will consider 3 cases:

Case 1. Two-sided random walk

pi = P(X = i), i = 0, 1, ..., a;
qi = P(X = −i), i = 1, 2, ..., b,

where pa > 0, qb > 0 and
a∑

i=0
pi +

b∑
i=1

qi = 1.

Case 2. Right-sided random walk

pi = P(X = i), i = 0, 1, . . . , a,
a∑

i=0
pi = 1 and pa > 0.

Case 3. Left-sided random walk

qi = P(X = −i), i = 0, 1, . . . , b,
b∑

i=0
qi = 1 and qb > 0.

In all the cases, without loss of generality for our purpose, we assume that the integers
in I ≡ {k ∈ Z : P(X = k) > 0} don’t have a common divisor larger than 1. (If not, then
Sn ∈ r · Z where r > 1 is the largest common divisor of I and we will replace X by X/r, etc.)

Let A be the collection of all integers that {Sn, n ≥ 0} will ever visit with positive proba-
bility, i.e.,

A =
{

m ∈ Z :
∞∑

n=0

P(Sn = m) > 0
}

.

It follows from elementary results in number theory that in Cases 1, 2 and 3, respectively,

A = Z,

Z+ ⊇ A ⊇ {m ≥ m0}, for some m0 ≥ 0, and
Z− ⊇ A ⊇ {m ≤ m1}, for some m1 ≤ 0,

where Z+ = {0, 1, 2, . . . , } and Z− = {0,−1,−2, . . . , }.
In order to describe our results, let

f(x) = E(xX)− 1, x ∈ C\{0},
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where C denotes the field of complex numbers. Corresponding to the three cases, we have

f(x) =
a∑

i=0
pi x

i − 1+
b∑

i=1
qi x

−i,

f(x) =
a∑

i=0
pi x

i − 1,

f(x) =
b∑

i=0
qi x

−i − 1.

Let {xj with multiplicity kj , j ∈ J} denote the roots, over C, of f(x) = 0. It follows that in
the three cases,

∑
j∈J

kj = a + b, a, b, respectively.

Our first result characterizes U , the space of all functions g : A→ C such that
{
g(Sn), n ≥

0
}

is a martingale with respect to the filtration {Fn, n ≥ 0}, where F0 = {∅, Ω} and Fn ≡
σ(X1, ..., Xn) for all n ≥ 1. When there is no confusion, we will also call U the space of all
martingales of the form

{
g(Sn), n ≥ 0

}
.

Proposition 1.1 In the three cases, U is a linear space over C with dimension a + b, a and
b, respectively. A basis for U is given by

{
gj,l(·) : l = 0, 1, ..., kj − 1; j ∈ J

}
, (1.1)

where gj,l(·) : A→ C is the function defined by gj,l(m) = (xj)m ·ml, ∀m ∈ A. Here and in the
sequel, we use the convention 00 = 1.

For any given integers c > 0 and d < 0, we will consider the stopping time

τ = inf
{
n ≥ 0 : Sn ≤ d or Sn ≥ c

}
.

Then τ can be thought of as the time when a gambler stops betting as soon as he wins at least
c betting units or loses at least |d| units. The stopping time τ is also of interest in connection
with sequential sampling; see Feller (1968) for further information.

Let i = 1, 2, 3 denote the three cases and let

V1 ≡
{
d− b + 1, . . . , d

}⋃ {
c, . . . , c + a− 1

}
,

V2 ≡
{
c, . . . , c + a− 1

}
,

V3 ≡
{
d− b + 1, . . . , d

}
.

Then for each i = 1, 2, 3, τ < ∞ if and only if Sn ∈ Vi for some n ≥ 1. We will denote the
cardinality of Vi by #Vi.

Our main task in this paper is to calculate the distribution of Sτ :

αk ≡ P(Sτ = k), k ∈ Vi,

which will be called the absorption probabilities of the random walk {Sn, n ≥ 0}.
The following is our main result. It is formulated for all the three cases.
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Theorem 1.2 For every i = 1, 2, 3, let {gj, l(·)}0≤l≤kj−1, j∈J be the basis of U given in Propo-
sition 1.1. Let

Bi =
[
gj, l(k)

]
0≤l≤kj−1, j∈J ; k∈Vi

denote the associated #Vi×#Vi matrix over C, where (j, l) and k are the indices of the rows and
columns, respectively. Then Bi is non-singular and the column vector

(
αk

)
k∈Vi

of absorption
probabilities is given by (

αk

)
k∈Vi

= B−1
i · g(0), (1.2)

where g(0) denotes the #Vi-dimensional column vector (gj, l(0))0≤l≤kj−1, j∈J .

The equation Bi · (αk) = g(0) is obtained by applying simultaneously the optional stopping
theorem to the complex-valued martingales {gj, l(Sn) : n ≥ 0} (0 ≤ l ≤ kj − 1, j ∈ J). The
main difficulty in proving Theorem 1.2 is to prove in Case 1 that B1 is non-singular. This
difficulty is due to the “gap” between the powers that appear in B1. It is overcome by using
Lemma 3.1, which is a linear algebra type of result that may be of independent interest.

Now we compare our technique with the classical Markov chain approach and the related
work of Feller (1968). To apply Theorem 1.2, in the setup of Case 1, we need to invert an
(a + b) × (a + b) matrix. In the Markov chain approach (see, e.g., Kemeny and Snell (1960))
one defines a transition matrix on (d− b + 1, . . . , c + a− 1) with V1 taken to be the absorbing
states and then inverts the matrix I−Q, where I is the (c−d−1)× (c−d−1) identity matrix
and Q is the transition matrix restricted to the transient states (d + 1, . . . , c− 1). The matrix
I −Q is of dimension (c− d− 1)× (c− d− 1). Usually the dimension of B1 in Theorem 1.2 is
much smaller than that of I −Q.

Feller (1968, pp. 363–367) deals with the same setup as our Case 1 with a goal of finding
P(Sτ ≤ d) (“ruin probability”). Like us he makes use of the roots of f(x) = 0. However he
doesn’t use explicit martingale concepts and, more importantly, he doesn’t prove explicitly
that B1 is non-singular. From the point of view of this paper Feller starts by defining the
boundary function u : V1 → C by

u(m) =

{
1 if d− b + 1 ≤ m ≤ d,

0 if c ≤ m ≤ c + a− 1.

By the invertibility of B1 there is a unique representation:

u(m) =
∑

j,l

Aj,l g
j,l(m), m ∈ V1

for some complex numbers Aj,l (0 ≤ l ≤ kj − 1, j ∈ J).
By extending the definition of u, via that representation for m ∈ Z we get that u ∈ U ,

namely {u(Sn), n ≥ 0} is a martingale. That leads by the optional stopping theorem to the
formula

P
(
Sτ ≤ d

)
=

∑

j,l

Aj,l g
j,l(0).
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Feller (1968) also gives upper and lower bounds for P(Sτ ≤ d) by using, in our context,
the 2 martingales associated with the positive roots of f(x) = 0. The reader is referred to
Ethier and Khoshenevisan (2002) for a different approach regarding estimating P(Sτ ≤ d) more
precisely from above and below.

The rest of this paper is organized as follows. In Section 2, we prove Proposition 1.1. The
proof of Theorem 1.2 is given in Section 3. In Section 4, we give some further remarks and
examples related to Proposition 1.1 and Theorem 1.2.

2 Martingales of the form
{
g(Sn), n ≥ 0

}

Now we prove Proposition 1.1.

Proof of Proposition 1.1 Note that, for any function g : A → C, {g(Sn) : n ≥ 0 } is a
martingale (with respect to the filtration {Fn}) if and only if

E
(
g(m + X)

)
= g(m), ∀m ∈ A. (2.1)

The fact that U is a linear space is obvious. In Case 1 its dimension is a+b since {g(m), m =
−b, . . . , 0, . . . , a− 1} can be defined arbitrarily and, once they are defined, then g is uniquely
defined on all Z. Indeed pa > 0 and E(g(X)) = g(0) together define g(a) uniquely, and
subsequently defines g for all integers larger than a. Similarly qb > 0 and E(g(−1+X)) = g(−1)
uniquely define g(−b− 1), and subsequently defines g for all integers smaller than −b.

In Case 2 we define arbitrarily {g(m), m = m0, . . . , m0 + a− 1} and, as in Case 1, we can
exploit (2.1) to define g on A. For example if m is the largest integer in A among those smaller
than m0 then g(m) = E

(
g(m + X)

)
directly defines g(m). The proof of Case 3 is similar to

Case 2, and is omitted.
We next show that {gj,l} ⊆ U . Since xj is a zero of f(x) with multiplicity kj we get

f (l)(xj) = 0, ∀l = 0, 1, . . . , kj − 1. (2.2)

A small calculation reveals that (2.2) is equivalent to

E[(xj)X ] = 1,
E[(xj)X X l] = 0 for every l = 1, . . . , kj − 1.

(2.3)

The proof that {gj,l} satisfies relationship (2.1) follows from (2.3): ∀m ∈ A,

E
[
(xj)m+X · (m + X)l

]
= (xj)mE

[
(xj)X ·

l∑

i=0

(
l

i

)
mi X l−i

]

= (xj)mmlE
[
(xj)X

]
+

l−1∑

i=0

(
l

i

)
mi E

[
(xj)X X l−i

]

= (xj)m ml.

(2.4)
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It remains to show that {gj,l}0≤l≤kj−1, j∈J are linearly independent. The proofs are similar
in all cases so we will concentrate only on Case 1. Linear independence is equivalent to the
non-singularity of the (a + b) × (a + b) matrix

[
gj,l(m)

]
, in which (j, l) are the a + b indices

of the rows and −b ≤ m ≤ a − 1 are the a + b indices of the columns. To prove the later
statement, we start by assuming that there exist complex numbers cm (−b ≤ m ≤ a− 1) such
that

a−1∑

m=−b

cm gj,l(m) =
a−1∑

m=−b

cm (xj)m ·ml = 0, ∀j, l. (2.5)

Let h(x) =
a−1∑

m=−b

cm xm. Then the condition (2.5) is equivalent to h(l)(xj) = 0, ∀j, l which

means that h has, when counted with multiplicity, a + b zeros. Unless h ≡ 0 the number of
zeros of h is a + b− 1. This finishes the proof of Proposition 1.1. ¤

Remark 2.1 We comment briefly on the positive roots of f(x) = 0 in Case 1, since they have
played important roles in Feller (1968), Ethier and Khoshnevisan (2002). One obvious positive
root of f(x) = 0 is 1. According to Descartes’ rules of signs the number of positive roots of
f(x) = 0 (counted with multiplicity) is bounded by (and equal in parity to) the number of
changes of signs of its coefficients (=2 in Case 1). It follows that the following are equivalent:

(a) E(X) = 0,

(b) 1 is the only positive root of f(x) = 0 and it has multiplicity 2,

(c) {Sn, n ≥ 0} is a martingale.

Also the following are equivalent:

(a) E(X) 6= 0,

(b) There is exactly one additional positive root of f(x) = 0 besides 1, and both have
multiplicity 1.

3 Application to the absorption probabilities.

For proving Theorem 1.2, we need the following lemma.

Lemma 3.1 Let P =
(
pk,i

)
0≤k,i≤m

denote an m×m real matrix. If for every 1 ≤ k ≤ m, the
entries in the k-th row satisfy the following condition:

pk,i =





≥ 0 and is nondecreasing in i for i ≤ k,

≤ 0 and is nondecreasing in i for k < i,

> 0 if k = i.

(3.1)

Then det(P ) > 0, where det(P ) denotes the determinant of P .
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Proof The proof is by induction on m. For m=1, our lemma holds obviously. Now we
assume that m > 1 and the lemma holds for all (m − 1) × (m − 1) matrices satisfying (3.1).
Then for any m×m matrix P that satisfies (3.1), we write

P =

[
A B

C pm,m

]
,

where A , B and C are (m− 1)× (m− 1), (m− 1)× 1 and 1× (m− 1) matrices, respectively.
It is known from linear algebra (see, for example, Bapat and Raghavan (1996, pp. 139-140))
that

det(P ) = pm,m · det
(
A−B(pm,m)−1C

)
. (3.2)

Using (3.2) we can finish the proof by showing that the (m − 1) × (m − 1) matrix A −
B(pm,m)−1C satisfies the condition (3.1) as well.

Let 0 ≤ k ≤ m− 1 be fixed. The k-th row of −B(pm,m)−1C has the form
(
− pk,m · pm,i

pm,m
, 0 ≤ i ≤ m− 1

)
.

All its members are non-negative since pk,m ≤ 0 and pm,i ≥ 0, and are nondecreasing in i.
Now we verify that the k-th row of the matrix A−B(pm,m)−1C satisfies (3.1). Clearly,

pk,i − pk,m · pm,i

pm,m
≥ 0 for i ≤ k and is nondecreasing in i.

On the other hand, if k < i ≤ m−1, then 0 ≤ pm,i ≤ pm,m and pk,i ≤ pk,m ≤ 0, k < i ≤ m−1.
It follows that

pk,i − pk,m · pm,i

pm,m
≤ 0 for k < i ≤ m− 1

and it is also nondecreasing in i. Thus we conclude that A − B(pm,m)−1C does satisfy (3.1).
The proof is finished. ¤

Now we proceed to proving Theorem 1.2.

Proof of Theorem 1.2 Since all the #Vi complex-valued martingales {gj,l(Sn) : n ≥ 0}
(j ∈ J, 0 ≤ l ≤ kj − 1) are bounded on the time interval [0, τ ], we apply the optional stopping
theorem simultaneously to derive, in all three cases,

Bi · (αk)k∈Vi =
(
E(gj, l(Sτ ))

)
j∈J, 0≤l≤kj−1

=
(
gj, l(0)

)
j∈J, 0≤l≤kj−1

:= g(0),

(3.3)

where Bi is the matrix in (1.1) and all the vectors are column vectors. Hence, (1.2) will follow
from (3.3) once we prove that Bi is non-singular for i = 1, 2, 3.

7



To this end, we first observe that the rank of Bi is equal to that of the matrix B̃i =[
(xj)k+m · (k + m)l

]
for every m ∈ Z. Indeed a “rank preserving” transformation from Bi to

B̃i can be done by applying

(xj)k+m · (k + m)l = (xj)m ·
[

l∑

n=0

(
l

n

)
ml−n · ((xj)k kn

)
]

.

This observation proves the non-singularity of Bi in Cases 2 and 3. Indeed in Case 2 we have
proven (see the proof of Proposition 1.1) that the matrix

[
(xj)k · kl

]
0≤l≤kj−1, j∈J ; k=0,...,a−1

is non-singular so we choose m = −c and we are done. Case 3 is similar.
From now on we deal only with Case 1. By our observation it is enough to work with the

(a + b)× (a + b) matrix B̃1 =
[
(xj)k · kl

]
with column indices

k ∈ K ≡ {
0, 1, . . . , b− 1

} ∪ {
b + m, b + m + 1, . . . , b + m + a− 1

}
,

where m = c− d− 1 > 1.
We start by assuming that there are constant ck ∈ C for which

∑

k∈K

ck (xj)k kl = 0, ∀j ∈ J, 0 ≤ l ≤ kj − 1. (3.4)

We will show ck = 0 for every k ∈ K.
Define the polynomial G(x) =

∑
k∈K

ck xk. From (3.4) it follows that the roots of G(x) = 0

are given by {
xj with multiplicity of at least kj , j ∈ J

}
.

This implies that G(x) is divisible by the polynomial

F (x) =
xb · f(x)
x− 1

.

So we can write
G(x) = F (x) ·H(x), (3.5)

where H(x) =
m∑

k=0

dkx
k, dk ∈ C and m = c− d− 1.

We also have H(1) = 0, since the multiplicity of the root 1 in F (x) is smaller than that of
G(x). Moreover, it is easy to see that in fact

F (x) =
a+b−1∑

k=b

Pkx
k−

b−1∑

k=0

Qkx
k, (3.6)
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where
Pk = P

(
X > k − b

)
=

a∑
i=k−b+1

pi, ∀ k = b, b + 1, . . . , a + b− 1,

Qk = P
(
X ≤ k − b

)
=

b∑
i=b−k

qi, ∀ k = 0, 1, . . . , b− 1.
(3.7)

By observing that in the polynomial G(x) the coefficients of xk for k = b, . . . , b+m− 1 are
identically 0 and by using H(1) = 0, we get m + 1 equations:





k∑
i=(k−a+1)+

Pk+b−idi −
(k+b)∧m∑
i=k+1

Qk+b−idi = 0, ∀ k = 0, 1, ..., m− 1,

m∑
i=0

di = 0,

(3.8)

where x+ = max{x, 0} and x ∧ y = min{x, y}.
Our goal is to show that d0 = d1 = · · · = dm = 0 which will imply via (3.5) that G ≡ 0

and our task will be done. In other words we need to prove that the matrix, P = [pk,i]0≤i, k≤m

generated by the coefficients of (3.8) is non-singular. By (3.8), we have

pk,i =





Pk+b−i if (k + 1− a)+ ≤ i ≤ k, and k < m,

−Qk+b−i if k + 1 ≤ i ≤ (k + b) ∧m , and k < m,

1 if k = m.

(3.9)

Observing each row of P we see that for each k,

pk,i =





≥ 0 and is nondecreasing in i for i ≤ k,

≤ 0 and is nondecreasing in i for k < i,

> 0 if k = i.

(3.10)

That is, the matrix P satisfies condition (3.1). Hence, the non-singularity of P follows from
Lemma 3.1. ¤

4 Examples

In this section, we give some examples. Evaluations in Examples 4.2 – 4.5 were done with
Mathematica5.

Example 4.1 First we consider the special case where X takes 2 values: {−b, a}, that is,
qb + pa = 1. This setting was considered by Uspensky (1937) and Feller (1968) who obtained
upper and lower bounds for their absorption (ruin) probabilities. As Examples 4.2 and 4.3
show, our Theorem 1.2 can be applied to provide exact absorption probabilities.

We now discuss in more detail the properties of the roots of f(x) = 0. For ease of notation
we use p = pa, q = qb. To locate roots with multiplicity of at least 2 it will be more convenient
to work with the equation h(x) ≡ pxa+b − xb + q = 0 that is equivalent to f(x) = 0.
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It follows from Remark 2.1 that f(x) = 0 has two positive roots, either x = 1 with mul-
tiplicity 2 or two distinct positive roots depending upon whether E(X) = 0 or not. Applying
Descartes’ rules of signs to h(−x), we see that there are no negative roots when both a and b

are odd and exactly one negative root when a and b have different parity.
Moreover, since h′(x) = p(a + b)xa+b−1 − bxb−1 we get that

h′(x) = 0 ⇐⇒ x =
( b

(a + b)p

)1/a
. (4.1)

However,

h
(( b

(a + b)p
)1/a

)
= 0 ⇐⇒ pbqa =

( b

a + b

)b ( a

a + b

)a
⇐⇒ p =

b

a + b
,

where the second equivalence can be proved by standard calculus. Since p = b
a+b ⇐⇒ E(X) =

0, we have shown that if E(X) 6= 0 all the a + b roots are distinct.
If E(X) = 0 then by (4.1) we get h′(x) = 0 ⇒ xa = 1. If in addition h(x) = 0 we also

get: xb = 1. Since {a, b} are relatively prime, xb = xa = 1 is equivalent to x = 1. Therefore,
f(x) = 0 has a + b− 1 distinct complex roots and x = 1 is a root of multiplicity 2.

Example 4.2 Here X takes two values {−2, 1} with probabilities 1/3 and 2/3 so that
E(X) = 0. For any given integers d < 0, c > 0, the absorbing states are {d − 1, d, c}.
The roots of f(x) = 0 are 1, 1, 1

2 . The matrix B1 and vector g(0) of Theorem 1.2 are



1 1 1
d− 1 d c

(−1
2)d−1 (−1

2)d (−1
2)c


 and




1
0
1


 ,

respectively. Hence the distribution (αk) of the stopped random walk is given by

k d− 1 d c

δ · αk c
(
1− (−0.5)d

)− d
(
1−

(−0.5)c
) (d − 1)

(
1 − (−0.5)c

) −
c
(
1− (−0.5)d−1

) 1 − d(−0.5)d−1 + (d −
1)(−.5)d

where
δ = (−0.5)c + (c− d)(−0.5)d−1 − (c− d + 1)(−0.5)d.

For the special case of d = −3 and c = 2, the absorption probabilities are

k −4 −3 2
αk

3
19

4
19

12
19
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Example 4.3 A person sent a communication to one of the co-authors in which he proposed
(conjectured) a modification of the formula for absorption probabilities for a {+1, −1} random
walk to handle a {+1, −2} random walk. The modification was incorrect but the communica-
tion led to the efforts behind this paper. This example is the solution to the specific gambler’s
ruin problem that was proposed. A gambler has 30 in capital and a goal of 31. A bet is available
to the gambler that results in +1 with probability 0.642 and −2 with probability 0.358. What
is the probability that the gambler gets 31 before the capital has shrunk to 1 or 0, making the
bet unavailable to the gambler? Here X takes two values {−2, 1} with probabilities 0.358 and
0.642, respectively, so that E(X) = −0.074. Shifting to start the random walk at 0 leads to the
absorbing states {−30, −29, 1}. The roots of f(x) = 1 are 1, r2 = (0.358 +

√
1.047508)/1.284

and r3 = (0.358−√1.047508)/1.284. The matrix B1 and vector g(0) of Theorem 1.2 are



1 1 1
r−30
2 r−29

2 r2

r−30
3 r−29

3 r3


 ,




1
1
1




and the distribution {αk} of the stopped random walk is given by

k −30 −29 1
αk 0.027023 0.052139 0.920838

Example 4.4 Let X be a random variable with distribution given by

x −1 1 2 3
p(x) 14,401

24,002
5,201
24,002

4,000
24,002

400
24,002

Then E(X) = 0 and f(x) = 0 has a two distinct complex roots. More precisely, the roots of
f(x) = 0 are x = 1 (multiplicity 2) and x = −6± i/20. For any given integers c > 0 and d < 0,
the absorption probabilities can be computed using Theorem 1.2.

Example 4.5 Finally we present a random variable X such that f(x) = 0 has a complex root
with multiplicity 2. The distribution of X is

x −5 −4 −3 −2 6
p(x) 29,093,936

18,419,419,575
487,362,532

18,419,419,575
3,011,713,128
18,419,419,575

7,202,578,104
18,419,419,575

7,688,671,875
18,419,419,575

and x = −1
5 + i

15 is a root with multiplicity 2. It follows from Proposition 1.1 that both{
(−1

5 + i
15)Sk

}
and

{
(−1

5 + i
15)Sk · Sk

}
are martingales. Obviously, x = −1

5 − i
15 is another

root of f(x) = 0 with multiplicity 2.

Acknowledgement. We thank Professor Roy Erickson for showing us Example 4.5.
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