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Abstract

Let
{{XH(t), t ∈ RN}, H ∈ (0, 1)N

}
be a family of (N, d)-anisotropic Gaussian ran-

dom fields with generalized Hurst indices H = (H1, . . . ,HN ) ∈ (0, 1)N . Under certain
general conditions, we prove that the local time of {XH0

(t), t ∈ RN} is jointly continuous
whenever

∑N
`=1 1/H0

` > d. Moreover we show that, when H approaches H0, the law of
the local times of XH(t) converges weakly [in the space of continuous functions] to that of
the local time of XH0

. The latter theorem generalizes the result of Jolis and Viles (2007)
for one-parameter fractional Brownian motions with values in R to a wide class of (N, d)-
Gaussian random fields. The main argument of this paper relies on the recently developed
sectorial local nondeterminism for anisotropic Gaussian random fields.

Running head: Continuity in the Hurst index of the local times of Gaussian fields

2000 AMS Classification numbers: 60G15, 60G17; 42C40; 28A80.
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determinism.

1 Introduction

Gaussian random fields have been extensively studied in probability theory and applied in many
scientific areas including physics, engineering, hydrology, biology, economics, just to mention a
few. Since many data sets from various areas such as image processing, hydrology, geostatistics
and spatial statistics have anisotropic nature in the sense that they have different geometric
and probabilistic characteristics along different directions, many authors have proposed to
apply anisotropic Gaussian random fields as more realistic models. See, for example, Davies
and Hall (1999), Christakos (2000), Bonami and Estrade (2003) and Benson, et al. (2006).
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Several classes of anisotropic Gaussian random fields have been introduced and studied
for theoretical and application purposes. For example, Kamont (1996) introduced fractional
Brownian sheets and studied some of their regularity properties. Benassi et al. (1997) and
Bonami and Estrade (2003) considered some anisotropic Gaussian random fields with station-
ary increments. Anisotropic Gaussian random fields also arise naturally in stochastic partial
differential equations [see, e.g., Dalang (1999), Øksendal and Zhang (2000), Mueller and Tribe
(2002), Nualart (2006)], in studying the most visited sites of symmetric Markov processes
[Eisenbaum and Khoshnevisan (2002)], and as spatial or spatiotemporal models in statistics
[e.g., Christakos (2000), Gneiting (2002), Stein (2005)].

Many of these anisotropic Gaussian random fields are governed by their generalized Hurst
indices H ∈ (0, 1)N [see Section 2 for the definition of a generalized Hurst index]. People often
have to use a statistical estimate of the index H in practice since the exact value of the index
is unknown in general. Therefore, a justification of the use of a model is needed in application
with an unknown H. Motivated by this purpose, Jolis and Viles (2007) investigated the
continuity in law with respect to the Hurst parameter of the local time of real-valued fractional
Brownian motions. They proved that the law of the local times of the fractional Brownian
motions with Hurst index α converges weakly to that of the local time of fractional Brownian
motion with Hurst index α0, when α tends to α0. However, the method they developed there
depends heavily on the one-parameter setting and the explicit covariance structure of fractional
Brownian motion. It seems hard to apply the method of Jolis and Viles (2007) to Gaussian
random fields, where “time” parameters are vectors and their covariance structures are more
complicated in general.

The main objective of this paper is to provide a general method for studying the con-
tinuity of the laws of the local times of Gaussian random fields. More precisely, we prove
that, under some mild conditions, the law [in the space of continuous functions] of the local
times of (N, d)-anisotropic Gaussian random fields with generalized Hurst indices H converges
weakly to that of the local time of an (N, d)-anisotropic Gaussian field with index H0, when
H approaches H0. Our result generalizes the result of Jolis and Viles (2007) for real-valued
fractional Brownian motion to a wide class of (N, d)-anisotropic Gaussian random fields, in-
cluding fractional Brownian sheets, anisotropic Gaussian fields with stationary increments and
the spatio-temporal models in Gneiting (2002) and Stein (2005). The main ingredient we use in
our proof is the recently developed properties of sectorial local nondeterminism for anisotropic
Gaussian random fields, see Xiao (2007a, 2007b) and Wu and Xiao (2007).

The rest of this paper is organized as follows. Section 2 states the general condition
(i.e., Condition A below) on Gaussian random fields under investigation. We show that these
conditions are satisfied by several classes of Gaussian random fields which are of importance
in theory and/or in applications. In Section 3, we recall the definition of local times of vector
fields and prove the existence and joint continuity of the local times of Gaussian random fields
satisfying Condition A. The key estimate for this paper is stated as Lemma 3.2. In Section
4, we prove the tightness of the laws of local time {LH} as H belongs to a neighborhood of a
fixed index H0 ∈ (0, 1)N . In Section 5, we study the convergence in law of local times of the
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family of Gaussian random fields satisfying Condition A. Finally, we give the proof of our key
lemma, Lemma 3.2, in Section 6.

Throughout this paper, we use 〈·, ·〉 and | · | to denote the ordinary scalar product and the
Euclidean norm in Rm respectively, no matter the value of the integer m. Unspecified positive
and finite constants in Section i will be numbered as ci,1 , ci,2 ....

2 General assumptions and examples

For a fixed vector H = (H1, . . . , HN ) ∈ (0, 1)N , let XH
0 = {XH

0 (t), t ∈ RN} be a real-valued,
centered Gaussian random field with XH

0 (0) = 0 a.s. Denote

σ2(s, t; H) = E
[
XH

0 (s)−XH
0 (t)

]2
, s, t ∈ RN . (2.1)

Let I ⊆ RN be a closed interval in RN . We call a family of Gaussian random fields{
XH

0 , H ∈ (0, 1)N
}

satisfies Condition A on I if the following three conditions hold:

Condition A1. For all s, t ∈ I, σ2(s, t; H) is continuous in H ∈ (0, 1)N .

Condition A2. There exist positive continuous functions (in H) c1,1(H), . . . , c1,4(H) such
that for all s, t ∈ I

c1,1(H) ≤ σ2(0, t; H) ≤ c1,2(H), (2.2)

and

c1,3(H)
N∑

`=1

|s` − t`|2H` ≤ σ2(s, t; H) ≤ c1,4(H)
N∑

`=1

|s` − t`|2H` . (2.3)

Condition A3. There exists a positive continuous function (in H) c1,5(H) such that for all
integers n ≥ 1, all u, t1, . . . , tn ∈ I,

Var
(
XH

0 (u)
∣∣XH

0 (t1), . . . , XH
0 (tn)

) ≥ c1,5(H)
N∑

`=1

min
0≤k≤n

|u` − tk` |2H` , (2.4)

where t0` = 0 for all ` = 1, . . . , N .

As in Xiao (2007b), an anisotropic Gaussian random field is said to have the property of
sectorial local nondeterminism on I if Condition A3 is fulfilled.

Throughout this paper, we will call the vector H ∈ (0, 1)N the (generalized) Hurst index
of XH

0 . Without loss of generality, we may assume that

0 < H1 ≤ · · · ≤ HN < 1. (2.5)

Let XH = {XH(t), t ∈ RN} be an (N, d)-anisotropic Gaussian random field with Hurst
index H defined by

XH(t) =
(
XH

1 (t), . . . , XH
d (t)

)
, t ∈ RN , (2.6)
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where XH
1 , . . . , XH

d are d independent copies of XH
0 . We still call a family of Gaussian random

fields
{
XH , H ∈ (0, 1)N

}
satisfies Condition A on I if the corresponding real-valued family{

XH
0 , H ∈ (0, 1)N

}
satisfies Condition A on I.

Under Condition A2, the Gaussian random field XH has a version whose sample paths are
a.s. continuous on I. Hence, throughout this paper, we will tacitly assume that the sample
paths XH(t) are a.s. continuous on I. For simplicity of notation, later on we will further
assume that I = [ε, ε + 1]N , where ε ∈ (0, 1) is a fixed constant.

For a fixed index H ∈ (0, 1)N , Xiao (2007b) studied sample path properties of an anisotropic
Gaussian random field XH satisfying Condition A2 and Condition A3′ [see Eq. (2.15) for a
definition of Condition A3′], where he established results on the modulus of continuity, small
ball probabilities, fractal dimensions, hitting probabilities and local times for XH . The em-
phasis of the present paper is different and we focus on continuity of the laws of the functionals
of XH as H ∈ (0, 1)N varies.

In the following we provide some important examples of families of Gaussian random fields
which satisfy Condition A. They cover both isotropic and anisotropic Gaussian random fields,
as well as the stationary spatial and spatiotemporal Gaussian models constructed in Gneiting
(2002) and Stein (2005).

2.1 Fractional Brownian sheets

For a given vector H = (H1, . . . , HN ) ∈ (0, 1)N , a real-valued fractional Brownian sheet BH
0 =

{BH
0 (t), t ∈ RN

+} with index H is a centered Gaussian random field with covariance function
given by

E
[
BH

0 (s)BH
0 (t)

]
=

N∏

`=1

1
2

(
s2H`
` + t2H`

` − |s` − t`|2H`

)
, ∀ s, t ∈ RN

+ . (2.7)

An (N, d)-fractional Brownian sheet BH = {BH(t) : t ∈ RN
+} is defined by

BH(t) =
(
BH

1 (t), . . . , BH
d (t)

)
, ∀ t ∈ RN

+ , (2.8)

where BH
1 , . . . , BH

d are d independent copies of BH
0 . Because of (2.7), BH can be seen as

generalizations of one-parameter fractional Brownian motion and the Brownian sheet.
Fractional Brownian sheets have become a typical representative of anisotropic Gaussian

random fields since they were first introduced by Kamont (1996). In particular, we believe the
methods developed for fractional Brownian sheets can be adapted for studying many spatial
and spatiotemporal models with separable covariance structures [see, e.g., Christakos (2000)].

Many authors have studied the probabilistic, statistical and sample path properties of
fractional Brownian sheets. Related to the problems considered in this paper, we mention
that Xiao and Zhang (2002) and Ayache, Wu and Xiao (2008) studied the existence and joint
continuity of the local times of fractional Brownian sheet BH .

Proposition 2.1 The family of (N, d)-fractional Brownian sheets
{
BH , H ∈ (0, 1)N

}
satisfies

Condition A.
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Proof Eq. (2.7) implies that for all s, t ∈ I, σ2(s, t,H) is continuous in H ∈ (0, 1)N . Hence
Condition A1 is satisfied. On the other hand, Conditions A2 and A3 follows respectively from
the proofs of Lemma 8 in Ayache and Xiao (2005) and Theorem 1 in Wu and Xiao (2007). We
omit the details. ¤

2.2 Gaussian random fields with stationary increments

Let η = {η(t), t ∈ RN} be a real-valued centered Gaussian random field with η(0) = 0.
We assume that η has stationary increments and continuous covariance function R(s, t) =
E [η(s)η(t)]. According to Yaglom (1957), R(s, t) can be represented as

R(s, t) =
∫

RN

(
ei〈s,λ〉 − 1

)(
e−i〈t,λ〉 − 1

)
∆(dλ) + 〈s,Σt〉, (2.9)

where Σ is an N × N nonnegative definite matrix and ∆(dλ) is a nonnegative symmetric
measure on RN \ {0} satisfying

∫

RN

|λ|2
1 + |λ|2 ∆(dλ) < ∞. (2.10)

The measure ∆ and its density (if it exists) f(λ) are called the spectral measure and spectral
density of η, respectively.

It follows from (2.9) that η has stochastic integral representation:

{
η(t), t ∈ RN

} d=
{ ∫

RN

(
ei〈t,λ〉 − 1

)
W (dξ) + 〈Y, t〉, t ∈ RN

}
, (2.11)

where d= denotes equality in all finite dimensional distributions. In the right-hand side of
(2.11), Y is a Gaussian random variable with mean 0 and W (dλ) is a centered complex valued
Gaussian random measure which is independent of Y and satisfies

E
[
W (A)W (B)

]
= ∆(A ∩B) and W (−A) = W (A)

for all Borel sets A, B ⊆ RN . From now on, we will assume Y = 0, which is equivalent to
assuming Σ = 0 in (2.9). Therefore, we have

σ2
η(h) = E

[(
η(t + h)− η(t)

)2
]

= 2
∫

RN

(
1− cos 〈h, λ〉)∆(dλ). (2.12)

Eq. (2.11) provides a useful way for constructing Gaussian random fields with stationary
increments by choosing the spectral measure ∆. In particular, for α ∈ (0, 1), if ∆ has a density
function f given by

fα(λ) =
1

|λ|2α+N
, ∀λ ∈ RN\{0}, (2.13)

then η = {η(t), t ∈ RN} is a real-valued fractional Brownian motion of index α, which is an
isotropic Gaussian random field and will be denoted by ηα. Another interesting example of
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isotropic Gaussian random fields is the fractional Riesz-Bessel motion with indices β and γ

introduced by Anh et al. (1999), whose spectral density is given by

fγ,β(λ) =
1

|λ|2γ(1 + |λ|2)β
, ∀λ ∈ RN\{0}, (2.14)

where γ and β are constants satisfying β + γ > N
2 and 0 < γ < 1 + N

2 . Anh et al. (1999)
showed that these Gaussian random fields can be used for modeling simultaneously long range
dependence and intermittency; and Xiao (2007a) studied their sample path properties.

The following example covers a wide class of Gaussian random fields that satisfy Condition
A. In fact we will prove a stronger result that these Gaussian random fields satisfy Conditions
A1, A2 and the following

Condition A3′. There exists a positive function c1,6(H) which is continuous in H ∈ (0, 1)N

such that for all integers n ≥ 1, all u, t1, . . . , tn ∈ I,

Var
(
XH

0 (u)
∣∣XH

0 (t1), . . . , XH
0 (tn)

) ≥ c1,6(H) min
0≤k≤n

N∑

`=1

|u` − tk` |2H` , (2.15)

where t0 = 0.
Following Xiao (2007b), an anisotropic Gaussian random field satisfying Condition A3′ is

said to have the property of strong local nondeterminism in the metric ρ(s, t) =
∑N

j=1 |sj−tj |Hj .
Clearly, Condition A3′ implies Condition A3, but the converse does not hold. Consequently,
if a family of anisotropic Gaussian random fields satisfies Conditions A1, A2 and A3′, then it
satisfies Condition A.

Proposition 2.2 Let
{
ηH = {ηH(t), t ∈ RN}, H = (H1, . . . , HN ) ∈ (0, 1)N

}
be a family of

real-valued centered Gaussian random fields with stationary increments and spectral densities{
f(λ; H), H ∈ (0, 1)N

}
. Suppose f(λ; H) is continuous in H ∈ (0, 1)N and

f(λ; H) ³ 1( ∑N
j=1 |λj |Hj

)2+Q
, ∀λ ∈ RN\{0}, (2.16)

where Q =
∑N

`=1 H−1
` , and where two functions q(t; H) ³ r(t; H) for t ∈ T means that there are

positive continuous functions c1,7(H) and c1,8(H) in H such that c1,7(H) ≤ q(t; H)/r(t; H) ≤
c1,8(H) for all t ∈ T . Then the family of Gaussian random fields

{
ηH , H ∈ (0, 1)N

}
satisfies

Conditions A1, A2 and A3′.

Proof By (2.12), we can write

σ2
ηH (s, t; H) = σ2

ηH (s− t;H) = 2
∫

RN

(
1− cos 〈s− t, λ〉) f(λ;H) dλ. (2.17)

By the continuity of f(λ; H) in H, (2.16) and the Dominated Convergence Theorem, one can
verify that Condition A1 is satisfied.
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In order to verify Conditions A2 and A3, we first derive an appropriate upper bound
for σ2

ηH (h; H) (h ∈ RN ) which implies the upper bounds in (2.2) and (2.3), and then prove
Condition A3′, which also provides the desired lower bounds in (2.2) and (2.3).

Because of (2.16) we may, without of loss of generality, assume h` ≥ 0 for all ` = 1, . . . , N .

By (2.16), (2.17) and a change of variables ν` =
( ∑N

j=1 h
Hj

j

)H−1
` λ` (` = 1, . . . , N), we obtain,

σ2
ηH (h) ≤ 2c1,8(H)

∫

RN

1− cos 〈h, λ〉( ∑N
j=1 |λj |Hj

)2+Q
dλ

= 2c1,8(H)
∫

RN

1− cos
(∑N

`=1

( ∑N
j=1 h

Hj

j

)−H−1
` h`ν`

)

( ∑N
j=1 |νj |Hj

)2+Q
dν

( N∑

j=1

h
Hj

j

)2

.

(2.18)

Since h
H`
`∑N

j=1 h
Hj
j

≤ 1 for all ` = 1, . . . , N and the function x 7→ cosx is decreasing in (0, π
2 ),

we derive that

∫

RN

1− cos
(∑N

`=1

(∑N
j=1 h

Hj

j

)−H−1
` h`ν`

)

( ∑N
j=1 |νj |Hj

)2+Q
dν

≤
∫

|ν|<π/2

1− cos
(∑N

j=1 |νj |
)

( ∑N
j=1 |νj |Hj

)2+Q
dν +

∫

|ν|≥π/2

2( ∑N
j=1 |νj |Hj

)2+Q
dν.

(2.19)

It can be verified that the last two integrals are convergent [see, e.g., Lemmas 6.3 and 6.4
in Xiao (2007b)]. Combining (2.18), (2.19) and the elementary inequality

( ∑N
j=1 h

Hj

j

)2 ≤
N

∑N
j=1 h

2Hj

j , we obtain

σ2
ηH (h) ≤ c1,9(H)

N∑

j=1

h
2Hj

j , (2.20)

where

c1,9(H) = 2N c1,8(H)
(∫

|ν|<π/2

1− cos
(∑N

j=1 |νj |
)

( ∑N
j=1 |νj |Hj

)2+Q
dν +

∫

|ν|≥π/2

2( ∑N
j=1 |νj |Hj

)2+Q
dν

)
,

which is a positive continuous function of H ∈ (0, 1)N . Therefore, the upper bounds in
Condition A2 follow from (2.20).

Next, we prove that the family {ηH ,H ∈ (0, 1)N} satisfies Condition A3′. The key technique
in our derivation is based on the Fourier analytic argument in Kahane (1985, Chapter 18); see
Xiao (2007a, 2007b) and Wu and Xiao (2007) for further information. By following the proof
of Theorem 3.2 in Xiao (2007b) line by line, one can verify that for all integers n ≥ 1, all
u, t1, . . . , tn ∈ I,

Var
(
ηH(u)

∣∣ηH(t1), . . . , ηH(tn)
) ≥ c1,10(H) min

0≤k≤n

N∑

`=1

|u` − tk` |2H` , (2.21)
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where t0 = 0 and c1,10(H) can be chosen as

c1,10(H) :=
c

c1,7(H)

∫

RN

( N∑

j=1

|λj |Hj

)2+Q∣∣δ̂(λ)
∣∣2 dλ.

In the above, δ̂ is the Fourier transform of a C∞(RN ) function δ such that δ(0) = 1 and
δ(t) ≡ 0 for all t ∈ RN with ρ(0, t) =

∑N
j=1 |tj |Hj ≥ 1. Hence δ̂(·) ∈ C∞(RN ) as well and

δ̂(λ) decays rapidly as |λ| → ∞. This implies that c1,10(H) is a positive continuous function in
H ∈ (0, 1)N . Consequently, we prove Condition A3′.

Finally, we can use the lower bound in Condition A3′ with n = 1 by choosing u = t, t1 = 0
and u = t, t1 = s, respectively, to serve as the lower bounds in Condition A2. This finishes
the proof of Proposition 2.2. ¤

Remark 2.3 It follows from (2.13) and (2.14) that the spectral density functions of fractional
Brownian motion and fractional Riesz-Bessel motion (with 0 < γ + β − N

2 < 1) satisfy the
spectral conditions in Proposition 2.2. Therefore, both families of fractional Brownian mo-
tions and fractional Riesz-Bessel motions satisfy Condition A. When the index α ∈ (0, 1) is
fixed, Pitt (1978) proved that fractional Brownian motion with Hurst index α is strongly local
nondeterministic, i.e., for all integers n ≥ 1, all u, t1, . . . , tn ∈ I,

Var
(
ηα(u)

∣∣ηα(t1), . . . , ηα(tn)
) ≥ c1,11(α) min

0≤k≤n
|u− tk|2α, (2.22)

where t0 = 0 and c1,11(α) is a positive constant depending on α. A similar result was proved
by Xiao (2007a) for fractional Riesz-Bessel motion. However their results do not provide any
information on whether the constants in the lower bounds are continuous in the indices α, β

and γ. In this sense, Proposition 2.2 strengthens the results of Pitt (1978) and Xiao (2007a).

Remark 2.4 Anisotropic Gaussian random fields with the above type of spectral density
functions arise naturally in probability theory and its applications. See Robeva and Pitt
(2004) for their relevance to the solution of the stochastic heat equation; Bonami and Estrade
(2003), Benson, et al. (2006) and Biermé et al. (2007) for their applications in modeling bone
and aquifer structures; Gneiting (2002) and Stein (2005) for stationary nonseparable spatial
and spatiotemporal Gaussian models.

3 Local times and their joint continuity

In this section, we briefly recall some aspects of the theory of local times in general at first
and then study the existence and joint continuity of the local times of Gaussian random fields
satisfying Condition A. For excellent surveys on local times of random and/or deterministic
vector fields, we refer to Geman and Horowitz (1980) and Dozzi (2002).

Let Y (t) be a Borel vector field on RN with values in Rd. For any Borel set T ⊆ RN , the
occupation measure of Y on T is defined as the following measure on Rd:

µT (•) = λN

{
t ∈ T : Y (t) ∈ •},
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where λN denotes the Lebesgue measure in RN .
If µT is absolutely continuous with respect to the Lebesgue measure λd, we say that Y (t)

has local times on T , and define its local times, L(•, T ), as the Radon–Nikodým derivative of
µT with respect to λd, i.e.,

L(x, T ) =
dµT

dλd
(x), ∀x ∈ Rd.

In the above, x is the so-called space variable, and T is the time variable. Note that if Y has
local times on T then for every Borel set S ⊆ T , L(x, S) also exists.

By standard martingale and monotone class arguments, one can deduce that the local
times have a measurable modification that satisfies the following occupation density formula
[see Geman and Horowitz (1980, Theorem 6.4)]: For every Borel set T ⊆ RN , and for every
measurable function f : Rd → R+,

∫

T
f(Y (t)) dt =

∫

Rd

f(x)L(x, T ) dx. (3.1)

Suppose we fix a rectangle T =
∏N

i=1[ai, ai + hi] ⊆ RN , where a ∈ RN and h ∈ RN
+ . If we

can choose a version of the local time, still denoted by L(x,
∏N

i=1[ai, ai + ti]), such that it is a
continuous function of (x, t1, · · · , tN ) ∈ Rd×∏N

i=1[0, hi], Y is said to have a jointly continuous
local time on T . When a local time is jointly continuous, L(x, ·) can be extended to be a finite
Borel measure supported on the level set

Y −1
T (x) = {t ∈ T : Y (t) = x}; (3.2)

see Adler (1981) for details. This makes local times, besides of interest on their own right, a
useful tool for studying fractal properties of Y .

It follows from (25.5) and (25.7) in Geman and Horowitz (1980) that for all x, y ∈ Rd,
T ⊆ RN a closed interval and all integers n ≥ 1,

E
[
L(x, T )n

]
= (2π)−nd

∫

T n

∫

Rnd

exp
(
− i

n∑

j=1

〈uj , x〉
)

×E exp
(

i

n∑

j=1

〈uj , Y (tj)〉
)

du dt (3.3)

and for all even integers n ≥ 2,

E
[
(L(x, T )− L(y, T ))n

]
=(2π)−nd

∫

T n

∫

Rnd

n∏

j=1

[
e−i〈uj ,x〉 − e−i〈uj ,y〉

]

× E exp
(

i
n∑

j=1

〈uj , Y (tj)〉
)

du dt,

(3.4)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ T. In the coordinate notation
we then write uj = (uj

1, . . . , u
j
d).
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Let {XH , H ∈ (0, 1)N} = {{XH(t), t ∈ RN}, H ∈ (0, 1)N} be a family of (N, d)-Gaussian
random fields. For a fixed index H0 ∈ (0, 1)N such that

∑N
`=1

1
H0

`
> d, Xiao (2007b) proved the

following results on the existence and joint continuity of the local times of Gaussian random
field XH0

:

(i) If XH0
satisfies Condition A2 (for H0), then XH0

has a local time LH0
(x, T ) ∈ L2(P×λd).

(ii) If XH0
satisfies Conditions A2 and A3′ (for H0), then XH0

has a jointly continuous local
time on T .

The main result of this section is the following Theorem 3.1. It shows that, under Conditions
A2 and A3 [instead of A3′], the above conclusions still hold for all H ∈ (0, 1)N which are close
to H0. Moreover, we can bound the moments of the local times of XH in terms of H0. Hence,
Theorem 3.1 strengthens and extends the results of Ayache, Wu and Xiao (2008) for fractional
Brownian sheets and Theorem 8.2 in Xiao (2007b).

We set up some notation. Let H0 ∈ (0, 1)N be an index satisfying

N∑

`=1

1
H0

`

> d. (3.5)

With the convention
∑0

`=1
1

H0
`

:= 0, we can see that there exists an integer τ0 ∈ {1, . . . , N}
such that

τ0−1∑

`=1

1
H0

`

≤ d <

τ0∑

`=1

1
H0

`

. (3.6)

Define

βτ0
=

τ0∑

`=1

H0
τ0

H0
`

+ N − τ0 −H0
τ0

d. (3.7)

Then it can be easily verified that βτ0
∈ (N − τ0 , N − τ0 + 1], where βτ0

= N − τ0 + 1 if and

only if
∑τ0−1

`=1
1

H0
`

= d; and, if τ0 = N , then βτ0
= H0

N (
∑N

`=1
1

H0
`
− d) > 0.

Distinguishing two cases
∑τ0−1

`=1
1

H0
`

< d and
∑τ0−1

`=1
1

H0
`

= d, we see that we can choose a

positive number δ0 < min{H0
` , 1−H0

` : 1 ≤ ` ≤ N}, which depends on d and H0 only, with the
following property: For all indices H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0] ⊆ (0, 1)N , there is an integer
τ ∈ {τ0 − 1, τ0} such that

τ−1∑

`=1

1
H`

≤ d <
τ∑

`=1

1
H`

. (3.8)

Moreover, if we denote

βτ =
τ∑

`=1

Hτ

H`
+ N − τ −Hτ d, (3.9)

then βτ ∈ (N − τ0 , N − τ0 +2]. It is useful to note that, even though τ varies with H, its value
depends only on H0 and, βτ is always bounded from below and above by positive constants
depending only on H0. In the sequel, δ0 and τ0 will always be the constants defined above.
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Theorem 3.1 Let {XH , H ∈ (0, 1)N} = {{XH(t), t ∈ RN}, H ∈ (0, 1)N} be a family of
(N, d)-Gaussian random fields with Hurst indices H satisfying Conditions A2 and A3 on I =
[ε, 1+ε]N . Let H0 ∈ (0, 1)N be a Hurst index satisfying (3.5). Then for every H ∈ ∏N

`=1[H
0
` −

δ0, H0
` + δ0], XH has a local time LH(x, I) ∈ L2(P × λd), which admits the following L2-

representation

LH(x, I) = (2π)−d

∫

Rd

e−i〈y,x〉
∫

I
ei〈y,XH(s)〉 dsdy, ∀x ∈ Rd. (3.10)

Furthermore, the Gaussian random field XH = {XH(t), t ∈ RN} has almost surely a jointly
continuous local time on I.

For simplicity of notation, we have assumed that I = [ε, 1 + ε]N . This does not lose any
generality. We will further denote LH(x, t) := LH(x, [ε, ε + t]). By Theorem 3.1, LH(x, t) is
a continuous function on Rd × [0, 1]N . Hence we will view LH(x, t) as an element in C(Rd ×
[0, 1]N ,R) and LH(x, ·) as a finite Borel measure. Here and in the sequel, for any integers
p, q and Borel set S ⊆ Rp, C(S,Rq) denotes the space of continuous functions from S to Rq,
endowed with the topology of uniform convergence on compact subsets of S.

The proof of Theorem 3.1 is based on the following lemma which extends the inequalities
in Lemma 8.4 and Lemma 8.8 of Xiao (2007b). It will also play an essential rôle in Section 4
for proving the tightness of the laws of the local times of {XH , H ∈ (0, 1)N}.

Lemma 3.2 Suppose the assumptions of Theorem 3.1 hold. Then, for all H ∈ ∏N
`=1[H

0
` −

δ0, H0
` + δ0], there exist positive and finite constants c3,1 and c3,2 depending on N, d, H0 and I

only, such that for all hypercubes T = [a, a + 〈r〉] ⊆ I with side-length r ∈ (0, 1) the following
estimates hold:

(1). for all x ∈ Rd and all integers n ≥ 1,

E
[
LH(x, T )n

] ≤ cn
3,1

(n!)N−βτ rn βτ , (3.11)

where βτ is defined in (3.9).

(2). for all x, y ∈ Rd with |x−y| ≤ 1, all even integers n ≥ 1 and all γ ∈ (0, 1) small enough,

E
[(

LH(x, T )− LH(y, T )
)n] ≤ cn

3,2
(n!)N−βτ+(1+Hτ )γ |x− y|nγ rn(βτ−Hτ γ). (3.12)

The moment estimates (3.11) and (3.12) are a lot more precise than what we actually need
in this paper. We expect that they may be useful for some other purposes. For example, one
can apply them to show that, for every fixed x ∈ Rd, there is an event of positive probability
(which only depends on H0, N , d and x) such that the Hausdorff dimension of the level set
dimH

(
(XH)−1({x})∩ I

)
of XH tends to dimH

(
(XH0

)−1({x})∩ I
)

as H → H0. Note that this
result can not be derived directly from the Hausdorff dimension result for the level set of XH

in Xiao (2007b, Theorem 7.1), where H ∈ (0, 1)N is fixed.
The proof of Lemma 3.2 makes use of Fourier analytic arguments and the property of

sectorial local nondeterminism. We will defer the lengthy proof of Lemma 3.2 to Section 6.
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Proof of Theorem 3.1 Since (3.8) holds for all H ∈ ∏N
`=1[H

0
` − δ0, H0

` + δ0], the proof of
the first part of Theorem 3.1 (i.e., the existence and (3.10)) is the same as that of Theorem
8.1 in Xiao (2007b) and is omitted.

On the other hand, the proof of the joint continuity of the local time of XH is similar to
that of Theorem 8.2 in Xiao (2007b) [see also the proof of Theorem 3.1 in Ayache, Wu and
Xiao (2008)]. Because of its usefulness for proving the tightness in the next section, we include
it here. Observe that for all x, y ∈ Rd, s, t ∈ [0, 1]N and all even integers n ≥ 1, we have

E
[(

LH(x, s)− LH(y, t)
)n

]
≤ 2n−1

{
E

[(
LH(x, s)− LH(x, t)

)n
]

+ E
[(

LH(x, t)− LH(y, t)
)n

]}
.

(3.13)

Since LH(x, ·) is a finite Borel measure, the difference LH(x, s)−LH(x, t) = LH(x, [ε, ε+ s])−
LH(x, [ε, ε + t]) can be written as a sum of finite number (only depends on N) of terms of
the form LH(x, Tj), where each Tj is a closed subinterval of I with at least one edge length
≤ |s − t|. By further splitting these intervals into cubes of sides ≤ |s − t|, we can use (3.11)
to bound the first term in (3.13). On the other hand, the second term in (3.13) can be dealt
with using (3.12) as above. Consequently, there exist some constants γ ∈ (0, 1) and n0 such
that for all x, y ∈ Rd, s, t ∈ [0, 1]N and all even integers n ≥ n0,

E
[(

LH(x, s)− LH(y, t)
)n

]
≤ cn

3,3

(|x− y|+ |s− t|)nγ
. (3.14)

Therefore the joint continuity of the local times LH(x, t) follows from the multiparameter
version of Kolmogorov’s continuity theorem [cf. Khoshnevisan (2002)]. This finishes the proof.
¤

4 Tightness

In this section, for any index H0 ∈ (0, 1)N satisfying (3.5), we prove the tightness of the laws
of

{
LH(x, t), H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0]
}

in C
(
[−D, D]d × [0, 1]N ,R

)
for all D > 0.

For this purpose, we will make use of the following tightness criterion which is a consequence
of Corollary 16.9 in Kallenberg (2002).

Lemma 4.1 Let {Z(p), p ≥ 1} with Z(p) = {Z(p)(t), t ∈ RM} be a sequence of continuous
random fields with values in Rq. Assume that K ⊆ RM is a compact interval and u ∈ K is a
fixed point. If there exist some positive constants c4,1, b1, b2 and b3 such that

E
[∣∣Z(p)(u)

∣∣b1
]
≤ c4,1 ∀ p ≥ 1 (4.1)

and
E

[∣∣Z(p)(s)− Z(p)(t)
∣∣b2

]
≤ c4,1 |s− t|M+b3 ∀ s, t ∈ K and ∀ p ≥ 1. (4.2)

Then {Z(p), p ≥ 1} is tight in C(K,Rq).
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Proposition 4.2 Let
{
XH , H ∈ (0, 1)N

}
be a family of (N, d)-Gaussian random fields satis-

fying Condition A. Let H0 ∈ (0, 1)N be a Hurst index satisfying (3.5) and δ0 > 0 be the cor-
responding constant defined before. Then the laws of

{
LH(x, t), H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0]
}

in C
(
[−D, D]d × [0, 1]N ,R

)
is tight for all D > 0.

Proof Note that, for all H ∈ ∏N
`=1[H

0
` − δ0, H0

` + δ0], LH(0, 0) = 0 almost surely. Hence, by
Lemma 4.1, it is sufficient to prove that there exist positive constants c4,2 and γ ∈ (0, 1) such
that for all even integers n large and all H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0],

E
[(

LH(x, s)− LH(y, t)
)n

]
≤ cn

4,2

(|x− y|+ |s− t|)nγ
. (4.3)

This is similar to (3.14) and the only difference is that the constants c4,2 and γ are independent
of H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0]. By (3.13) we only need to verify that the upper bounds
appearing in the moment estimates (3.11) and (3.12) can be taken to be independent of the
index H provided H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0].
Recall that, by our choice of the constant δ0, βτ is bounded from below and above by

positive constants depending only on H0. That is, there exist positive constants 0 < β′ < β′′

such that βτ ∈ [β′, β′′] for all H ∈ ∏N
`=1[H

0
` − δ0, H0

` + δ0]. Hence by Lemma 3.2, we can
choose γ ∈ (0, 1) small enough such that

E
[
LH(x, T )n

] ≤ cn
3,1

(n!)N−β′ rnβ′ , (4.4)

and

E
[(

LH(x, T )− LH(y, T )
)n] ≤ cn

3,2
(n!)N−β′+(1+H0

N+δ0)γ |x− y|nγ rn
(
β′−(H0

N+δ0)γ
)

(4.5)

for all intervals T = [a, a + 〈r〉] ⊆ I and all H ∈ ∏N
`=1[H

0
` − δ0, H0

` + δ0]. This finishes the
proof of Proposition 4.2. ¤

5 Convergence in law

In this section, we establish the continuity of the laws of the local times of XH in the Hurst
index H ∈ (0, 1)N . For this purpose, we will make use of the following result, which is an
extension of Proposition 4.2 in Jolis and Viles (2007).

Proposition 5.1 Let {{Yn(t), t ∈ RN}, n ≥ 1} be a family of (N, d)-random fields satisfying
the following conditions:

(1). {Yn} converges in law to Y in C
(
I,Rd

)
as n →∞.

(2). Both families {Yn} and Y have local times Ln and L, which are jointly continuous in x

and t.
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(3). The family of local times Ln converges in law to a random field Z in C
(
[−D, D]d ×

[0, 1]N ,R
)

as n →∞.

Then, for all points (x1, t1), . . . , (xm, tm) ∈ [−D, D]d × [0, 1]N , we have

(
Z(x1, t1), . . . , Z(xm, tm)

) L=
(
L(x1, t1), . . . , L(xm, tm)

)
. (5.1)

Proof When N = 1 and d = 1, this is proved by Jolis and Viles (2007). The key ingredient in
their proof is the occupation density formula (3.1). Extending their proof to the multiparameter
case is straightforward and is omitted. ¤

Theorem 5.2 Let
{
XH , H ∈ (0, 1)N

}
be a family of (N, d)-Gaussian random fields satisfying

Condition A and let H0 ∈ (0, 1)N be a Hurst index satisfying (3.5). Then the family of
local times

{
LH , H ∈ (0, 1)N

}
of {XH} converges in law to the local time LH0

of XH0
in

C
(
Rd × [0, 1]N ,R

)
as H → H0.

Proof It follows from Proposition 16.6 in Kallenberg (2002) that it is sufficient to prove that,
for all constants D > 0, the family of local times

{
LH , H ∈ (0, 1)N

}
converge in law to the

local time LH0
in C

(
[−D, D]d × [0, 1]N ,R

)
as H → H0.

By Proposition 4.2, we see that the laws of
{
LH(x, t), H ∈ ∏N

`=1[H
0
` −δ0, H0

` +δ0]
}

is tight
in C

(
[−D, D]d × [0, 1]N , R

)
for all D > 0. Hence it only remains to prove the convergence of

finite dimensional distributions. This can be done by applying Proposition 5.1.
Take an arbitrary sequence {Hn} ⊂ ∏N

`=1[H
0
` − δ0, H0

` + δ0] converging to H0 as n →∞.
First we verify that, as n → ∞, the sequence {XHn

, n ≥ 1} of Gaussian random fields
converges in law to XH0

in C(I,Rd). In fact, Condition A2 implies that for any fixed point
u ∈ I and all integers m ≥ 2,

sup
n≥1

E
(∣∣XHn

(u)
∣∣2m

)
≤ cm

5,1
. (5.2)

and

E
(∣∣XHn

(u)−XHn
(v)

∣∣2m
)
≤ cm

5,2

( N∑

`=1

|u` − v`|2H`

)m

∀u, v,∈ I. (5.3)

Hence Lemma 4.1 implies that the family of laws of
{
XH , H ∈ ∏N

`=1[H
0
` − δ0, H0

` + δ0]
}

is
tight in C(I,Rd). On the other hand, Condition A1 implies that

lim
H→H0

E
[
XH

j (u)XH
k (v)

]
= E

[
XH0

j (u)XH0

k (v)
]
, ∀j, k = 1, . . . , d, ∀u, v ∈ I, (5.4)

which implies the convergence of the finite dimensional distributions of {XH , H ∈ (0, 1)N}
as H → H0. This verifies Condition (1) in Proposition 5.1. Condition (2) in Proposition 5.1
follows from Theorem 3.1.
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If for any sequence {Hn} ⊂ ∏N
`=1[H

0
` − δ0, H0

` + δ0] converging to H0 as n →∞ such that

LHn
(x, t) L→ Z(x, t) in C

(
[−D, D]d × [0, 1]N ,R

)
as n →∞, (5.5)

for some random field Z. Then, by Proposition 5.1, we have that for all fixed points (x1, t1),
. . . , (xm, tm),

(
Z(x1, t1), . . . , Z(xm, tm)

) L=
(
LH0

(x1, t1), . . . , LH0
(xm, tm)

)
, (5.6)

which gives us that L(Z) = L(LH0
) in C

(
[−D, D]d × [0, 1]N ,R

)
. This finishes the proof of

Theorem 5.2. ¤

6 Proof of Lemma 3.2

The proof of Lemma 3.2 follows the same spirit of the proofs of Lemma 3.7 and Lemma 3.10
of Ayache, Wu and Xiao (2008), where only fractional Brownian sheets were considered. In
order to extend their argument to Gaussian random fields satisfying Condition A and to prove
that the constants c3,1 and c3,2 are independent of H, we need to make several modifications
and rely completely on the sectorial local nondeterminism A3.

We will make use of following lemmas. Among them, Lemma 6.1 is essentially due to
Cuzick and DuPreez (1982) [see also Khoshnevisan and Xiao (2007)], Lemma 6.2 is from
Ayache, Wu and Xiao (2008). Lemma 6.3 is a direct consequence of Condition A3 and tells
us that the Gaussian random field XH

0 has the one-sided strong local nondeterminism along
every direction.

Lemma 6.1 Let Z1, . . . , Zn be mean zero Gaussian variables which are linearly independent,
then for any nonnegative Borel function g : R→ R+,

∫

Rn

g(v1) exp
[
−1

2
Var

( n∑

j=1

vjZj

)]
dv1 · · · dvn

=
(2π)(n−1)/2

(detCov(Z1, · · · , Zn))1/2

∫ ∞

−∞
g
( v

σ1

)
e−v2/2 dv,

where σ2
1 = Var(Z1|Z2, . . . , Zn) is the conditional variance of Z1 given Z2, . . . , Zn.

Lemma 6.2 For any q ∈ [0,
∑N

`=1 H−1
` ), let τ ∈ {1, . . . , N} be the integer such that

τ−1∑

`=1

1
H`

≤ q <
τ∑

`=1

1
H`

(6.1)

with the convention that
∑0

`=1
1

H`
:= 0. Then there exists a positive constant δτ ≤ 1 depending

on (H1, . . . , HN ) only such that for every δ ∈ (0, δτ ), we can find τ real numbers p` ≥ 1
(1 ≤ ` ≤ τ) satisfying the following properties:

τ∑

`=1

1
p`

= 1,
H` q

p`
< 1, ∀ ` = 1, . . . , τ (6.2)

15



and

(1− δ)
τ∑

`=1

H` q

p`
≤ Hτ q + τ −

τ∑

`=1

Hτ

H`
. (6.3)

Furthermore, if we denote ατ :=
∑τ

`=1
1

H`
− q > 0, then for any positive number ρ ∈ (

0, ατ
2τ

)
,

there exists an `0 ∈ {1, . . . , τ} such that

H`0q

p`0

+ 2H`0ρ < 1. (6.4)

Lemma 6.3 Let XH
0 be an (N, 1)-Gaussian random field satisfying Condition A3, and let

` ∈ {1, . . . , N} be fixed. For any integer n ≥ 2, t1, . . . , tn ∈ I such that

t1` ≤ t2` ≤ · · · ≤ tn`

we have
Var

(
XH

0 (tn)
∣∣∣XH

0 (tk) : 1 ≤ k ≤ n− 1
)
≥ c1,5(H) |tn` − tn−1

` |2H` , (6.5)

where c1,5(H) is the positive continuous function defined in Condition A3.

Lemma 6.4 below is a refinement of Lemma 3.6 in Ayache, Wu and Xiao (2008). It is
important to note that the constant c6,1 in (6.6) is independent of {bj , 1 ≤ j ≤ n}.
Lemma 6.4 Let a > 0 and 0 < b < b < 1 be given constants. There exists a positive constant
c6,1 such that for all integers n ≥ 1, real numbers 0 < r ≤ 1, bj ∈ [b, b] and an arbitrary
s0 ∈ [0, a/2],

∫

a≤s1≤···≤sn≤a+r

n∏

j=1

(sj − sj−1)−bj ds1 · · · dsn ≤ cn
6,1

(n!)
1
n

∑n
j=1 bj−1rn−∑n

j=2 bj , (6.6)

In particular, if bj = α ∈ [b, b] for all j = 1, . . . , n, then
∫

a≤s1≤···≤sn≤a+r

n∏

j=1

(sj − sj−1)−α ds1 · · · dsn ≤ cn
6,1

(n!)α−1 rn(1−(1− 1
n

)α). (6.7)

Proof Clearly, we only need to prove (6.6). By integrating the integral in (6.6) in the order
of dsn, dsn−1, · · · , ds1, by using a change of variable in each step to construct Beta functions,
and by applying the relationship between Beta and Gamma functions, we derive

∫

a≤s1≤···≤sn≤a+r

n∏

j=1

(sj − sj−1)−bj ds1 · · · dsn

=
1

1− bn
· Γ(2− bn)

∏n−1
j=2 Γ(1− bj)

Γ
(
n−∑n

j=2 bj

)
∫ a+r

a
(a + r − s1)n−1−∑n

j=2 bj (s1 − s0)−b1 ds1

≤
∏n

j=1 Γ(1− bj)

Γ
(
n−∑n

j=2 bj

)
(

a

2

)−b1 ∫ a+r

a
(a + r − s1)n−1−∑n

j=2 bj ds1

=

∏n
j=1 Γ(1− bj)

Γ
(
1 + n−∑n

j=2 bj

)
(

a

2

)−b1

rn−∑n
j=2 bj .

(6.8)
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Since the Gamma function Γ(x) is continuous on [1− b, 1− b], there is a finite constant c > 0
such that Γ(1− bj) ≤ c for all 1 ≤ j ≤ n. The inequality (6.6) follows from (6.8) and Stirling’s
formula. ¤

Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2 For any Gaussian random field XH
0 satisfying Condition A3, there

exists a positive constant

c6,2 := min
H∈∏N

`=1[H
0
`−δ0, H0

` +δ0]
c1,5(H),

which depends on H0 and δ0 only, such that for all integers n ≥ 1, all u, t1, . . . , tn ∈ I,

Var
(
XH

0 (u)
∣∣XH

0 (t1), . . . , XH
0 (tn)

) ≥ c6,2

N∑

`=1

min
0≤k≤n

|u` − tk` |2H` , (6.9)

where t0 = 0. Meanwhile, by Lemma 6.3, we have that for H ∈ ∏N
`=1[H

0
` − δ0, H0

` + δ0],
` ∈ {1, . . . , N} fixed, and for any integer n ≥ 2, t1, . . . , tn ∈ I such that

t1` ≤ t2` ≤ · · · ≤ tn`

we have
Var

(
XH

0 (tn)
∣∣∣XH

0 (tk) : 1 ≤ k ≤ n− 1
)
≥ c6,2 |tn` − tn−1

` |2H` , (6.10)

Now we proceed to prove (3.11). We will start with an arbitrary closed interval T =∏N
`=1[a`, a` + r`] ⊆ I. It follows from (3.3) and the fact that XH

1 , . . . , XH
d are independent

copies of XH
0 that for all integers n ≥ 1,

E
[
L(x, T )n

] ≤ (2π)−nd

∫

T n

d∏

k=1

{∫

Rn

exp
[
− 1

2
Var

( n∑

j=1

uj
k XH

0 (tj)
)]

dUk

}
dt, (6.11)

where Uk = (u1
k, . . . , u

n
k) ∈ Rn. Fix k = 1, . . . , d and denote the inner integral in (6.11) by Jk.

Since (3.8) holds, we apply Lemma 6.2 with δ = n−1 and q = d to obtain τ positive numbers
p1, . . . , pτ ≥ 1 satisfying (6.2) and (6.3). Then for all points t1, . . . , tn ∈ T such that t1` , . . . , t

n
`

are all distinct for every 1 ≤ ` ≤ N [the set of such points has full (nN)-dimensional Lebesgue
measure] we have

Jk = cn
6,3

[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

) ]− 1
2 (6.12)

= cn
6,3

τ∏

`=1

[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

) ]− 1
2p` ,

where the first equality follows from the fact that for any positive definite q × q matrix Γ,
∫

Rq

[det(Γ)]1/2

(2π)u/2
exp

(
− 1

2
x′Γx

)
dx = 1 (6.13)
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and the second equality follows from (6.2).
Combining (6.11) and (6.12) yields

E
[
L(x, T )n

] ≤ cn
6,4

∫

T n

τ∏

`=1

[
detCov(XH

0 (t1), . . . , XH
0 (tn))

]− d
2p` dt. (6.14)

To evaluate the integral in (6.14), we will first integrate [dt1` . . . dtn` ] for ` = 1, . . . , τ . To this
end, we will make use of the following fact about multivariate normal distributions: For any
Gaussian random vector (Z1, . . . , Zn),

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

j=2

Var(Zj |Z1, . . . , Zj−1). (6.15)

By the above fact and (6.10), we can derive that for every ` ∈ {1, . . . , τ} and for all t1, . . . , tn ∈
T =

∏N
`=1[a`, a` + r`] satisfying

a` ≤ t
π`(1)
` ≤ t

π`(2)
` ≤ · · · ≤ t

π`(n)
` ≤ a` + r` (6.16)

for some permutation π` of {1, . . . , N}, we have

detCov
(
XH

0 (t1), . . . , XH
0 (tn)

) ≥ cn
6,5

n∏

j=1

(
t
π`(j)
` − t

π`(j−1)
`

)2H` , (6.17)

where t
π`(0)
` := ε, and where c6,5 is a constant depends on N, H0, δ0 and I only. We have

chosen ε < 1
2 min{a`, 1 ≤ ` ≤ N} so that Lemma 6.4 is applicable.

It follows from (6.16) and (6.17) that
∫

[a`, a`+r`]n

[
detCov(XH

0 (t1), . . . , XH
0 (tn))

]− d
2p` dt1` · · · dtn`

≤
∑
π`

cn

∫

a`≤t
π`(1)

` ≤···≤t
π`(n)

` ≤a`+r`

n∏

j=1

1
(
t
π`(j)
` − t

π`(j−1)
`

)H`d/p`
dt1` · · · dtn`

≤ cn
6,6

(n!)H`d/p` r
n
(
1−(1− 1

n
)H`d/p`

)
` .

(6.18)

In the above, the last inequality follows from (6.7).
Combining (6.14), (6.18) and continuing to integrate [dt1` . . . dtn` ] for ` = τ + 1, . . . , N , we

obtain

E
[
L(x, T )n

] ≤ cn
6,7

(n!)
∑τ

`=1 H`d/p`

τ∏

`=1

r
n(1−(1− 1

n
)H`d/p`)

` ·
N∏

`=τ+1

rn
` . (6.19)

Now we consider the special case when T = [a, a + 〈r〉], i.e. r1 = · · · = rN = r. Eq. (6.19)
and (6.3) with δ = n−1 and q = d together yield

E
[
L(x, T )n

] ≤ cn
6,8

(n!)
∑τ

`=1 H`d/p` rn
(
N−(1−n−1)

∑τ
`=1 H`d/p`

)

≤ cn
3,1

(n!)N−βτ rnβτ .
(6.20)
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This proves (3.11).
We prove estimate (3.12) next. Let γ ∈ (0, 1 ∧ ατ

2τ ) be a constant, depending on H0 only.
Note that by the elementary inequalities

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R (6.21)

and |u + v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,

n∏

j=1

∣∣∣e−i〈uj ,x〉 − e−i〈uj ,y〉
∣∣∣ ≤ 2(1−γ)n |x− y|nγ

∑′ n∏

j=1

|uj
kj
|γ , (6.22)

where the summation
∑

´ is taken over all the sequences (k1, · · · , kn) ∈ {1, · · · , d}n.
It follows from (3.4) and (6.22) that for every even integer n ≥ 2,

E
[
(L(x, T )− L(y, T ))n

]
≤ (2π)−nd2(1−γ)n |x− y|nγ

×
∑′ ∫

T n

∫

Rnd

n∏

m=1

|um
km
|γ E exp

(
− i

n∑

j=1

〈uj , XH(tj)〉
)

du dt

≤ cn
6,9
|x− y|nγ

∑′ ∫

T n

dt

×
n∏

m=1

{∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , XH(tj)〉
)]

du

}1/n

,

(6.23)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, . . . , kn) ∈ {1, · · · , d}n and n points t1, . . . , tn ∈ T such that

t1` , . . . , t
n
` are all distinct for every 1 ≤ ` ≤ N . Let M = M(k, t, γ) be defined by

M =
n∏

m=1

{∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , XH(tj)〉
)]

du

}1/n

. (6.24)

Note that the coordinate fields XH
` (1 ≤ ` ≤ N) are independent copies of XH

0 . By
Condition A3, the random variables XH

` (tj) (1 ≤ ` ≤ N, 1 ≤ j ≤ n) are linearly independent.
Hence Lemma 6.1 gives

∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , XH(tj)〉
)]

du

=
(2π)(nd−1)/2

[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

)]d/2

∫

R

( v

σm

)nγ
e−

v2

2 dv

≤ cn
6,10

(n!)γ

[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

)]d/2

1
σnγ

m
,

(6.25)

where σ2
m is the conditional variance of XH

km
(tm) given XH

i (tj) (i 6= km or i = km but j 6= m),
and the last inequality follows from Stirling’s formula.
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Combining (6.24) and (6.25) we obtain

M ≤ cn
6,11

(n!)γ

[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

)]d/2

n∏

m=1

1
σγ

m
. (6.26)

For δ = 1/n and q = d, let p` (` = 1, . . . , τ) be the constants as in Lemma 6.2. Observe
that, since γ ∈ (

0, ατ
2τ

)
, there exists an `0 ∈ {1, . . . , τ} such that

H`0d

p`0

+ 2H`0γ < 1. (6.27)

It follows from (6.26) and (6.2) that

M ≤ cn
6,12

(n!)γ
τ∏

`=1

1
[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

)]d/(2p`)

n∏

m=1

1
σγ

m
. (6.28)

The second product in (6.28) will be treated as a “perturbation” factor and will be shown
to be small when integrated. For this purpose, we use again the independence of the coordinate
processes of XH and (6.9) [cf. Condition A3] to derive

σ2
m = Var

(
XH

km
(tm)

∣∣∣XH
km

(tj), j 6= m
)

≥ c2
6,13

N∑

`=1

min
{|tm` − tj` |2H` : j 6= m

}
.

(6.29)

For any n points t1, . . . , tn ∈ T , let π1, . . . , πN be N permutations of {1, 2, . . . , n} such that
for every 1 ≤ ` ≤ N ,

t
π`(1)
` ≤ t

π`(2)
` ≤ · · · ≤ t

π`(n)
` . (6.30)

Then, by (6.29) and (6.30) we have
n∏

m=1

1
σγ

m
≤

n∏

m=1

1

c6,14

∑N
`=1

[(
t
π`(m)
` − t

π`(m−1)
`

) ∧ (
t
π`(m+1)
` − t

π`(m)
`

)]H`γ

≤
n∏

m=1

1

c6,14

[(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

) ∧ (
t
π`0

(m+1)

`0
− t

π`0
(m)

`0

)]H`0
γ

≤ c−n
6,14

n∏

m=1

1
(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)qm
`0

H`0
γ
,

(6.31)

for some (q1
`0

, . . . , qn
`0

) ∈ {0, 1, 2}n satisfying
∑n

m=1 qm
`0

= n and q1
`0

= 0. That is, we will only
need to consider the contribution of σm in the `0-th direction.

So far we have obtained all the ingredients for bounding the integral in (6.23) and the rest
of the proof is quite similar to the proof of (3.11). It follows from (6.28) and (6.31) that

∫

T n

M(k, t, γ) dt ≤ cn
6,15

(n!)γ

∫

T n

τ∏

`=1

1
[
detCov

(
XH

0 (t1), . . . , XH
0 (tn)

)]d/(2p`)

×
n∏

m=1

1
(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)qm
`0

H`0
γ

dt.

(6.32)
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To evaluate the above integral, we will first integrate [dt1` . . . dtn` ] for every ` = 1, . . . , τ . Let us
first consider ` = `0. By using (6.17), (6.15), (6.6) and, thanks to (6.27) and the nature of qm

`0
,

we see that ∫

[a`0
, a`0

+r`0
]n

1
[
detCov(XH

0 (t1), . . . , XH
0 (tn))

]d/(2p`0
)

×
n∏

m=1

1
(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)qm
`0

H`0
γ

dt1`0 · · · dtn`0

≤
∑
π`0

cn
6,16

∫

a`0
≤t

π`0
(1)

`0
≤···≤t

π`0
(n)

`0
≤a`0

+r`0

(6.33)

n∏

m=1

(
t
π`0

(m)

`0
− t

π`0
(m−1)

`0

)−(
H`0

d/p`0
+qm

`0
H`0

γ
)

dt1`0 · · · dtn`0

≤ cn
6,17

(n!)H`0
d/p`0

+H`0
γ r

n
[
1−(1− 1

n
)H`0

d/p`0
−H`0

γ
]

`0
. (6.34)

In the above, t
π`0

(0)

`0
= ε as in the proof of (3.11) and the last inequality follows from (6.6).

Meanwhile, recall that, for every ` 6= `0 (` ∈ {1, . . . , τ}), we have shown in (6.18) that
∫

[a`, a`+r`]n

[
detCov(XH

0 (t1), . . . , XH
0 (tn))

]− d
2p` dt1` · · · dtn`

≤ cn
6,6

(n!)H`d/p` r
n
(
1−(1− 1

n
)H`d/p`

)
` .

(6.35)

Finally, we proceed to integrate [dt1` . . . dtn` ] for ` = τ + 1, . . . , N . It follows from the above
that ∫

T n

M(k, t, γ) dt ≤ cn
4,22

(n!)
∑τ

`=1 H` d/p`+H`0
γ+γ

× r
n
[
1−(1− 1

n
)H`0

d/p`0
−H`0

γ
]

`0
×

τ∏

` 6=`0

r
n
[
1−(1− 1

n
)H` d/p`

]
`

N∏

`=τ+1

rn
` .

(6.36)

In particular, if r1 = · · · = rN = r ≤ 1, we combine (6.23) and (6.36) to obtain

E
[(

L(x, T )− L(y, T )
)n

]

≤ cn
6,18

|x− y|nγ (n!)
∑τ

`=1 H` d/p`+H`0
γ+γ · rn

(
N−(1− 1

n
)
∑τ

`=1 H` d/p`−H`0
γ
)

≤ cn
3,2

(n!)N−βτ+(1+Hτ )γ |x− y|nγ rn(βτ−Hτ γ).

(6.37)

The last inequality follows from the fact that H`0 ≤ Hτ and Lemma 6.2. This finishes the
proof of (3.12). ¤
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