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ABSTRACT. Let BH =
�
BH(t), t ∈ RN

+

	
be an (N, d)-fractional Brownian

sheet with Hurst index H = (H1, . . . , HN ) ∈ (0, 1)N . Our objective of the
present paper is to characterize the anisotropic nature of BH in terms of H.
We prove the following results:

(1) BH is sectorially locally nondeterministic.
(2) By introducing a notion of “dimension” for Borel measures and sets,

which is suitable for describing the anisotropic nature of BH , we determine
dimHBH(E) for an arbitrary Borel set E ⊂ (0, ∞)N . Moreover, when B〈α〉 is
an (N, d)-fractional Brownian sheet with index 〈α〉 = (α, . . . , α) (0 < α < 1),
we prove the following uniform Hausdorff dimension result for its image sets:
If N ≤ αd, then with probability one,

dimHB〈α〉(E) =
1

α
dimHE for all Borel sets E ⊂ (0,∞)N .

(3) We provide sufficient conditions for the image BH(E) to be a Salem
set or to have interior points.

The results in (2) and (3) describe the geometric and Fourier analytic
properties of BH . They extend and improve the previous theorems of Mount-
ford [35], Khoshnevisan and Xiao [29] and Khoshnevisan, Wu and Xiao [28]
for the Brownian sheet, and Ayache and Xiao [5] for fractional Brownian
sheets.

1. Introduction

Gaussian processes and Gaussian random fields have been extensively stud-
ied and applied in many areas to model phenomena having self-similarity
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and long memory properties. One of the most important Gaussian fields
is fractional Brownian motion X = {X(t), t ∈ RN}, which is a centered
(N, d)-Gaussian random field with covariance function

E[Xi(s)Xj(t)] =
1
2
δij

(
|s|2α + |t|2α − |s− t|2α

)
, ∀s, t ∈ RN , (1.1)

where 0 < α < 1 is a constant and δij = 1 if i = j and 0 if i 6= j, and where |·|
denotes the Euclidean norm in RN . When N = d = 1, it was first introduced
by Mandelbrot and Van-Ness [31] as a moving-average Gaussian process.
It can be verified from (1.1) that X is α-self-similar and has stationary
increments in the strong sense; see Section 8.1 of Samorodnitsky and Taqqu
[40]. In particular, X is isotropic in the sense that X(s) − X(t) depends
only on the Euclidean distance |s− t|.

Many data sets from various scientific areas such as image process-
ing, hydrology, geostatistics and spatial statistics have anisotropic nature
in the sense that they have different geometric and probabilistic charac-
teristics along different directions, hence fractional Brownian motion is not
adequate for modelling such phenomena. Many people have proposed to
apply anisotropic Gaussian random fields as more realistic models. See, for
example, Davies and Hall [13], Bonami and Estrade [11], Benson, et al. [8].

Several different classes of anisotropic Gaussian random fields have
been introduced for theoretical and application purposes. For example, Ka-
mont [26] introduced fractional Browian sheets [see the definition below] and
studied some of their regularity properties. Benassi, et al. [7] and Bonami
and Estrade [11] considered some anisotropic Gaussian random fields with
stationary increments. More recently, Biermé, et al. [10] constructed a large
class of operator self-similar Gaussian or stable random fields with station-
ary increments. Anisotropic Gaussian random fields also arise in stochastic
partial differential equations [see, e.g., Mueller and Tribe [36], Øksendal and
Zhang [38], Nualart [37]]; and in studying the most visited sites of symmetric
Markov processes [Eisenbaum and Khoshnevisan [16]]. Hence it is of impor-
tance in both theory and applications to investigate the probabilistic and
statistical properties of such random fields. However, systematic studies of
anisotropic Gaussian random fields have only been started recently, which
have shown to have significantly different properties from those of fractional
Brownian motion, or their isotropic counterparts.

This paper is concerned with sample path properties of fractional Brown-
ian sheets. We believe that a good understanding of them will help us to
better understand anisotropic Gaussian random fields in general. In fact,
some methods for studying sample path properties of fractional Brownian
sheets have proved to be useful for other anisotropic random fields; see Wu
and Xiao [43], Xiao [48] for more information.

For a given vector H = (H1, . . . ,HN ) ∈ (0, 1)N , an (N, 1)-fractional
Brownian sheet BH

0 = {BH
0 (t), t ∈ RN} with Hurst index H is a real-valued,
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centered Gaussian random field with covariance function given by

E
[
BH

0 (s)BH
0 (t)

]
=

N∏

j=1

1
2

(
|sj |2Hj + |tj |2Hj − |sj − tj |2Hj

)
, s, t ∈ RN . (1.2)

It follows from (1.2) that BH
0 (t) = 0 a.s. for every t ∈ RN with at least one

zero coordinate. When H1 = · · · = HN = α ∈ (0, 1), we will write H = 〈α〉.
Let BH

1 , . . . , BH
d be d independent copies of BH

0 . Then the (N, d)-
fractional Brownian sheet with Hurst index H = (H1, . . . , HN ) is the Gaussian
random field BH = {BH(t) : t ∈ RN} with values in Rd defined by

BH(t) =
(
BH

1 (t), . . . , BH
d (t)

)
, t ∈ RN . (1.3)

It follows from (1.2) that BH is operator-self-similar in the sense that for all
constants c > 0,

{
BH(cAt), t ∈ RN

} d=
{

cN BH(t), t ∈ RN
}

, (1.4)

where A = (aij) is the N × N diagonal matrix with aii = 1/Hi for all

1 ≤ i ≤ N and aij = 0 if i 6= j, and X
d= Y means that the two processes

have the same finite dimensional distributions. Note that if N = 1, then BH

is a fractional Brownian motion in Rd with Hurst index H1 ∈ (0, 1); if N > 1
and H = 〈1/2〉, then BH is the (N, d)-Brownian sheet, denoted by B. Hence
BH can be regarded as a natural generalization of one parameter fractional
Brownian motion in Rd, as well as a generalization of the Brownian sheet.

Several authors have studied various properties of fractional Brownian
sheets. For example, Ayache, et al. [2] provided a moving average represen-
tation for BH

0 and studied its sample path continuity as well as its continuity
in H. Dunker [14], Mason and Shi [32], Belinski and Linde [6], Kühn and
Linde [30] studied the small ball probabilities of BH

0 . Mason and Shi [32]
also computed the Hausdorff dimension of some exceptional sets related to
the oscillation of the sample paths of BH

0 . Ayache and Taqqu [3] derived
an optimal wavelet series expansion for the fractional Brownian sheet BH

0 ;
see also Kühn and Linde [30], Dzhaparidze and van Zanten [15] for other
optimal series expansions for BH

0 . Xiao and Zhang [49] studied the exis-
tence of local times of an (N, d)-fractional Brownian sheet BH and proved a
sufficient condition for the joint continuity of the local times. Kamont [26]
and Ayache [1] studied the box and Hausdorff dimensions of the graph set
of an (N, 1)-fractional Brownian sheet.

Recently, Ayache and Xiao [5] investigated the uniform and local as-
ymptotic properties of BH by using wavelet methods, and determined the
Hausdorff dimensions of the image BH([0, 1]N ), the graph GrBH([0, 1]N )
and the level set Lx = {t ∈ (0,∞)N : BH(t) = x}.
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The main objective of this paper is to investigate the geometric and
Fourier analytic properties of the image BH(E) of an arbitrary Borel set E ⊂
(0,∞)N . In particular, we compute the Hausdorff and Fourier dimensions of
BH(E), and provide a sufficient condition for BH(E) to have interior points.
Such problems for fractional Brownian motion and the Brownian sheet have
been investigated by Kahane [22], Pitt [39], Mountford [35], Khoshnevisan
and Xiao [29], Shieh and Xiao [41], Khoshnevisan, Wu and Xiao [28]. Our
present study of fractional Brownian sheets is different from those of the
previous authors in two aspects.

Firstly, unlike the well-known cases of fractional Brownian motion and
the Brownian sheet, the Hausdorff dimension of BH(E) can not be deter-
mined by dimHE and the index H alone due to the anisotropic nature of
BH [see Example 1]. We solve this problem by introducing a new concept of
“dimension” [we call it Hausdorff dimension contour] for finite Borel mea-
sures and Borel sets. We prove that the Hausdorff and Fourier dimensions
of BH(E) can be represented in terms of the Hausdorff dimension contour of
E and the Hurst index H. We believe that the concept of Hausdorff dimen-
sion contour is of independent interest because it carries more information
about the geometric properties of Borel measures and sets than Hausdorff
dimension does. It is an appropriate notion for studying the image sets and
the local times of fractional Brownian sheets and other anisotropic random
fields, as shown by the results in this paper and in Wu and Xiao [43]. It
can be shown that, for all sets E ⊂ RN , the Hausdorff dimension contour E
is related to the Hausdorff dimension of E with respect to an “anisotropic
metric”; see Remark 2.

Secondly, the dependence structure of BH is significantly different from
those of fractional Brownian motion and the Brownian sheet, namely, BH is
not locally nondeterministic and does not have the property of independent
increments. We overcome this difficulty by showing that BH satisfies a type
of “sectorial local nondeterminism” [see Theorem 1]. This is motivated by
a result of Khoshnevisan and Xiao [29] for the Brownian sheet, but our
approach here is different and relies on the harmonizable representation
(2.1). The property of sectorial local nondeterminism not only plays an
important role in this paper, but also in studying other problems such as
local times of fractional Brownian sheets [see Ayache, Wu and Xiao [4]].

The rest of this paper is organized as follows. In Section 2, we prove
that fractional Brownian sheets satisfy the property of sectorial local nonde-
terminism. In Section 3, we establish an explicit formula for the Hausdorff
dimension of the image BH(E) in terms of the Hausdorff dimension contour
of E and the Hurst index H. Moreover, when H = 〈α〉, we prove the fol-
lowing uniform Hausdorff dimension result for its images: If N ≤ αd, then
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with probability one,

dimHB〈α〉(E) =
1
α

dimHE for all Borel sets E ⊂ (0,∞)N . (1.5)

This extends the results of Mountford [35] and Khoshnevisan, Wu and Xiao
[28] for the Brownian sheet. Our proof is based on the sectorial local non-
determinism of B〈α〉 and is similar to that of Khoshnevisan, Wu and Xiao
[28].

Let µ be a probability measure carried by E and let ν = µ
BH be

the image measure of µ under the mapping t 7→ BH(t). In Section 4, we
study the asymptotic properties of the Fourier transform ν̂(ξ) of ν as ξ →
∞. In particular, we show that the image BH(E) is a Salem set whenever
s(H,E) ≤ d, see Section 3 for the definition of s(H, E). These results extend
those of Kahane [22][23] and Khoshnevisan, Wu and Xiao [28] for fractional
Brownian motion and the Brownian sheet, respectively.

In Section 5, we prove a sufficient condition for BH(E) to have interior
points. This problem is closely related to the existence of a continuous local
time of BH on E [cf. Pitt [39], Geman and Horowitz [19], Kahane [22][23]].
Our Theorem 6 extends and improves the previous result of Khoshnevisan
and Xiao [29] for the Brownian sheet.

Throughout this paper, the underlying parameter space is RN or RN
+ =

[0,∞)N . A typical parameter, t ∈ RN is written as t = (t1, . . . , tN ), or as
〈c〉, if t1 = · · · = tN = c. For any s, t ∈ RN such that sj < tj (j = 1, . . . , N),
[s, t] =

∏N
j=1 [sj , tj ] is called a closed interval (or a rectangle). The inner

product in RN is denoted by 〈·, ·〉.
We will use c to denote an unspecified positive and finite constant which

may not be the same in each occurrence. More specific constants in Section
i are numbered as ci,1 , ci,2 , . . ..

Finally, we refer to Kahane [22], Falconer [17] or Mattila [33] for all the
notions of dimensions appeared in this paper.

2. Sectorial local nondeterminism

One of the main difficulties in studying sample path properties of frac-
tional Brownian sheets is the complexity of their dependence structure. Un-
like fractional Brownian motion which is locally nondeterministic [see Pitt
[39]] or the Brownian sheet which has independent increments, a fractional
Brownian sheet has neither of these properties. The main technical tool
which we will apply to study fractional Brownian sheets is the property of
“sectorial local nondeterminism” [SLND].

It should be mentioned that the concept of local nondeterminism was
first introduced by Berman [9] to unify and extend his methods for studying
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local times of real-valued Gaussian processes, and then extended by Pitt
[39] to Gaussian random fields. The notion of strong local nondeterminism
was later developed to investigate the regularity of local times, small ball
probabilities and other sample path properties of Gaussian processes and
Gaussian random fields. We refer to Xiao [46][47] for more information on
the history and applications of local nondeterminism.

For Gaussian random fields, the aforementioned properties of local non-
determinism can only be satisfied by those with approximate isotropy. It
is well-known that the Brownian sheet does not satisfy these locally non-
deterministic properties. Despite this, Khoshnevisan and Xiao [29] have
recently proved that the Brownian sheet satisfies a type of sectorial local
nondeterminism and applied this property to study geometric properties of
the Brownian sheet; see also Khoshnevisan, Wu and Xiao [28].

The property of sectorial local nondeterminism for fractional Brownian
sheets is an extension of that in Khoshnevisan and Xiao [29]. While the ar-
gument of Khoshnevisan and Xiao [29] relies on the property of independent
increments of the Brownian sheet, our proof is based on a Fourier analytic
argument in Kahane ([22], Chapter 18) and the following harmonizable rep-
resentation of BH

0 essentially due to Herbin [20]:

BH
0 (t) = K−1

H

∫

RN
ψt(λ) Ŵ (dλ), (2.1)

where Ŵ is the Fourier transform of the white noise in RN ,

ψt(λ) =
N∏

j=1

eitjλj − 1

|λj |Hj+
1
2

,

and where KH is a normalizing constant so that E
[
(BH

0 (t))2
]

=
∏N

j=1

∣∣tj
∣∣2Hj

for all t ∈ RN .

Theorem 1. [SLND] For any fixed positive number ε ∈ (0, 1), there exists
a positive constant c2,1, depending on ε,H and N only, such that for all
positive integers n ≥ 1, and all u, t1, . . . , tn ∈ [ε, ∞)N , we have

Var
(
BH

0 (u)
∣∣ BH

0 (t1), . . . , BH
0 (tn)

) ≥ c2,1

N∑

j=1

min
0≤k≤n

∣∣uj − tkj
∣∣2Hj , (2.2)

where t0 = 0.

Proof. Let ` ∈ {1, . . . , N} be fixed and denote r
`
≡ min0≤k≤n

∣∣u` − tk`
∣∣.

Firstly, we prove that there exists a positive constant c
`

such that the fol-
lowing inequality holds:

Var
(
BH

0 (u)
∣∣ BH

0 (t1), . . . , BH
0 (tn)

) ≥ c
`
r2H`

`
. (2.3)
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Summing over ` from 1 to N in (2.3), we obtain (2.2).
In order to prove (2.3), we only need to consider those ` with r

`
> 0

[otherwise, the inequality holds automatically]. Working in the Hilbert space
setting, we write the conditional variance in (2.3) as the square of the L2(P)-
distance of BH

0 (u) from the subspace generated by {BH
0 (t1), . . . , BH

0 (tn)}.
Hence it suffices to show that for all ak ∈ R,

E
(

BH
0 (u)−

n∑

k=1

akB
H
0 (tk)

)2

≥ c
`
r2H`

`
. (2.4)

It follows from the harmonizable representation (2.1) of BH
0 that

E
(

BH
0 (u)−

n∑

k=1

akB
H
0 (tk)

)2

= K−2
H

∫

RN

∣∣∣∣ψu(λ)−
n∑

k=1

akψtk(λ)
∣∣∣∣
2

dλ

= K−2
H

∫

RN

∣∣∣∣
N∏

j=1

(eiujλj − 1)−
n∑

k=1

ak

N∏

j=1

(eitkj λj − 1)
∣∣∣∣
2

fH(λ)dλ,

(2.5)

where

fH(λ) =
N∏

j=1

|λj |−2Hj−1 .

Now for every j = 1, . . . , N , we choose a bump function δj(·) ∈ C∞(R) with
values in [0, 1] such that δj(0) = 1 and strictly decreasing in | · | near 0 [e.g.,
on (−ε, ε)] and vanishes outside the open interval (−1, 1). Let δ̂j be the
Fourier transform of δj . It can be verified that δ̂j(λj) is also in C∞(R) and
decays rapidly as λj →∞. Also, the Fourier inversion formula gives

δj(sj) = (2π)−1

∫

R
e−isjλj δ̂j(λj)dλj . (2.6)

Let δ
r
`

` (s`) = r−1
`

δ`( s`
r
`
), then by (2.6) and a change of variables, we have

δ
r
`

` (s`) = (2π)−1

∫

R
e−is`λ` δ̂`(r`

λ`)dλ`. (2.7)

By the definition of r
`
, we have δ

r
`

` (u`) = 0 and δ
r
`

` (u` − tk` ) = 0 for all



8 Dongsheng Wu and Yimin Xiao

k = 1, . . . , n. Hence it follows from (2.6) and (2.7) that

I ≡
∫

RN

( N∏

j=1

(eiujλj − 1)−
n∑

k=1

ak

N∏

j=1

(eitkj λj − 1)
)

×
( N∏

j=1

e−iujλj

)( N∏

j 6=`

δ̂j(λj)
)

δ̂`(r`
λ`) dλ

= (2π)N

[(∏

j 6=`

(
δj(0)− δj(uj)

))(
δ
r
`

` (0)− δ
r
`

` (u`)
)]

− (2π)N

[ n∑

k=1

ak

( ∏

j 6=`

(
δj(uj − tkj )− δj(uj)

))(
δ
r
`

` (u` − tk` )− δ
r
`

` (u`)
)]

≥ (2π)N
∏

j 6=`

(
1− δj(ε)

)
r−1

`
.

(2.8)

On the other hand, by the Cauchy-Schwarz inequality, (2.5) and (2.8), we
have

I2 ≤
∫

RN

∣∣∣∣
N∏

j=1

(
eiujλj − 1

)−
n∑

k=1

ak

N∏

j=1

(
eitkj λj − 1

)∣∣∣∣
2

fH(λ)dλ

×
∫

RN

1
fH(λ)

∣∣∣∣
( N∏

j 6=`

δ̂j(λj)
)

δ̂`(r`
λ`)

∣∣∣∣
2

dλ

= K2
H E

(
BH

0 (u)−
n∑

k=1

akB
H
0 (tk)

)2

· r−2H`−2
`

∫

RN

1
fH(λ)

N∏

j=1

∣∣δ̂j(λj)
∣∣2 dλ

= c2,2 r−2H`−2
`

E
(

BH
0 (u)−

n∑

k=1

akB
H
0 (tk)

)2

.

(2.9)

Combining (2.8) and (2.9) yields (2.3). This finishes the proof of the theo-
rem.

Given jointly Gaussian random variables Z1, . . . , Zn, we denote by
detCov

(
Z1, . . . , Zn

)
the determinant of their covariance matrix. If detCov

(
Z1,

. . . , Zn

)
> 0, then we have the identity

(2π)n/2

detCov
(
Z1, . . . , Zn

) =
∫

Rn
E exp

(
− i

n∑

k=1

uk Zk

)
du1 · · · dun. (2.10)

By using the fact that, for every k, the conditional distribution of Zk given
Z1, . . . , Zk−1 is still Gaussian with mean E(Zk|Z1, . . . , Zk−1) and variance
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Var(Zk|Z1, . . . , Zk−1), one can evaluate the integral in the right-hand side
of (2.10) and thus verify the following formula:

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

k=2

Var
(
Zk

∣∣Z1, . . . , Zk−1

)
. (2.11)

A little thought reveals that (2.11) still holds when detCov
(
Z1, . . . , Zn

)
= 0.

Combined with (2.2), the identity (2.11) can be applied to estimate
the joint distribution of the Gaussian random variables BH

0 (t1), . . . , BH
0 (tn).

It is for this reason why sectorial local nondeterminism is essential in this
paper and in studying local times of fractional Brownian sheets.

The following simple result will be needed in Section 5.

Lemma 1. Let n ≥ 1 be a fixed integer. Then for all t1, . . . , tn ∈ [ε,∞)N

such that t1j , . . . , t
n
j are all distinct for some j ∈ {1, . . . , N}, the Gaussian

random variables BH
0 (t1), . . . , BH

0 (tn) are linearly independent.

Proof. Let t1, . . . , tn ∈ [ε,∞)N be given as above. Then it follows from
Theorem 1 and (2.11) that detCov

(
BH

0 (t1), . . . , BH
0 (tn)

)
> 0. This proves

the lemma.

3. Hausdorff dimension results for the images

In this section, we study the Hausdorff dimension of the image set BH(E)
of an arbitrary Borel set E ⊂ (0,∞)N . When E = [0, 1]N or any Borel set
with positive Lebesgue measure, this problem has been solved by Ayache
and Xiao [5]. However, when E ⊂ (0,∞)N is a fractal set, the Hausdorff
dimension of BH(E) can not be determined by dimHE and the Hurst index
H alone, as shown by Example 1 below. This is in contrast with the cases
of fractional Brownian motion or the Brownian sheet.

To solve this problem, we will introduce a new notion of dimension,
namely, Hausdorff dimension contour, for finite Borel measures and Borel
sets. It turns out that the Hausdorff dimension contour of E is the natural
object in determining the Hausdorff dimension and other geometric proper-
ties of BH(E) for all Borel sets E.

We start with the following proposition which determines dimHBH(E)
when E belongs to a special class of Borel sets in RN

+ .

Proposition 1. Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brown-
ian sheet with index H = (H1, . . . , HN ). Assume that Ej (j = 1, . . . , N) are
Borel sets in (0,∞) satisfying the following property: ∃ {j1, . . . , jN−1} ⊂
{1, . . . , N} such that dimHEjk

= dimPEjk
for k = 1, . . . , N − 1. Let E =
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E1 × · · · × EN ⊂ (0,∞)N , then we have

dimHBH(E) = min
{

d;
N∑

j=1

dimHEj

Hj

}
, a.s. (3.1)

In the above, dimPF denotes the packing dimension of F which is
defined as follows. For any ε > 0 and any bounded set F ⊆ Rd, let N(F, ε)
be the smallest number of balls of radius ε needed to cover F . Then the
upper box-counting dimension of F is defined as

dimBF = lim sup
ε→0

log N(F, ε)
− log ε

. (3.2)

The packing dimension of F can be defined by

dimPF = inf
{

sup
n

dimBFn : F ⊆
∞⋃

n=1

Fn

}
. (3.3)

Further information on packing dimension can be found in Tricot [42], Fal-
coner [17] and Mattila [33].

For proving Proposition 1, we need the next two lemmas that are due
to Ayache and Xiao [5].

Lemma 2. Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brownian
sheet with index H = (H1, . . . , HN ). For all T > 0, there exist a random
variable A1 = A1(ω) > 0 of finite moments of any order and an event Ω∗1 of
probability 1 such that for every ω ∈ Ω∗1,

sup
s,t∈[0,T ]N

∣∣BH(s, ω)−BH(t, ω)
∣∣

∑N
j=1 |sj − tj |Hj

√
log

(
3 + |sj − tj |−1

) ≤ A1(ω). (3.4)

Lemma 3. Let BH
0 = {BH

0 (t), t ∈ RN} be an (N, 1)-fractional Brownian
sheet with index H = (H1, . . . , HN ), then for any 0 < ε < T , there exist
positive and finite constants c3,1 and c3,2 such that for all s, t ∈ [ε, T ]N ,

c3,1

N∑

j=1

|sj − tj |2Hj ≤ E
[(

BH
0 (s)−BH

0 (t)
)2

]
≤ c3,2

N∑

j=1

|sj − tj |2Hj . (3.5)

Now we prove Proposition 1.

Proof of Proposition 1. As usual, the proof of (3.1) is divided into
proving the upper and lower bounds separately. We will show that the upper
bound in (3.1) follows from the modulus of continuity of BH and a covering
argument, and the lower bound follows from Frostman’s theorem [see e.g.,
Kahane ([22], Chapter 10)] and Lemma 3.
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For simplicity of notation, we will only consider the case N = 2 and
dimHE1 = dimPE1. The proof for the general case is similar.

Upper bound: By the σ-stability of dimH and (3.3), it is sufficient to
prove that for every Borel set E = E1 × E2,

dimHBH(E) ≤ min
{

d;
dimBE1

H1
+

dimHE2

H2

}
, a.s. (3.6)

For any γ1 > dimBE1, γ2 > dimHE2, we choose and fix γ′2 ∈ (dimHE2,
γ2). Then there exists a constant r0 > 0 such that, for all r ≤ r0 , E1 can
be covered by N(E1, r) ≤ r−γ1 many small intervals of length r; and there
exists a covering {Un, n ≥ 1} of E2 such that rn := |Un| ≤ r0 and

∞∑

n=1

r
γ′2
n ≤ 1. (3.7)

For every n ≥ 1 and any constant δ ∈ (0, 1) small enough, let {Vn,m : 1 ≤
m ≤ Nn} be Nn := N(E1, r

(H2−δ)/(H1−δ)
n ) intervals of length r

(H2−δ)/(H1−δ)
n

which cover E1. Then the rectangles {Vn,m×Un : n ≥ 1, 1 ≤ m ≤ Nn} form
a covering of E1 × E2, that is,

E ⊂
∞⋃

n=1

Nn⋃

m=1

Vn,m × Un,

and thus

BH(E) ⊂
∞⋃

n=1

Nn⋃

m=1

BH(Vn,m × Un). (3.8)

It follows from Lemma 2 that, almost surely, BH(Vn,m × Un) can be
covered by a ball of radius c rH2−δ

n . By this and (3.8), we have covered
BH(E) a.s. by balls of radius c rH2−δ

n (n = 1, 2, . . .). Moreover, recalling
that Nn ≤ r

−γ1(H2−δ)/(H1−δ)
n , we have

∞∑

n=1

Nn∑

m=1

(
rH2−δ
n

) γ1
H1

+
γ2
H2 ≤

∞∑

n=1

r
−γ1

H2−δ
H1−δ

n · r(H2−δ)
(

γ1
H1

+
γ2
H2

)
n

=
∞∑

n=1

r
γ2−γ1

(
H2−δ
H1−δ

−H2−δ
H1

)
− δγ2

H2
n .

(3.9)

Now we choose δ > 0 small enough so that

γ2 − γ1

(H2 − δ

H1 − δ
− H2 − δ

H1

)− δγ2

H2
> γ′2.
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Then (3.7) and (3.9) imply that
∞∑

n=1

Nn∑

m=1

(
rH2−δ
n

) γ1
H1

+
γ2
H2 ≤ 1. (3.10)

It should be clear that (3.6) follows from (3.10).
Lower bound: Recall that for any Borel measure µ in Rp and a con-

stant γ > 0, the γ-energy of µ is defined by

Iγ(µ) =
∫ ∫

µ(dx)µ(dy)
|x− y|γ . (3.11)

The connection between the Hausdorff dimension of a Borel set A and energy
of Borel measures on A is described by Frostman’s theorem, which provides a
powerful way to determine dimHA; see Kahane [22], Falconer [17] or Mattila
[33].

To use this method, we choose γ1, γ2 such that 0 < γ1 < dimHE1,
0 < γ2 < dimHE2 and γ1

H1
+ γ2

H2
< d. It follows from Frostman’s theorem

that there exist probability measures σ1 on E1 and σ2 on E2 such that
∫

E1

∫

E1

σ1(ds1)σ1(dt1)
|s1 − t1|γ1

< ∞ and
∫

E2

∫

E2

σ2(ds2)σ2(dt2)
|s2 − t2|γ2

< ∞. (3.12)

Let σ = σ1 × σ2. Then σ is a probability measure on E. By Lemma 3 and
the fact that γ1

H1
+ γ2

H2
< d, we have

E
∫

E

∫

E

σ(ds)σ(dt)

|BH(s)−BH(t)|
γ1
H1

+
γ2
H2

≤ c

∫

E

∫

E

σ1(ds1)σ1(dt1)σ2(ds2)σ2(dt2)( |s1 − t1|2H1 + |s2 − t2|2H2
) 1

2
(

γ1
H1

+
γ2
H2

)

≤ c

∫

E1

∫

E1

σ1(ds1)σ1(dt1)
∫

E2

∫

E2

σ2(ds2)σ2(dt2)( |s1 − t1|H1 + |s2 − t2|H2
) γ1

H1
+

γ2
H2

.

(3.13)

By an inequality for the weighted arithmetic mean and geometric mean with
β1 = H2γ1

H2γ1+H1γ2
and β2 = 1− β1 = H1γ2

H2γ1+H1γ2
, we have

|s1 − t1|H1 + |s2 − t2|H2 ≥ β1 |s1 − t1|H1 + β2 |s2 − t2|H2

≥
(
|s1 − t1|H1

)β1
(
|s2 − t2|H2

)β2

= |s1 − t1|
H1H2γ1

H2γ1+H1γ2 |s2 − t2|
H1H2γ2

H2γ1+H1γ2 .

(3.14)

Therefore, the last denominator in (3.13) can be bounded from below by
|s1 − t1|γ1 |s2 − t2|γ2 . It follows from this and (3.12), (3.13) that

E
∫

E

∫

E

σ(ds)σ(dt)

|BH(s)−BH(t)|
γ1
H1

+
γ2
H2

< ∞.
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This yields dimHBH(E) ≥ γ1

H1
+ γ2

H2
a.s., and the lower bound in (3.1) follows.

The following simple example illustrates that, in general, dimHE alone
is not enough to determine the Hausdorff dimension of BH(E).

Example 1. Let BH = {BH(t), t ∈ R2} be a (2, d)-fractional Brownian
sheet with index H = (H1,H2) and H1 < H2. Let E = E1 × E2 and F =
E2 ×E1, where E1 ⊂ (0,∞) satisfies dimHE1 = dimPE1 and E2 ⊂ (0,∞) is
arbitrary. It is well known that

dimHE = dimHE1 + dimHE2 = dimHF,

cf. Falconer ([17], p.94). However, by Proposition 1 we have

dimHBH(E) = min
{

d;
dimHE1

H1
+

dimHE2

H2

}

and

dimHBH(F ) = min
{

d;
dimHE2

H1
+

dimHE1

H2

}
.

We see that dimHBH(E) 6= dimHBH(F ) unless dimHE1 = dimHE2.

Example 1 shows that in order to determine dimHBH(E), we need to
have more information about the geometry of E than its Hausdorff dimen-
sion. We have found that it is more convenient to work with Borel measures
carried by E.

Recall that the Hausdorff dimension of a Borel measure µ on RN (or
lower Hausdorff dimension as it is sometimes called) is defined by

dimHµ = inf
{
dimHF : µ(F ) > 0 and F ⊆ RN is a Borel set

}
. (3.15)

The packing dimension of µ, denoted by dimPµ, is defined by replacing
dimHF in (3.15) by dimPF .

Hu and Taylor [21] proved the following characterization of dimHµ: if
µ is a finite Borel measure on RN then

dimHµ = sup

{
γ ≥ 0 : lim sup

r→0+

µ
(
U(t, r)

)

rγ
= 0 for µ-a.e. t ∈ RN

}
,

(3.16)
where U(t, r) = {s ∈ RN : |s − t| ≤ r}. It can be verified that for every
Borel set E ⊂ RN , we have

dimHE = sup
{
dimHµ : µ ∈ M+

c (E)
}
, (3.17)

where M+
c (E) denotes the family of finite Borel measures on E with compact

support in E.
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From (3.16), we note that dimHµ only describes the local behavior of
µ in an isotropic way and is not quite informative if µ is highly anisotropic
as what we are dealing with in this paper. To overcome this difficulty, we
introduce the following new notion of “dimension” for E ⊂ (0, ∞)N that is
natural for studying BH(E).

Definition 1. Given a Borel probability measure µ on RN , we define the
set Λµ ⊆ RN

+ by

Λµ =
{

λ = (λ1, . . . , λN ) ∈ RN
+ : lim sup

r→0+

µ (R(t, r))
r〈λ,H−1〉 = 0 for µ-a.e. t ∈ RN

}
,

(3.18)
where R(t, r) =

∏N
j=1[tj − r1/Hj , tj + r1/Hj ] and H−1 = ( 1

H1
, . . . , 1

HN
).

Some basic properties of Λµ are summarized in the following lemma.
For simplicity of notation, without loss of generality, we will assume H1 =
min{Hj : 1 ≤ j ≤ N}.
Lemma 4. Λµ has the following properties:

(i) The set Λµ is bounded:

Λµ ⊆
{

λ = (λ1, . . . , λN ) ∈ RN
+ : 〈λ,H−1〉 ≤ N

H1

}
. (3.19)

(ii) For all β ∈ (0, 1]N and λ ∈ Λµ, the Hadamard product of β and λ,
β ◦ λ = (β1λ1, . . . , βNλN ) ∈ Λµ.

(iii) Λµ is convex, i.e. ∀λ, η ∈ Λµ and 0 < b < 1, bλ + (1− b)η ∈ Λµ.
(iv) For every a ∈ (0,∞)N , supλ∈Λµ

〈λ, a〉 is achieved on the boundary
of Λµ.

Because of (iv) and its importance in this paper, we call the boundary
of Λµ, denoted by ∂Λµ, the Hausdorff dimension contour of µ.

Proof. Suppose λ = (λ1, . . . , λN ) ∈ Λµ. Then

lim sup
r→0+

µ (R(t, r))
r〈λ,H−1〉 = 0 for µ-a.e. t ∈ RN . (3.20)

Fix a t ∈ RN such that (3.20) holds. Since for any a > 0, the ball U(t, a)
centered at t with radius a can be covered by R(t, aH1), it follows from
(3.20) that

lim sup
r→0+

µ (U(t, a))
aH1〈λ,H−1〉 = 0 for µ-a.e. t ∈ RN . (3.21)

It follows from (3.16) and (3.21) that dimHµ ≥ H1〈λ, H−1〉. Hence we have
〈λ,H−1〉 ≤ N/H1. This proves (i).
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Statements (ii) and (iii) follow directly from the definition of Λµ. To
prove (iv), we note that for every a ∈ (0,∞)N , Property (i) implies that
supλ∈Λµ

〈a, λ〉 < ∞. On the other hand, the function λ 7→ 〈λ, a〉 is increasing
in each λj . Hence supλ∈Λµ

〈λ, a〉 must be achieved on the boundary of Λµ.

As examples, we mention that if m is the Lebesgue measure on RN
+ ,

then

Λm =
{

(λ1, . . . , λN ) ∈ RN
+ :

N∑

j=1

λj

Hj
<

N∑

j=1

1
Hj

}
(3.22)

and supλ∈Λm
〈H−1, λ〉 =

∑N
j=1

1
Hj

. More generally we can verify that, if
µ = σ1 × · · · × σN , where σj (j = 1, . . . , N) are Borel probability measures
on R such that dimHσjk

= dimPσjk
for some {j1, . . . , jN−1} ⊂ {1, . . . , N},

then

Λµ =
{

(λ1, . . . , λN ) ∈ RN
+ :

N∑

j=1

λj

Hj
<

N∑

j=1

βj

Hj

}
,

where βj = dimHσj for j = 1, . . . , N . In the special case of H1 = · · · =
HN = α ∈ (0, 1), we derive from (3.16) that for every Borel measure µ,

Λµ =
{

(λ1, . . . , λN ) ∈ RN
+ :

N∑

j=1

λj < dimHµ

}
. (3.23)

For any Borel measure µ on RN
+ , its image measure under the mapping

t 7→ BH(t) is defined by

µ
BH (F ) = µ

{
t ∈ RN

+ : BH(t) ∈ F
}

for all Borel sets F ⊂ Rd.

We will make use of the following result. Note that the exceptional null
probability event does not depend on µ.

Proposition 2. Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brown-
ian sheet with index H ∈ (0, 1)N . Then almost surely,

dimHµ
BH ≤ sµ(H) ∧ d for all µ ∈ M+

c (RN
+ ), (3.24)

where sµ(H) = supλ∈Λµ
〈λ, H−1〉.

Proof. To prove the upper bound in (3.24), note that, without loss of
generality, we may and will assume the support of µ is contained in [ε, T ]N

for some 0 < ε < T < ∞. Furthermore, if sµ(H) ≥ d, then dimHµ
BH ≤

sµ(H) ∧ d holds trivially. Therefore, we will also assume that sµ(H) < d.



16 Dongsheng Wu and Yimin Xiao

Note that ∀ δj ∈ (0,Hj) (j = 1, . . . , N), Lemma 2 implies that for
almost all ω ∈ Ω,

∣∣BH(s)−BH(t)
∣∣ ≤ c

N∑

j=1

|sj − tj |Hj−δj ∀s, t ∈ [ε, T ]N . (3.25)

We choose δ1, . . . , δN in the following way: ∀δ ∈ (0, H1),

δ1 = δ and δj =
Hj

H1
δ, for j = 2, . . . , N. (3.26)

and fix an ω ∈ Ω such that (3.25) holds. For any 0 < γ < dimHµ
BH , by

(3.16) we have

lim sup
ρ→0

µ
BH

(
U(u, ρ)

)

ργ
= 0 for µ

BH -a.e. u ∈ Rd. (3.27)

This is equivalent to

lim sup
ρ→0

1
ργ

∫

[ε,T ]N
1l{|BH(s)−BH(t)|≤ρ

} µ(ds) = 0 for µ-a.e. t ∈ RN
+ . (3.28)

It follows from (3.28) and (3.25) that almost surely

lim sup
ρ→0

1
ργ

µ
(
R̃

(
t, ρ

))
= 0 for µ-a.e. t ∈ RN

+ , (3.29)

where R̃
(
t, ρ

)
=

∏N
j=1

[
tj − ρ

1
Hj−δj , tj + ρ

1
Hj−δj

]
. Equation (3.29), together

with (3.26), implies

lim sup
ρ→0

1
ργ

µ
(
R

(
t, ρ

H1
H1−δ

))
= 0 for µ-a.e. t ∈ RN

+ . (3.30)

We claim that γ ≤ sµ(H). In fact, if γ > sµ(H), then there exists β /∈ Λµ

such that 〈β, H−1〉 < γ. Since β /∈ Λµ, there is a set A ⊂ [ε, T ]N with
positive µ-measure such that

lim sup
r→0

µ
(
R(t, r)

)

r〈β,H−1〉 > 0 for every t ∈ A. (3.31)

Now we choose δ > 0 small enough such that

γ − H1

H1 − δ
〈β, H−1〉 > 0. (3.32)
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Then (3.31) and (3.32) imply that for every t ∈ A,

lim sup
ρ→0

1
ργ

µ
(
R

(
t, ρ

H1
H1−δ

))

= lim sup
ρ→0

1

ρ
γ− H1

H1−δ
〈β, H−1〉

×
µ
(
R

(
t, ρ

H1
H1−δ

))

ρ
H1

H1−δ
〈β,H−1〉

= ∞.

(3.33)

This contradicts (3.30). Therefore, we have proved that γ ≤ sµ(H). Since
γ < dimHµ

BH is arbitrary, we have dimHµ
BH ≤ sµ(H) ∧ d. This finishes

the proof of Proposition 2.

The following corollary follows directly from Proposition 2 and (3.22).
It is related to Theorem 3.1 in Ayache and Xiao [5].

Corollary 1. Let m be the Lebesgue measure on RN
+ , then dimHm

BH ≤
d ∧∑N

j=1 H−1
j a.s.

Remark 1. Applying a moment argument [see, e.g., Xiao [44]] and the
sectorial local nondeterminism of BH , we can also prove that dimHm

BH ≥
d∧∑N

j=1 H−1
j a.s. Since this result is not needed in this paper and its proof

is rather long, we omit it.

For any Borel set E ⊂ (0, ∞)N , we define

Λ(E) =
⋃

µ∈M+
c (E)

Λµ. (3.34)

Recall that M+
c (E) is the family of finite Borel measures with compact

support in E. Similar to the case for measures, we call the set ∪µ∈M+
c (E)∂Λµ

the Hausdorff dimension contour of E. It follows from Lemma 4 that, for
every a ∈ (0,∞)N , the supermum supλ∈Λ(E) 〈λ, a〉 is determined by the
Hausdorff dimension contour of E.

The following is the main result of this section.

Theorem 2. Let BH be an (N, d)-fractional Brownian sheet with index
H ∈ (0, 1)N . Then, for any Borel set E ⊂ (0,∞)N ,

dimHBH(E) = s(H, E) ∧ d a.s., (3.35)

where s(H, E) = supλ∈Λ(E) 〈λ,H−1〉 = supµ∈M+
c (E) sµ(E).

Remark 2. Given the importance of s(H, E) in this paper, it is of interest
to determine its value more explicitly. Xiao [48] has shown that it is the
Hausdorff dimension of E with respect to an “anisotropic metric”.

We need the following lemmas to prove Theorem 2.
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Lemma 5. Let E ⊂ RN be an analytic set and let f : RN → Rd be a
continuous function. If 0 ≤ τ < dimHf(E), then there exists a compact set
E0 ⊆ E such that τ < dimHf(E0).

Proof. The proof is the same as that of Lemma 4.1 in Xiao [45], with
packing dimension replaced by Hausdorff dimension.

Lemma 6. Let E ⊂ (0,∞)N be an analytic set. Then for any continuous
function f : RN → Rd,

dimHf(E) = sup
{
dimHµf : µ ∈ M+

c (E)
}
. (3.36)

Proof. For any µ ∈ M+
c (E), we have µf ∈ M+

c (f(E)). By (3.17), we
have

dimHf(E) = sup
{
dimHν : ν ∈ M+

c (f(E))
}
, (3.37)

which implies that

dimHf(E) ≥ sup
{
dimHµf : µ ∈ M+

c (E)
}
. (3.38)

To prove the reverse inequality, let τ < dimHf(E). By Lemma 5, there
exists a compact set E0 ⊂ E such that dimHf(E0) > τ . Hence, by (3.37),
there exists a finite Borel measure ν ∈ M+

c (f(E0)) such that dimHν > τ .
It follows from Theorem 1.20 in Mattila [33] that there exists µ ∈ M+

c (E0)
such that ν = µf , which implies sup{dimHµf : µ ∈ M+

c (E)} > τ . Since
τ < dimHf(E) is arbitrary, we have

dimHf(E) ≤ sup{dimHµf : µ ∈ M+
c (E)}. (3.39)

Equation (3.36) now follows from (3.38) and (3.39).

Proof of Theorem 2. First we prove the lower bound:

dimHBH(E) ≥ s(H,E) ∧ d a.s. (3.40)

For any 0 < γ < s(H, E) ∧ d, there exists a Borel measure µ with compact
support in E such that γ < sµ(H)∧d. Hence we can find λ′ = (λ′1, . . . , λ

′
N ) ∈

Λµ such that γ <
∑N

j=1

λ′j
Hj
∧ d and

lim sup
r→0

µ(R(t, r))
r〈λ′,H−1〉 = 0 for µ-a.e. t ∈ RN

+ . (3.41)

For ε > 0 we define

Eε =
{

t ∈ E : µ
(
R(t, r)

) ≤ r〈λ
′,H−1〉 for all 0 < r ≤ ε

}
. (3.42)

Then (3.41) implies that µ(Eε) > 0 if ε is small enough. In order to prove
(3.40), it suffices to show dimHBH(Eε) ≥ γ a.s.
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The proof of the latter using Frostman’s theorem is standard: we only
need to show

E
∫

Eε

∫

Eε

µ(ds)µ(dt)
|BH(t)−BH(s)|γ < ∞. (3.43)

By Lemma 3 and the fact that γ < d, we have

E
∫

Eε

∫

Eε

µ(ds)µ(dt)
|BH(t)−BH(s)|γ ≤ c

∫

Eε

∫

Eε

µ(ds)µ(dt)
(∑N

j=1 |sj − tj |2Hj
)γ/2

. (3.44)

Let t ∈ Eε be fixed and let n0 be the smallest integer n such that 2−n ≤ ε.
For every n ≥ n0, denote

Dn =
{
s ∈ RN

+ : 2−(n+1)/Hj < |sj − tj | ≤ 2−n/Hj for all 1 ≤ j ≤ N
}
.

Then by (3.42) we have
∫

Eε

µ(ds)
(∑N

j=1 |sj − tj |2Hj
)γ/2

≤ c +
∞∑

n=n0

∫

Dn

µ(ds)
(∑N

j=1 |sj − tj |2Hj
)γ/2

≤ c + c
∞∑

n=n0

2
−n(

PN
j=1

λ′j
Hj
−γ)

≤ c3,10 .

(3.45)

This and (3.44) yield (3.43). So we have proved (3.40).
Now we prove the upper bound in (3.35). It follows from Proposition

2 that almost surely for all µ ∈ M+
c (E) we have

dimHµ
BH ≤ sµ(H) ∧ d. (3.46)

Hence by (3.34) and (3.36) we derive

dimHBH(E) ≤ s(H, E) ∧ d a.s. (3.47)

Combining (3.40) and (3.47) finishes the proof.

In the special case of H = 〈α〉, Theorem 2 implies that for every Borel
set E ⊂ (0,∞)N ,

dimHB〈α〉(E) = min
{

d,
1
α

dimHE

}
a.s. (3.48)

The following theorem gives us a uniform version of (3.48). It extends the re-
sults of Mountford [35] and Khoshnevisan, Wu and Xiao [28] for the Brown-
ian sheet.

Theorem 3. If N ≤ αd, then with probability 1

dimHB〈α〉(E) =
1
α

dimHE for all Borel sets E ⊂ (0,∞)N . (3.49)
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Our proof of Theorem 3 is reminiscent to that of Khoshnevisan, Wu and
Xiao [28] for the Brownian sheet. The key step is provided by the following
lemma, which will be proved by using the sectorial local nondeterminism of
B〈α〉.

Lemma 7. Assume N ≤ αd and let δ > 0 and 0 < 2α − δ < β < 2α
be given constants. Then with probability 1, for all integers n large enough,
there do not exist more than 2nδd distinct points of the form tj = 4−n kj,
where kj ∈ {1, 2, . . . , 4n}N , such that

∣∣∣B〈α〉(ti)−B〈α〉(tj)
∣∣∣ < 3 · 2−nβ for i 6= j. (3.50)

Proof. Let An be the event that there do exist more than 2nδd distinct
points of the form 4−nkj such that (3.50) holds. Let Nn be the number of
n-tuples of distinct t1, . . . , tn such that (3.50) holds. Then

An ⊆
{

Nn ≥
(

[2nδd + 1]
n

)}
.

Consequently,

P(An) ≤ E(Nn)(
[2nδd + 1]

n

) . (3.51)

In order to estimate E(Nn), we write it as

E(Nn) = E
[ ∑

t1

∑

t2

· · ·
∑
tn︸ ︷︷ ︸

distinct

1n(3.50) holds
o
]

=
∑

t1

∑

t2

· · ·
∑
tn︸ ︷︷ ︸

distinct

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ , ∀i 6= j ≤ n

}
.

(3.52)

Now we fix n− 1 distinct points t1, . . . , tn−1 and estimate the following sum
first:

∑
tn

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ, ∀i 6= j ≤ n

}
. (3.53)

Note that for fixed t1 = k14−n, . . . , tn−1 = kn−14−n, there are at most
(n− 1)N points τu = (τu

1 , . . . , τu
N ) defined by

τu
` = tj` for some j = 1, . . . , n− 1.



Geometric Properties of Fractional Brownian Sheets 21

We denote the collection of τu’s by Γn = {τu}. Clearly, t1, . . . , tn−1 are all
included in Γn.

It follows from Theorem 1 that, for every tn /∈ Γn, there exists τun ∈ Γn

such that

Var
(
B
〈α〉
0 (tn)|B〈α〉

0 (t1), . . . , B〈α〉
0 (tn−1)

)
≥ c3,5 |tn − τun |2α . (3.54)

In this case, since B
〈α〉
1 , . . . , B

〈α〉
d are the independent copies of B

〈α〉
0 , a stan-

dard conditioning argument and (3.54) yield

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ, ∀i 6= j ≤ n

}

≤ P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ, ∀i 6= j ≤ n− 1
}

×
(

3 · 2−nβ

c
1/2
3,5 |tn − τun |α

)d

.

(3.55)

If tn ∈ Γn, then we use the trivial bound

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ , ∀i 6= j ≤ n

}

≤ P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ, ∀i 6= j ≤ n− 1
}

.

(3.56)

Hence, by combining (3.55) and (3.56), we obtain
∑
tn

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ, ∀i 6= j ≤ n

}

≤ P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ , ∀i 6= j ≤ n− 1
}

×
[ ∑

tn /∈Γn

c3,6

( 3 · 2−nβ

|tn − τun |α
)d

+ (n− 1)N

]
.

(3.57)

Note that
∑

tn /∈Γn

( 3 · 2−nβ

|tn − τun |α
)d
≤

∑

τu∈Γn

∑

tn 6=τu

(
3 · 2−nβ

|tn − τu|α
)d

≤
∑

τu∈Γn

3d · 2−nβd
∑

tn 6=τu

1
|tn − τu|αd

≤ c3,7 (n− 1)N+1 2n(2α−β)d.

(3.58)

In deriving the last inequality, we have used the fact that if N ≤ αd then
for all fixed τu, ∑

tn 6=τu

1
|tn − τu|αd

≤ c · 22αnd n.
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Plug (3.58) into (3.57), we get

∑
tn

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ, ∀i 6= j ≤ n

}

≤ P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ , ∀i 6= j ≤ n− 1
}

× c3,8 (n− 1)N+1 2n(2α−β)d.

(3.59)

Therefore, by iteration, we obtain

∑

t1

∑

t2

· · ·
∑
tn︸ ︷︷ ︸

distinct

P
{ ∣∣∣B〈α〉(ti)−B〈α〉(tj)

∣∣∣ < 3 · 2−nβ , ∀i 6= j ≤ n

}

≤ cn
3,9

[
(n− 1)!

]N+1 2n2(2α−β)d,

(3.60)

which implies
E
(
Nn

) ≤ cn
3,9

(n− 1)n(N+1) 2n2(2α−β)d. (3.61)

By (3.51), (3.61) and the elementary inequality

(
[2nδd + 1]

n

)
≥

(
2nδd + 1

n

)n

≥ 2n2δd

nn
,

we obtain
P
(
An

) ≤ cn
3,10

(n− 1)n(N+2) 2n2(2α−β−δ)d. (3.62)

Since 0 < 2α − β < δ, by (3.62), we get
∑

n P(An) < ∞. Hence the Borel-
Cantelli Lemma implies that P

(
limnAn

)
= 0. This completes the proof of

our lemma.

For n = 1, 2, . . . and k = (k1, . . . , kN ), where each ki ∈ {1, 2, . . . , 4n},
define

In
k =

{
t ∈ [0, 1]N : (ki − 1)4−n ≤ ti ≤ ki4−n for all i = 1, . . . , N

}
. (3.63)

The following lemma is a consequence of Lemmas 2 and 7.

Lemma 8. Let δ > 0 and 0 < 2α − δ < β < 2α. Then with probability 1,
for all large enough n, there exists no ball O ⊂ Rd of radius 2−nβ for which
B−1(O) intersects more than 2nδd cubes In

k .

Now we are ready to prove Theorem 3.

Proof of Theorem 3. For simplicity, we shall only prove (3.49) for all
Borel sets E ⊆ (0, 1]N . By Lemma 2, we know that almost surely B〈α〉(t)
satisfies a uniform Hölder condition on [0, 1]N of any order smaller than α.
This and Theorem 6 in Kahane [22] [or Proposition 2.3 in Falconer [17]]
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imply that P
{
dimHB(E) ≤ 1

αdimHE for every Borel set E ⊂ [0, 1]N
}

=
1.

To prove the lower bound we need only to show that almost surely for
every compact set F ⊆ Rd,

dimH
{
t ∈ (0, 1]N : B〈α〉(t) ∈ F

} ≤ α dimHF. (3.64)

This follows from Lemma 8 and a simple covering argument as in Khosh-
nevisan, Wu and Xiao [28]. Therefore, the proof of Theorem 3 is finished.

4. Salem sets

Fourier transforms of deterministic and random measures have been studied
extensively in harmonic analysis [see, e.g., Mattila [33] and the reference
therein]. Of special interest to fractal geometry is the following relationship
between energy and the Fourier transform [see Kahane ([22], Ch. 10) or
Mattila ([33], Ch. 12)]: Let ν be a finite Borel measure on Rd. Then for any
γ ∈ (0, d),

Iγ(ν) =
∫

Rd

∣∣ν̂(ξ)
∣∣2∣∣ξ∣∣γ−d

dξ, (4.1)

where Iγ(ν) and ν̂ are the γ-energy [see Equation (3.11) for a definition] and
the Fourier transform of ν, respectively.

Let us recall from Kahane [22][23] the definitions of Fourier dimension
and Salem set. Given a constant β ≥ 0, a Borel set F ⊂ Rd is said to be an
Mβ-set if there exists a probability measure ν on F such that

∣∣ν̂(ξ)
∣∣ = o(|ξ|−β) as |ξ| → ∞. (4.2)

The asymptotic behavior of ν̂(ξ) at infinity carries some information about
the geometry of F . It can be verified that (i) if β > d/2 in (4.2), then ν̂ ∈
L2(Rd) and, consequently, F has positive d-dimensional Lebesgue measure;
(ii) if β > d, then ν̂ ∈ L1(Rd). Hence ν has a continuous density function
which implies that F has interior points.

For any Borel set F ⊂ Rd, the Fourier dimension of F , denoted by
dimFF , is defined as

dimFF = sup
{
γ ∈ [0, d] : F is an Mγ/2-set

}
. (4.3)

It follows from Frostman’s theorem and (4.1) that dimFF ≤ dimHF for
all Borel sets F ⊂ Rd. The strict inequality may hold. For example, the
Fourier dimension of triadic Cantor set is 0, but its Hausdorff dimension
is log 2/ log 3. It has been known that the Hausdorff dimension dimHF
describes a metric property of F , whereas the Fourier dimension measures an
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arithmetic property of F . As a further example of this aspect, we mentioned
that every set F ⊂ Rd with positive Fourier dimension generates Rd as a
group.

We say that a Borel set F ⊂ Rd is a Salem set if dimFF = dimHF .
Such sets are of importance in studying the problem of uniqueness and mul-
tiplicity for trigonometric series [cf. Zygmund ([50], Chapter 9) and Kahane
and Salem [25]] and the restriction problem for the Fourier transforms [cf.
Mockenhaupt [34]].

Many random sets have been proved to be Salem sets. Let X =
{X(t), t ∈ RN} be a centered Gaussian random field with values in Rd.
When X is an (N, d)-fractional Brownian motion of index γ ∈ (0, 1), Ka-
hane [22][23] studied the asymptotic properties of the Fourier transforms
of the image measures of X and proved that, for every Borel set E ⊂ RN

with dimHE ≤ γd, X(E) is a Salem set almost surely. Kahane [24] further
raised the question of studying the Fourier dimensions of other random sets.
Recently, Shieh and Xiao [41] extended Kahane’s results to a large class
of Gaussian random fields with stationary increments and Khoshnevisan,
Wu and Xiao [28] proved similar results for the Brownian sheet. However,
all the Gaussian random fields considered so far are at least approximately
isotropic.

In this section, we study the asymptotic properties of the Fourier trans-
forms of the image measures of the (N, d)-fractional Brownian sheet BH .
The main result of this section is Theorem 4 below, whose proof depends
crucially on the ideas of sectorial local nondeterminism and Hausdorff di-
mension contour. Moreover, by combining Theorems 2 and 4 we show that,
for every Borel set E ⊂ (0,∞)N , BH(E) is almost surely a Salem set when-
ever s(H, E) ≤ d. Recall that s(H, E) is defined in Theorem 2.

Let 0 < ε < T be fixed. For all n ≥ 2, t1, . . . , tn, s1, . . . , sn ∈ E ⊂
[ε, T ]N , denote s = (s1, . . . , sn), t = (t1, . . . , tn) and

Ψ(s, t) = E
[ n∑

k=1

(
BH

0 (tk)−BH
0 (sk)

)]2

. (4.4)

For s ∈ En and r > 0, we define

F (s, r) =
n⋃

i1=1

· · ·
n⋃

iN=1

N⋂

j=1

{
u ∈ E :

∣∣∣uj − s
ij
j

∣∣∣ ≤ r1/Hj

}
.

This is a union of at most nN rectangles of side-lengths 2r1/H1 , . . . , 2r1/HN ,
centered at (si1

1 , . . . , sik
N ). Let

G(s, r) =
{
t = (t1, . . . , tn) : tk ∈ F (s, r) for 1 ≤ k ≤ n

}
. (4.5)

The following lemma is essential for the proof of Theorem 4.
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Lemma 9. There exists a positive constant c4,1, depending on ε, T, H and
N only, such that for all r ∈ (0, ε] and all s, t ∈ En with t /∈ G(s, r), we
have Ψ(s, t) ≥ c4,1 r2.

Proof. Since t /∈ G(s, r), there exist indices k0 ∈ {1, . . . , n} and j0 ∈
{1, . . . , N} such that

∣∣∣tk0
j0
− sk

j0

∣∣∣ > r1/Hj0 for all k = 1, . . . , n. It follows from
(2.1) that

Ψ(s, t) = K−2
H

∫

RN

∣∣∣∣
n∑

k=1

( N∏

j=1

(
eitkj λj − 1

)−
N∏

j=1

(
eisk

j λj − 1
))∣∣∣∣

2

fH(λ) dλ,

(4.6)
where fH(λ) =

∏N
j=1 |λj |−2Hj−1 . Let δj(·) ∈ C∞(R) (1 ≤ j ≤ N) be

the bump functions in the proof of Theorem 1. We define δr
j0

(uj0) =
r−1/Hj0 δj0(r

−1/Hj0uj0) and δε
j (uj) = ε−1δj(ε−1uj), if j 6= j0. Then, by using

the Fourier inversion formula again, we have

δr
j0(uj0) = (2π)−1

∫

R
e−iuj0

λj0 δ̂j0(r
1/Hj0λj0)dλj0

and similar identities holds for δε
j (uj) with j 6= j0.

Since r ∈ (0, ε), we have δr
j0

(tk0
j0

) = 0 and δε
j (t

k0
j ) = 0 for all j 6= j0.

Similarly, δr
j0

(tk0
j0
− sk

j0
) = 0 for all k = 1, . . . , n. Hence,

J ≡
∫

RN

[ n∑

k=1

( N∏

j=1

(eitkj λj − 1)−
N∏

j=1

(eisk
j λj − 1)

)]

×
( N∏

j=1

e−it
k0
j λj

)( N∏

j 6=j0

δ̂j(ελj)
)

δ̂j0

(
r1/Hj0λj0

)
dλ

= (2π)N
n∑

k=1

( N∏

j 6=j0

(δε
j (t

k0
j − tkj )− δε

j (t
k0
j ))

)(
δr
j0(t

k0
j0
− tkj0)− δr

j0(t
k0
j0

)
)

− (2π)N
n∑

k=1

( N∏

j 6=j0

(δε
j (t

k0
j − sk

j )− δε
j (t

k0
j ))

) (
δr
j0(t

k0
j0
− sk

j0)− δr
j0(t

k0
j0

)
)

≥ (2π)N ε−(N−1) r−1/Hj0 .

(4.7)

In the above, all the terms in the first sum are non-negative and the second
sum equals 0.

On the other hand, by the Cauchy-Schwarz inequality, (4.6) and (4.7),
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we get

J2 ≤ K2
HΨ(t, s)

∫

RN

1
fH(λ)

N∏

j 6=j0

∣∣∣δ̂j(ελj)
∣∣∣
2 ∣∣∣δ̂j0

(
r1/Hj0λj0

)∣∣∣
2
dλ

= K2
HΨ(t, s) ε

−2(N−1)−2
P

j 6=j0
Hj r−2−2/Hj0

N∏

j=1

∫

R
|λj |2Hj+1

∣∣∣δ̂j(λj)
∣∣∣
2
dλj

= c4,2r
−2−2/Hj0Ψ(t, s).

(4.8)

Square the both sides of (4.7) and combine it with (4.8), the lemma follows.

For any Borel probability measure µ on RN
+ , let ν = µ

BH be the image
measure of µ under BH . The Fourier transform of ν can be written as

ν̂(ξ) =
∫

RN
+

ei〈ξ,BH(t)〉 µ(dt). (4.9)

The following theorem describes the asymptotic behavior of ν̂(ξ) as
ξ → ∞. Contrast to the results for fractional Brownian motion and the
Brownian sheet, the behavior of ν̂(ξ) is anisotropic.

Theorem 4. Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brownian
sheet. Assume that, for every j = 1, . . . , N , the function τj : R+ → R+ is
non-decreasing such that τj(0) = 0 and τj(2r) ≤ c4,3 τj(r) for all r ≥ 0 [i.e.,
τj satisfies the doubling property]. If µ is a Borel probability measure on
[ε, T ]N such that

µ
(
R(t, r)

) ≤ c4,4

N∏

j=1

τj(r1/Hj ), ∀ t ∈ RN
+ , (4.10)

where R(t, r) =
∏N

j=1[tj − r1/Hj , tj + r1/Hj ]. Then there exists a constant
% > 0 such that the Fourier transform of ν satisfies

lim sup
|ξ|→∞

∣∣ν̂(ξ)
∣∣

√(∏N
j=1 τj

(|ξ|−
1

Hj
))

log% |ξ|
< ∞, a.s. (4.11)

Proof. First note that by considering the restriction of µ on subsets of
its support and the linearity of the Fourier transform, we see that, without
loss of generality, we may and will assume that µ is supported on a Borel
set E ⊂ [ε, T ]N with diamE < ε1/H1 [we have assumed that H1 = min{Hj :
1 ≤ j ≤ N}]. The reason for this reduction will become clear below.
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The argument is similar to that of Kahane [22]. For any integer n ≥ 1,
(4.9) yields

E
(∣∣ν̂(ξ)

∣∣2n)
= E

∫

RnN
+

∫

RnN
+

ei〈ξ,
Pn

k=1(B
H(tk)−BH(sk))〉 µn(ds)µn(dt)

=
∫

RnN
+

∫

RnN
+

exp
(
− 1

2
|ξ|2Ψ(s, t)

)
µn(ds)µn(dt),

(4.12)

where µn(ds) = µ(ds1) · · ·µ(dsn).
Let s ∈ [ε, T ]nN be fixed and we write

∫

RnN
+

exp
(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt)

=
∫

G(s,r)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt)

+
∞∑

m=1

∫

G(s,r2m)\G(s,r2m−1)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt).

(4.13)

Since µ is supported on E with diamE < ε1/H1 , the above summation is
taken over the integers m such that r2m ≤ ε. Hence we can apply Lemma
9 to estimate the integrands.

By (4.10), we always have

∫

G(s,r)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt) ≤

(
c4,4 nN

N∏

j=1

τj(r
1

Hj )
)n

. (4.14)

Given ξ ∈ Rd\{0}, we take r = |ξ|−1. It follows from Lemma 9, the doubling
property of functions τj and (4.10) that

∫

G(s,r2m)\G(s,r2m−1)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt)

≤ exp
(
− 1

2
c4,1 |ξ|2(r2m−1)2

)
·
(

c4,4 nN
N∏

j=1

τj(2mr
1

Hj )
)n

≤
(

c4,4 nN
N∏

j=1

τj(r1/Hj )
)n

exp
(
− c4,5 22m

)
· cNmn

4,3
.

(4.15)

Note that

1 +
∞∑

m=1

exp
(
− c4,5 22m

)
· cNmn

4,3
≤ cn

4,6
nρn, (4.16)
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where ρ = N/(2 log c4,3).

Combining (4.14), (4.15) and (4.16), we derive an upper bound for the
integral in (4.13):

∫

RnN
+

exp
(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt) ≤ cn

4,7
n(N+ρ)n ·

( N∏

j=1

τj

(|ξ|−
1

Hj
))n

.

(4.17)
Integrating the both sides of (4.17) in µn(ds), we get

E
(∣∣ν̂(ξ)

∣∣2n) ≤ cn
4,7
· n%n ·

( N∏

j=1

τj

(|ξ|−
1

Hj
))n

, (4.18)

where % = N + ρ is a constant.
The same argument as in Kahane ([22], pp. 254–255) using (4.18) and

the Borel-Cantelli lemma implies that almost surely

lim sup
z∈Zd

,|z|→∞

∣∣ν̂(z)
∣∣

√( ∏N
j=1 τj

(|z|−
1

Hj
))

log% |z|
< ∞. (4.19)

Therefore (4.11) follows from (4.19) and Lemma 1 of Kahane ([22], p.252).
This finishes the proof of Theorem 4.

Theorem 5. Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brownian
sheet with Hurst index H ∈ (0, 1)N . Then for every Borel set E ⊂ (0,∞)N

with s(H, E) ≤ d, BH(E) is almost surely a Salem set with Fourier dimen-
sion s(H, E).

Proof. By using (3.35) and the fact that dimFF ≤ dimHF for all
Borel sets F ⊂ Rd, we see that for every Borel set E ⊂ (0,∞)N satisfy-
ing s(H, E) ≤ d, we have dimFBH(E) ≤ dimHBH(E) = s(H,E) almost
surely.

To prove the reverse inequality, it suffices to show that if s(H, E) ≤ d
then for all γ ∈ (0, s(H, E)) we have dimFBH ≥ γ a.s.

Note that for any 0 < γ < s(H, E), there exists a Borel probability
measure µ with compact support in E such that γ < sµ(H). Hence we can

find λ′ = (λ′1, . . . , λ
′
N ) ∈ Λµ such that γ <

∑N
j=1

λ′j
Hj

and (3.41) holds. Let
µε be the restriction of µ to the set Eε defined by (3.42). Then µε satisfies
the condition (4.10) with τj(r) = rλ′j (j = 1, . . . , N).

Let ν be the image measure of µε under BH . Then by Theorem 4 we
have almost surely,

∣∣ν̂(ξ)
∣∣ = O

(√
|ξ|−

PN
j=1

λ′
j

Hj log% |ξ|
)

, as |ξ| → ∞. (4.20)
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This and (4.3) imply that dimFBH(E) ≥ ∑N
j=1

λ′j
Hj

a.s., which yields

dimFBH(E) ≥ γ a.s.

Since γ ∈ (0, s(H,E)) is arbitrary, we have proved that dimFBH(E) =
dimHBH(E) a.s. Therefore, BH(E) is a Salem set.

Applying Theorems 4 and 5 to B〈α〉, we have the following result.

Corollary 2. Let B〈α〉 = {B〈α〉(t), t ∈ RN} be an (N, d)-fractional Brown-
ian sheet, and let τ : R+ → R+ be a non-decreasing function satisfying
τ(0) = 0 and the doubling property. If µ is a probability measure on [ε, T ]N

such that
µ(B(x, r)) ≤ c4,8 τ(2r), ∀x ∈ RN

+ , r ≥ 0, (4.21)

then there exists a positive and finite constant % such that

lim sup
|ξ|→∞

|ν̂(ξ)|√
τ
(|ξ|− 1

α

)
log% |ξ|

< ∞. (4.22)

Moreover, for every Borel set E ⊂ (0,∞)N with dimHE ≤ αd, B〈α〉(E) is
almost surely a Salem set with Fourier dimension dimHE/α.

5. Interior points

Given a Borel set E ⊂ (0,∞)N with s(H, E) ≥ d, Theorem 2 implies that
dimHBH(E) = d a.s. Two natural questions arise: (1) Does BH(E) have
positive d-dimensional Lebesgue measure a.s. ? (2) Does BH(E) have inte-
rior points a.s.?

Question (1) can be studied by using the Fourier analytic argument of
Kahane [22]. One can show the following: If a Borel set E ⊂ (0,∞)N carries
a probability measure µ such that

∫

E

∫

E

1
(∑N

j=1 |sj − tj |2Hj
)d/2

µ(ds)µ(dt) < ∞, (5.1)

then almost surely, BH(E) has positive d-dimensional Lebesgue measure.
In particular, it follows from the proof of Theorem 2 that, if E ⊂ (0,∞)N

satisfies s(H, E) > d, then the condition (5.1) is satisfied, and BH(E) has
positive d-dimensional Lebesgue measure. Question (2) is more difficult to
answer. This question for Brownian motion was first considered by Kauf-
man [27], and then extended by Pitt [39] and Kahane [22][23] to fractional
Brownian motion and by Khoshnevisan and Xiao [29] to the Brownian sheet.



30 Dongsheng Wu and Yimin Xiao

Recently, Shieh and Xiao [41] proved similar results under more general con-
ditions for a large class of strongly locally nondeterministic, approximately
isotropic Gaussian random fields.

In the following, we prove that a condition similar to that in Shieh
and Xiao [41] is sufficient for BH(E) to have interior points almost surely.
This theorem extends and improves the result of Khoshnevisan and Xiao
[29] mentioned above.

Theorem 6. Let BH = {BH(t), t ∈ RN} be an (N, d)-fractional Brownian
sheet with index H ∈ (0, 1)N . If a Borel set E ⊂ (0,∞)N carries a probability
measure µ such that for some finite constants c5,1 > 0 and γ > N we have

∫

RN
+

1
( ∑N

j=1 |sj − tj |2Hj
)d/2

log(N+1)γ
+

(
1∑N

j=1 |sj − tj |2Hj

)
µ(ds) ≤ c5,1

(5.2)
for all t ∈ RN

+ , where log+ x = max{1, log x}. Then BH(E) has interior
points almost surely.

From Theorem 6 we derive the following corollaries.

Corollary 3. If E ⊂ (0,∞)N is a Borel set with s(H,E) > d, then BH(E)
a.s. has interior points.

Proof. It follows from the proof of Theorem 2 that, if s(H, E) > d,
then there is a Borel probability measure µ on E satisfying (5.2). Hence the
conclusion follows from Theorem 6.

Corollary 4. Let B〈α〉 = {B〈α〉(t), t ∈ RN} be an (N, d)-fractional Brown-
ian sheet with Hurst index H = 〈α〉. If a Borel set E ⊂ (0,∞)N carries a
probability measure µ such that

sup
t∈RN

+

∫

RN
+

1
|s− t|αd

log(N+1)γ
+

( 1
|s− t|

)
µ(ds) ≤ c5,2 (5.3)

for some finite constants c5,2 > 0 and γ > N . Then B〈α〉(E) has interior
points almost surely.

The existence of interior points in BH(E) is related to the regularity
of the local times of BH on E. Let us recall briefly the definition of local
time of BH on E. For any Borel probability measure µ on E, let µ

BH be the
image measure of µ under BH . If µ

BH is absolutely continuous with respect
to the Lebesgue measure md in Rd, then BH is said to have a local time
on E. The local time lµ(x) is defined to be the Radon–Nikodým derivative
dµ

BH /dmd(x) and it satisfies the following occupation density formula: For
all Borel measurable functions f : Rd → R+,

∫

E
f
(
BH(s)

)
µ(ds) =

∫

Rd
f(x)lµ(x) dx. (5.4)
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It is known from Geman and Horowitz [19] and Kahane [22] that, when (5.1)
holds, then lµ(x) ∈ L2(Rd) a.s.

In order to prove Theorem 6, we will make use of the following conti-
nuity lemma of Garsia [18].

Lemma 10. Assume that p(u) and Ψ(u) are two positive increasing func-
tions on [0,∞) such that p(u) ↓ 0 as u ↓ 0, Ψ(u) is convex and Ψ(u) ↑ ∞ as
u ↑ ∞. Let D denote an open hypercube in Rd. If the function f(x) : D → R
is measurable and

A := A(D, f) =
∫

D

∫

D
Ψ

( |f(x)− f(y)|
p(|x− y|/

√
d)

)
dxdy < ∞, (5.5)

then after modifying f(x) on a set of Lebesgue measure 0, we have

|f(x)− f(y)| ≤ 8
∫ |x−y|

0
Ψ−1

( A

u2d

)
dp(u) for all x, y ∈ D. (5.6)

We take the function p(u) in Garsia’s lemma as follows: Let γ be the
constant in (5.2) and define

p(u) =





0, if u = 0,
log−γ

(
e
u

)
, if 0 < u ≤ 1,

γu− γ + 1, if u > 1.
(5.7)

Clearly, the function p(u) is strictly increasing on [0,∞) and p(u) ↓ 0 as
u ↓ 0.

Now we proceed to prove Theorem 6.

Proof of Theorem 6. First note that, since µ is a Borel probability
measure on E, without loss of generality, we can assume that E is compact.
Hence there are constants 0 < ε < T < ∞ such that E ⊆ [ε, T ]N . Since
BH(E) is a compact subset of Rd, (5.4) implies that {x : lµ(x) > 0} is a
subset of BH(E). Hence, in order to prove our theorem, it is sufficient to
prove that the local time lµ(x) has a version which is continuous in x; see
Pitt ([39], p.324) or Geman and Horowitz ([19], p.12). This will be proved
by deriving moment estimates for the local time lµ and by applying Garsia’s
continuity lemma.

Secondly, as in Khoshnevisan and Xiao [29], we may and will assume
that the Borel probability measure µ in (5.2) has the following property:
For any constant c > 0 and ` = 1, . . . , N ,

µ {t = (t1, . . . , tN ) ∈ E : t` = c} = 0. (5.8)

Otherwise, we can replace BH by an (N − 1, d)-fractional Brownian sheet
B̃H and prove the desired conclusion for B̃H(E`), where E` is the set in
(5.8) with positive µ-measure.
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Consider the set

Ẽn =
{
t = (t1, . . . , tn) ∈ En : tj` = ti` for some i 6= j and 1 ≤ ` ≤ N

}
.

(5.9)
It follows from (5.8) and the Fubini–Tonelli theorem that µn(Ẽn) = 0.

The following lemma provides estimates on high moments of the local
time, which is the key for finishing the proof of Theorem 6.

Lemma 11. Let µ be a Borel probability measure on E ⊂ [ε, T ]N satisfying
(5.2) and (5.8) and let p(u) be defined by (5.7). Then for every hypercube
D ⊂ Rd there exists a finite constant c5,3 > 0, depending on N, d, γ, µ and
D only, such that for all even integers n ≥ 2,

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy ≤ cn
5,3

(n!)N logn(N+1)γ n. (5.10)

We now continue with the proof of Theorem 6 and defer the proof of
Lemma 11 to the end of this section.

Let Ψ(u) = u exp(uθ), where θ ∈ (
1
γ , 1

N

)
is a constant. Then Ψ is

increasing and convex on (0,∞). It follows from Jensen’s inequality, the
Fubini–Tonelli theorem and Lemma 11 that for all closed hypercubes D ⊂ Rd

and all integers n with θ + 1/n < 1,

E
∫

D

∫

D

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)nθ+1

dxdy

≤ (
md(D)

)2−θ−1/n
{
E

∫

D

∫

D

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)n

dxdy

}θ+1/n

≤ cn (n!)N(θ+1/n) (log n)n(N+1)γ(θ+1/n)

≤ cn
5,4

(n!)Nθ logn(N+1)γθ n,

(5.11)

where c5,4 is a finite constant depending on N, d, θ, D and c5,3 only.
Expanding Ψ(u) into a power series and applying the inequality (5.11),

we derive

E
∫

D

∫

D
Ψ

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)
dxdy

=
∞∑

n=0

1
n!
E

∫

D

∫

D

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)nθ+1

dxdy

≤ c5,5 < ∞,

(5.12)

where the last inequality follows from the fact that Nθ < 1. Hence Garsia’s
lemma implies that there are positive and finite random variables A1 and
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A2 such that for almost all x, y ∈ D with |x− y| ≤ e−1,

|lµ(x)− lµ(y)| ≤
∫ |x−y|

0
Ψ−1

( A1

u2d

)
dp(u)

≤ A2

[
log

(
1/|x− y|)

]−(γ−1/θ)
.

Note that, by our choice of θ, we have θ > 1/γ and hence BH has almost
surely a local time lµ(x) on E that is continuous for all x ∈ D. Finally, by
taking a sequence of closed hypercubes {Dn, n ≥ 1} such that Rd = ∪∞n=1Dn,
we have proved that almost surely lµ(x) is continuous for all x ∈ Rd. This
completes the proof of Theorem 6.

It remains to prove Lemma 11. Our proof relies on the sectorial lo-
cal nondeterminism of BH and on an argument which improves those in
Khoshnevisan and Xiao [29] and Shieh and Xiao [41].

We will need several lemmas. Lemma 12 is essentially due to Cuzick
and DuPreez [12], where the extra condition on g is dropped in Khoshnevisan
and Xiao [29]. Lemma 13 is a slight modification of Lemma 4 in Cuzick and
DuPreez [12].

Lemma 12. Let Zk (k = 1, . . . , n) be centered, jointly Gaussian random
variables which are linearly independent. If g : R→ R+ is a Borel measurable
function, then

∫

Rn
g(v1) e−

1
2
Var(〈v,Z〉) dv =

(2π)(n−1)/2

Q1/2

∫ ∞

−∞
g(z/σ1) e−

1
2
z2

dz, (5.13)

where σ2
1 = Var(Z1 |Z2, . . . , Zn) and Q = det Cov(Z1, . . . , Zn) is the deter-

minant of the covariance matrix of Z1, . . . , Zn.

Lemma 13. If α ≥ e2/2, then
∫ ∞

1
logα x exp

(
− x2

2

)
dx ≤ √

π logα α. (5.14)

Consider the non-decreasing function Λ(u) = 2min{1, u} on [0,∞).
Later we will make use of the elementary inequality

|eiu − 1| ≤ Λ(|u|), ∀u ∈ R. (5.15)

Lemma 14. Assume h(y) is any positive and non-decreasing function
on [0,∞) such that h(0) = 0, yn/hn(y) is non-decreasing on [0, 1], and∫∞
1 h−2(y)dy < ∞. Then there exists a constant c5,6 such that for all integers

n ≥ 1 and v ∈ (0,∞),
∫ ∞

0

Λn(vy)
hn(y)

dy ≤ cn
5,6

h−n
−

(1
v

)
, (5.16)



34 Dongsheng Wu and Yimin Xiao

where h−(y) = min{1, h(y)} so that h−n
− (y) = max{1, h−n(y)}.

Proof. The proof is the same as that of Lemma 3 in Cuzick and DuPreez
[12].

The following result is about the function p(u) defined by (5.7).

Lemma 15. Let p(u) be defined as in (5.7). Then for all σ > 0 and
integers n ≥ 1,

∫ ∞

0
p−n
−

(σ

v

)
exp

(
−v2

2

)
dv ≤ cn

5,7

[
lognγ n + lognγ

+

( e

σ

)]
, (5.17)

where log+ x = max{1, log x}.
Proof. Since

p−n
− (x) =

{
lognγ

(
e
x

)
, if 0 < x < 1,

1 if x ≥ 1

and logα
+(xy) ≤ 2α(logα

+ x+logα
+ y) for all α ≥ 0, we deduce that the integral

in (5.17) is at most

∫

σ/v≥1
exp

(
− v2

2

)
dv + 2nγ

∫

σ/v<1
lognγ

+ (v) exp
(
−v2

2

)
dv

+ 2nγ

∫

σ/v<1
lognγ

+

( e

σ

)
exp

(
−v2

2

)
dv.

(5.18)

It follows from (5.18) and Lemma 13 that

∫ ∞

0
p−n
−

(σ

v

)
exp

(
−v2

2

)
dv ≤ cn

[
lognγ(nγ) + lognγ

+

( e

σ

)]

≤ cn
5,7

[
lognγ n + lognγ

+

( e

σ

)]
.

(5.19)

This completes the proof of Lemma 15.

Finally, we are in a position to prove Lemma 11.

Proof of Lemma 11. By (25.7) in Geman and Horowitz [19], we have
that for every x, y ∈ Rd and all even integers n ≥ 2,

E [(lµ(x)− lµ(y))n] = (2π)−nd

∫

En

∫

Rnd

n∏

k=1

[
e−i〈uk, x〉 − e−i〈uk, y〉

]

× exp
[
− 1

2
Var

( n∑

k=1

〈uk, BH(tk)〉
)]

duµn(dt).

(5.20)
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In the above, u = (u1, . . . , un), uk ∈ Rd for each k = 1, . . . , n and we will
write it coordinate-wise as uk = (uk

1, . . . , u
k
d).

Note that for u1, . . . , un, y ∈ Rd, the triangle inequality implies
n∏

k=1

∣∣∣ exp(−i〈uk, y〉)− 1
∣∣∣

≤
n∏

k=1

∣∣∣∣
d∑

j=1

[
exp

(
− i

j∑

`=0

uk
` y`

)
− exp

(
− i

j−1∑

`=0

uk
` y`

)]∣∣∣∣

≤
n∏

k=1

[ d∑

j=1

∣∣∣ exp(−iuk
j yj)− 1

∣∣∣
]

=
∑ ′ n∏

k=1

∣∣∣ exp(−iuk
jk

yjk
)− 1

∣∣∣,

(5.21)

where y0 = uj
0 = 0 in the first inequality and the last summation

∑
´ is

taken over all sequences (j1, · · · , jn) ∈ {1, . . . , d}n.
It follows from (5.20), (5.21), (5.15) and the Fubini–Tonelli theorem

that for any fixed hypercube D ⊂ Rd and any even integer n ≥ 2, we have

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy

≤
∑ ′ ∫

D

∫

D

∫

En

∫

Rnd

n∏

k=1

∣∣ exp(iuk
jk

(yjk
− xjk

))− 1
∣∣

p(|y − x|/
√

d)

× exp
[
−1

2
Var

( n∑

k=1

〈uk, BH(tk)〉
)]

du µn(dt) dx dy

≤ md(D)
∑ ′ ∫

DªD

∫

En

∫

Rnd

n∏

k=1

Λ(|uk
jk

yjk
|)

p(|y|/
√

d)

× exp
[
−1

2
Var

( n∑

k=1

〈uk, BH(tk)〉
)]

du µn(dt) dy.

(5.22)

In the above, we have made a change of variables and D ª D = {x − y :
x, y ∈ D}. By our assumptions on µ, we see that the integral in (5.22) with
respect to µn can be taken over the set En\Ẽn, where Ẽn is defined by (5.9).

Now we fix t ∈ En\Ẽn, a sequence j = (j1, . . . , jn) ∈ {1, . . . , d}n and
define Mn(t) ≡Mn(j, t) by

Mn(t) =
∫

DªD

∫

Rnd

n∏

k=1

Λ
(|uk

jk
yjk
|)

p(|y|/
√

d)
exp

[
−1

2
Var

( n∑

k=1

〈uk, BH(tk)〉
)]

dudy.

(5.23)
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Then the last integral in (5.22) corresponding to the sequence j = (j1, . . . , jn)
can be written as

Nj ≡
∫

En\ eEn

Mn(t) µn(dt). (5.24)

We will estimate the above integral by integrating in the order µ(dtn),
µ(dtn−1), . . . , µ(dt1). For this purpose, we need to derive an upper bound
for Mn(t). Observe that for any positive numbers β1, . . . , βn satisfying∑n

k=1 βk = n, we can write

Mn(t) =
∫

DªD

∫

Rnd

n∏

k=1

Λ
(|uk

jk
yjk
|)

pβk(|y|/
√

d)

× exp
[
−1

2
Var

( n∑

k=1

〈uk, BH(tk)〉
)]

du dy.

(5.25)

Later it will be clear that the flexibility in choosing βk in (5.25) is essential
to our proof. More precisely, by choosing the constants βk (1 ≤ k ≤ n)
appropriately, we minimize the effect of “bad points” [see (5.37) below].

For any n points t1, . . . , tn ∈ En\Ẽn, Lemma 1 implies that the Gaussian
random variables BH

j (tk) (j = 1, . . . , d, k = 1, . . . , n) are linearly indepen-
dent. By applying the generalized Hölder’s inequality, Lemma 12 and a
change of variables, we see that Mn(t) is bounded by

n∏

k=1

{∫

DªD

∫

Rnd

Λn
(|uk

jk
yjk
|)

pnβk(|y|/
√

d)
exp

[
−1

2
Var

( n∑

k=1

d∑

`=1

uk
` B

H
` (tk)

)]
du dy

}1/n

=
cnd
5,8

[detCov(BH
0 (t1), . . . , BH

0 (tn))]d/2

×
n∏

k=1

{∫

DªD

∫

R

Λn
(|uk

jk
yjk
|/σk

)

pnβk(|y|/
√

d)
exp

(
− (uk

jk
)2

2

)
duk

jk
dy

}1/n

,

(5.26)

where, for every 1 ≤ k ≤ n, σ2
k ≡ σ2

k(t) is the conditional variance of BH
jk

(tk)
given BH

` (tm) (` 6= jk and 1 ≤ m ≤ n, or ` = jk and m 6= k).
Denote the n integrals in the last product of (5.26) by J1, . . . , Jn, re-

spectively. In order to estimate them, we will apply the sectorial local non-
determinism of BH

0 . Since BH
1 , . . . , BH

d are independent copies of BH
0 , we

have
σ2

k (t) = Var
(
BH

0 (tk)
∣∣∣
{
BH

0 (tm)
}

m6=k

)
. (5.27)

It follows from Theorem 1 that for every 1 ≤ k ≤ n,

σ2
k (t) ≥ c2,1

N∑

`=1

min
m6=k

∣∣∣tm` − tk`

∣∣∣
2H`

. (5.28)
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In order to estimate the sum in (5.28) as a function of tn, we introduce
N permutations Γ1, . . . , ΓN of {1, . . . , n−1} such that for every ` = 1, . . . , N ,

t
Γ`(1)
` < t

Γ`(2)
` < . . . < t

Γ`(n−1)
` . (5.29)

This is possible since tk` (1 ≤ k ≤ n − 1, 1 ≤ ` ≤ N) are distinct. For
convenience, we denote t

Γ`(0)
` = ε and t

Γ`(n)
` = T for all 1 ≤ ` ≤ N .

For every sequence (i1, . . . , iN ) ∈ {1, . . . , n−1}N , let τi1,··· ,iN = (tΓ1(i1)
1 ,

. . . , t
ΓN (iN )
N ) be the “center” of the rectangle

Ii1,··· ,iN =
N∏

`=1

[
t
Γ`(i`)
` − 1

2
(
t
Γ`(i`)
` − t

Γ`(i`−1)
`

)
, t

Γ`(i`)
` +

1
2
(
t
Γ`(i`+1)
` − t

Γ`(i`)
`

))

(5.30)
with the convention that the left-end point of the interval is ε whenever
i` = 1; and the interval is closed and its right-end is T whenever i` = n− 1.
Thus the rectangles {Ii1,··· ,iN } form a partition of [ε, T ]N .

For every tn ∈ E, let Ii1,··· ,iN be the unique rectangle containing tn.
Then (5.28) yields the following lower bound for σ2

n (t):

σ2
n (t) ≥ c2,1

N∑

`=1

∣∣∣tn` − t
Γ`(i`)
`

∣∣∣
2H`

. (5.31)

For every k = 1, . . . , n − 1, we say that Ii1,··· ,iN cannot see tk from
direction ` if

tk` /∈
[
t
Γ`(i`)
` − 1

2
(
t
Γ`(i`)
` − t

Γ`(i`−1)
`

)
, t

Γ`(i`)
` +

1
2
(
t
Γ`(i`+1)
` − t

Γ`(i`)
`

)]
. (5.32)

We emphasize that if Ii1,··· ,iN cannot see tk from all N directions, then

∣∣tk` − tn`
∣∣ ≥ 1

2
min

m6=k,n

∣∣tk` − tm`
∣∣ for all 1 ≤ ` ≤ N. (5.33)

Thus tn does not contribute to the sum in (5.28). More precisely, the latter
means that

σ2
k (t) ≥ c5,9

N∑

`=1

min
m6=k,n

∣∣tk` − tm`
∣∣2H` . (5.34)

The right hand side of (5.34) only depends on t1, . . . , tn−1, which will be
denoted by σ̃2

k(t). Because of this, tk is called a “good” point for Ii1,··· ,iN
[or for tn] provided (5.32) holds for every ` = 1, . . . , N .

Let 1 ≤ k ≤ n − 1. If Ii1,··· ,iN sees the point tk from a direction and
tk 6= τi1,··· ,iN , then it is impossible to control σ2

k (t) from below as in (5.31)
or (5.34). We say that tk is a “bad” point for Ii1,··· ,iN [or for tn]. It is
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important to note that, because of (5.29), the rectangle Ii1,··· ,iN can only
have at most N bad points tk (1 ≤ k ≤ n − 1), i.e., at most one in each
direction. We denote the set of bad points for Ii1,··· ,iN by

Θn
i1,...,iN

=
{
1 ≤ k ≤ n− 1 : tk is a bad point for Ii1,··· ,iN

}

and denote its cardinality by #(Θn
i1,...,iN

). Note that by definition n /∈
Θn

i1,...,iN
and #(Θn

i1,...,iN
) ≤ N .

Now we choose the constants β1, . . . , βn [they depend on the sequence
(i1, . . . , iN )] as follows: βk = 0 if tk is a bad point for Ii1,··· ,iN ; βk = 1 if tk

is a good point for Ii1,··· ,iN and

βn = 1 + #(Θn
i1,...,iN

).

Clearly, βn ≤ N + 1.
By Lemma 14 and Lemma 15, we have

Jn =
∫

DªD

∫

R

Λn
(|un

jn
yjn |/σn(t)

)

pnβn(|y|/
√

d)
exp

(
− (un

jn
)2

2

)
dun

jn
dy

≤ c

∫

R
exp

(
− v2

2

)
dv

∫ ∞

0

Λn(vyjn/σn(t))
pnβn(yjn/

√
d)

dyjn

≤ cn
5,10

∫

R
p−nβn
−

(
σn(t)

v

)
exp

(
− v2

2

)
dv

≤ cn
5,11

[
logn(N+1)γ n + logn(N+1)γ

+

(
e

σn(t)

)]
.

(5.35)

In the above, we have also used the fact that p(|y|/
√

d) ≥ p(|yj |/
√

d) for all
j = 1, . . . , d.

If tk is a good point for Ii1,··· ,iN , then by the monotonicity of the func-
tion Λ we have

Jk =
∫

DªD

∫

R

Λn
(|uk

jk
yjk
|/σk(t)

)

pnβk(|y|/
√

d)
exp

(
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)
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≤
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/σ̃k(t))

pn(|y|/
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d)
exp
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− (uk

jk
)2

2

)
duk
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(5.36)

When tk is a bad points for Ii1,··· ,iN , we use the inequality Λ(u) ≤ 2 to
obtain

Jk ≤ 2n

∫

DªD

∫

R
exp

(
− (uk

jk
)2

2

)
duk

jk
dy ≤ cn

5,12
. (5.37)

Since there are at most N bad points for Ii1,··· ,iN , their total contribution to
Mn(t) is bounded by a constant c5,13 , which depends on D, d and N only.



Geometric Properties of Fractional Brownian Sheets 39

Combining (5.26), (5.35), (5.36) and (5.37), we derive that

Mn(t) ≤ cn
5,14

[detCov(BH
0 (t1), . . . , BH

0 (tn))]d/2

×
[

log(N+1)γ n + log(N+1)γ
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(
e
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× 1
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log(N+1)γ n + log(N+1)γ
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(
e
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)]
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(5.38)

Note that Condition (5.2) implies

∫

Ii1,...,iN

1
σn(t)d

[
log(N+1)γ n + log(N+1)γ

+

(
e

σn(t)

) ]
µ(dtn)

≤ c5,16

∫

Ii1,...,iN

1
(∑N
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≤ c5,17 log(N+1)γ n.

(5.39)

Hence, by integrating Mn(t) as a function of tn with respect to µ on Ii1,...,iN

and using (5.38) and (5.39), we obtain

∫

Ii1,...,iN

Mn(t) µ(dtn) ≤ cn
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log(N+1)γ n
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2
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duk
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}1/n

.

(5.40)

It is important that the right hand side of (5.40) depends on t1, . . . , tn−1

only and is similar to (5.26).
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Summing (5.40) over all the sequences (i1, . . . , iN ) ∈ {1, . . . , n − 1}N ,
we derive that the integral Nj in (5.24) is bounded by

cn
5,18

log(N+1)γ n
∑

i1,...,iN

∫

En−1

1
[detCov(BH

0 (t1), . . . , BH
0 (tn−1))]d/2

×
∏
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{ ∫
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× exp
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(5.41)

Note that, for different sequences (i1, . . . , iN ), the index sets Θn
i1,...,iN

may
be the same. We say that a set Θn ⊆ {1, . . . , n− 1} is admissible if it is the
set of bad points for some Ii1,...,iN . It can be seen that every admissible set
Θn has the following properties:

(i) #(Θn) ≤ N [recall that there are at most N bad points for each
Ii1,...,iN ];

(ii) Denote by χ(Θn) the number of sequences (i1, . . . , iN ) such that
Θn

i1,...,iN
= Θn. If #(Θn) = p, then χ(Θn) ≤ c nN−p.

It follows from (i), (ii) and an elementary combinatorics argument that

∑

Θn

χ(Θn) =
N∑

p=1

∑

#(Θn)=p

χ(Θn) ≤ c5,19n
N , (5.42)

where the first summation is taken over all admissible sets Θn ⊆ {1, . . . , n−
1}.

By regrouping Θn
i1,...,iN

in (5.41), we can rewrite

Nj ≤ cn
5,20

log(N+1)γ n
∑
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χ(Θn)
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1
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×
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× exp
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(5.43)

where, as in (5.42), the summation is taken over all admissible sets Θn ⊆
{1, . . . , n− 1}.

We now carry out the procedure iteratively. In order to simplify the
computation, we will make some further reductions:
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(iii) Since increasing the number of elements in Θn changes the integrals
in (5.43) only by a constant factor [recall (5.37) and the fact that we
have used #(Θn) ≤ N in deriving the first inequality in (5.38)], we
may just consider the admissible sets Θn with #(Θn) = N and

(iv) Since detCov
(
B1(t1), . . . , B1(tn−1)

)
is symmetric in t1, . . . , tn−1, we

can further assume Θn = {1, . . . , N}.
Based on the above observations we can repeat the preceding argument and
integrate µ(dtn−1) [we define n−N −1 constants βk, k ∈ {N +1, . . . , n−1}
accordingly] and then, in the same way, continue to integrate with respect
to µ(dtn−2), . . . , µ(dt1), respectively. We obtain

Nj ≤ cn
5,21

logn(N+1)γ n
∑

Θn

· · ·
∑

Θ1

χ(Θn) · · ·χ(Θ1)

≤ cn
5,22

(n!)N logn(N+1)γ n,

(5.44)

where last inequality follows from (5.42) and, moreover, the positive constant
c5,22 is independent of j.

By combining (5.22), (5.23), (5.24) and (5.44) we derive that

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy ≤ cn
5,23

(n!)N logn(N+1)γ n. (5.45)

This finishes the proof of Lemma 11.
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[30] Kühn, T. and Linde, W. (2002). Optimal series representation of fractional Brownian
sheet, Bernoulli, 8, 669–696.

[31] Mandelbrot, B. and Van Ness, J. (1968). Fractional Brownian motion, fractional noises
and applications, SIAM Review, 10, 422-437.

[32] Mason, D. M. and Shi, Z. (2001). Small deviations for some multi-parameter Gaussian
processes, J. Theoret. Probab., 14, 213–239.

[33] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces, Cambridge
University Press, Cambridge.



Geometric Properties of Fractional Brownian Sheets 43

[34] Mockenhaupt, G. (2000). Salem sets and restriction properties of Fourier transforms,
Geomet Funct. Anal., 10, 1579–1587.

[35] Mountford, T. S. (1989). Uniform dimension results for the Brownian sheet, Ann.
Probab., 17, 1454–1462.

[36] Mueller, C. and Tribe, R. (2002). Hitting probabilities of a random string, Electron.
J. Probab., 7, Paper No. 10, 1–29.

[37] Nualart, D. (2006). Stochastic heat equation driven by fractional noise, Preprint.

[38] Øksendal, B. and Zhang, T. (2000). Multiparameter fractional Brownian motion and
quasi-linear stochastic partial differential equations, Stochastics and Stochastics Re-
ports, 71, 141–163.

[39] Pitt, L. D. (1978). Local times for Gaussian vector fields, Indiana Univ. Math. J., 27,
309–330.

[40] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance, Chapman & Hall, New York.

[41] Shieh, N. and Xiao, Y. (2006). Images of Gaussian random fields: Salem sets and
interior points, Studia Math., 176, 37–60.

[42] Tricot, C. (1982). Two definitions of fractional dimension, Math. Proc. Cambridge
Phil. Soc., 91, 57–74.

[43] Wu, D. and Xiao, Y. (2006). Fractal properties of random string processes, High
Dimensional Probability –IMS Lecture Notes-Monograph Series, 51, 128–147.

[44] Xiao, Y. (1996). Hausdorff measure of the sample paths of Gaussian random fields,
Osaka J. Math., 33, 895–913.

[45] Xiao, Y. (1997). Packing dimension of the image of fractional Brownian motion, Sta-
tist. Probab. Lett., 33, 379–387.

[46] Xiao, Y.(2006a). Properties of local nondeterminism of Gaussian and stable random
fields and their applications, Ann. Fac. Sci. Toulouse Math., XV, 157–193.

[47] Xiao, Y. (2006b). Strong local nondeterminism and sample path properties of
Gaussian random fields, Submitted.

[48] Xiao, Y. (2006c). Sample path properties of anisotropic Gaussian random fields, In
Preparation.

[49] Xiao, Y. and Zhang, T. (2002). Local times of fractional Brownian sheets, Probab.
Theory Relat. Fields, 124, 204–226.

[50] Zygmund, A. (1959). Trigonometric Series, Vol. I, Cambridge University Press, Cam-
bridge.

Department of Statistics and Probability, A-413, Wells Hall, Michigan State University,
East Lansing, MI 48824, U.S.A.

e-mail: wudongsh@msu.edu

Department of Statistics and Probability, A-413, Wells Hall, Michigan State University,
East Lansing, MI 48824, U.S.A.

e-mail: xiao@stt.msu.edu
URL: http://www.stt.msu.edu/~xiaoyimi


