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Abstract

We consider the estimation of nonparametric regression function with long memory
data and investigate the asymptotic rates of convergence of wavelet estimators based on
block thresholding. We show that the estimators achieve optimal minimax convergence
rates over a large class of functions that involve many irregularities of a wide variety of
types, including chirp and Doppler functions, and jump discontinuities. Therefore, in
the presence of long memory noise, wavelet estimators still provide extensive adaptivity
to many irregularities of large function classes.
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1 Introduction

Hall, et al. (1999) considered the nonparametric regression

Ym = g(xm) + εm, m = 1, 2, · · · , n, (1.1)
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where xm = m/n ∈ [0, 1], ε1, · · · , εn are independent, identically distributed (i.i.d.) normal

random variables with mean 0 and variance σ2, and g belongs to a large function class H (its

definition will be given in the next section). In order to improve adaptivity when estimating

g using wavelet methods, Hall, et al. (1999) introduced a local block thresholding estimator

which thresholds empirical wavelet coefficients in groups rather than individually and showed

that the estimator achieves optimal minimax convergence rates over a large class of functions

H that involve many irregularities of a wide variety of types, including chirp and Doppler

functions, and jump discontinuities. Therefore, wavelet estimators provide extensive adap-

tivity to many irregularities of large function classes. Cai (2002) considered the asymptotic

and numerical properties of a class of block thresholding estimators for model (1.1) with

i.i.d. Gaussian errors. He investigated the block size and the thresholding constant such

that the corresponding block thresholding estimators achieve optimal convergence rates for

both global and local estimation over a large class of functions as in Hall, et al. (1999). How-

ever, in many fields which include agronomy, astronomy, economics, environmental sciences,

geosciences, hydrology, signal and image processing, it is sometimes unrealistic to assume

that the observational errors are independent or short-range dependent. Instead, these ob-

servational errors exhibit slow decay in correlation which is often referred to as long-range

dependence or long memory (formal definition will be given in next section).

In this paper, we consider the estimation of nonparametric regression function in model

(1.1) with long memory error and investigate the asymptotic convergence rates of the block

thresholding wavelet estimators. We are particularly interested in describing the effect of

long memory on the performance of the wavelet estimators in terms of the Hurst index α.

We show that these estimators achieve optimal minimax convergence rates over a large class

of functions as in Hall, et al. (1999). Hence, our results extend those of Hall, et al. (1999)

from i.i.d. Gaussian errors to long memory stationary Gaussian processes.

The literature on long-range dependence is very extensive, see, e.g., the monograph

of Beran (1994) and the references cited therein. Estimation for data with long-range de-

pendence is quite different from that for observations with independence or short-range

dependence. For example, Hall and Hart (1990) showed that the convergence rates of mean

regression function estimators differ from those under the assumptions of independence or

short-range dependence. Robinson and Hidalgo (1997) considered a general multiple lin-

ear regression model with long range dependent errors and showed that the weighted least

squares estimator has
√

n-asymptotic normality. As to the non-parametric model (1.1),

Csörgö and Mielniczuk (1995) and Robinson (1997) proposed kernel estimators of mean re-

gression function and proved central limit theorems when the errors are long range dependent

Gaussian sequences and stationary martingale difference sequences, respectively. They all

assumed that the regression function g is a fixed continuously differentiable function. In this
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paper, we follow the framework of Hall, et al. (1999) and consider regression functions g

which belong to a large function class H as in that paper (see Section 2 for its definition).

Wavelet methods in nonparametric curve estimation has become a well-known tech-

nique. For a systematic discussion of wavelets and their applications in statistics, see the

recent monograph by Härdle, et al. (1998). The major advantage of wavelet method is its

adaptability to the degree of smoothness of the underlying unknown curve. These wavelet es-

timators typically achieve optimal convergence rates over exceptionally large function spaces.

For reference, see Donoho, et al. (1995, 1996) and Donoho and Johnstone (1998). Hall and

Patil (1995, 1996) also demonstrated explicitly the extraordinary local adaptability of wavelet

estimators in handling discontinuities. They showed that discontinuities of the unknown

curve have a negligible effect on the performance of nonlinear wavelet curve estimators. All

of the aforementioned works are under the assumption that the errors are independent.

There are a few papers which consider the estimation of regression functions with long

memory Gaussian noise. Among them, Wang (1996), Johnstone and Silverman (1997) and

Johnstone (1999) examined the asymptotic properties of wavelet-based estimators of mean

regression functions with long memory Gaussian noise. They showed that these estimators

achieve minimax rates over wide range of Besov spaces. However, they didn’t study the so

called “sampled data model” (1.1) directly, instead, they studied its asymptotic model or

the “sequence space model”

yλ = θλ + εαγjzλ, λ ∈ Λ,

which is derived from the empirical wavelet transformation of the corresponding “white-noise

model”

Yε(dt) = f(t)dt + εW (dt), t ∈ [0, 1]. (1.2)

For details regarding the above ε, γj and Λ, see Johnstone and Silverman (1997, p.339). Then

they argued that the results derived from the sequence space model can be carried over to

the sampled data model, based on the asymptotic equivalence between models (1.1) and

(1.2) when the underlying curves are smooth enough. Based on the above assumption that

the optimal minimax convergence rates obtained in the wavelet domain or sequence space

model are equivalent to those derived from the original time domain or sampled data model,

they proved that the unbiased risk based thresholding estimators attain optimal minimax

convergence rates over a broad range of Besov classes. However, this implication may not be

true, when the underlying curve f is not sufficiently smooth. In particular, when f belongs

to a class of functions that may not even be continuous, the results for the sequence space

model may be questionable for the sampled data model. In this paper, we consider the

sampled data model (1.1) directly with g belonging to a function space H, which includes

many discontinuous functions.
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In the next section, we introduce the regression model, function space H, elements of

wavelet transform and the block thresholding estimator of the mean regression function. The

main results are described in Section 3, while their proofs appear in Section 4.

2 Notations and Estimators

We consider the nonparametric regression model (1.1) with long memory Gaussian errors.

Formally, we assume that {εn, n ≥ 1} is a sequence of long-range dependent or long mem-

ory stationary Gaussian random variables with mean 0 and variance σ2. By long-range

dependence, we mean there exist two constants C0 > 0 and α ∈ (0, 1] such that

r(j) = E
(
ε1ε1+j

) ∼ C0|j|−α, (2.1)

where aj ∼ bj means that aj/bj → 1 when j →∞.

As in Hall, et al. (1999), we will assume that the unknown mean regression function g

belongs to a large function class H, which is defined as follows:

Definition 2.1 For given integers v, N ≥ 1 and positive constants C1, C2, C3, 0 ≤ s1 < s2 <

N and 0 ≤ γ < (2s1 + 1)/(2s2 + 1), let H = H(s1, s2, γ, C1, C2, C3, N, v) denote the class of

functions g such that for any i ≥ 0 there exists a set of integers Si for which the following

conditions hold: card(Si) ≤ C32
iγ and

1. for each j ∈ Si there exist constants a0 = g(j/2i), a1, . . . , aN−1 such that

∣∣∣g(x)−
N−1∑

l=0

al(x− 2−ij)l
∣∣∣ ≤ C12

−is1 for all x ∈ [j/2i, (j + v)/2i];

and

2. for each j 6∈ Si there exist constants a0 = g(j/2i), a1, . . . , aN−1 such that

∣∣∣g(x)−
N−1∑

l=0

al(x− 2−ij)l
∣∣∣ ≤ C22

−is2 for all x ∈ [j/2i, (j + v)/2i].

Note that when C3 = 0, the constant C1 plays no role in the above definition and the

function class H(s1, s2, γ, C1, C2, 0, N, v) contains the Besov class Bs2∞∞(C2) as a subset for

all s1 < s2, γ > 0 and with C1 > 0 depending on choice of the other constants. Furthermore,

as pointed out in Hall, et al. (1999), a function g ∈ H can be regarded as the superposition

of a smooth function g2 from the Besov space Bs2∞∞ with a function g1 which may have

irregularities of different types – such as jump discontinuities and high frequency oscillations.
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However, the irregularities of g1 are controlled by the constants C3 and γ so that they do

not overwhelm the fundamental structure of g. We refer to Hall, et al. (1998, 1999) and Cai

(2002) for more discussions about the function classes H.

Next we introduce some facts about wavelets that will be used in the sequel. Let

φ(x) and ψ(x) be father and mother wavelets, having the following properties: φ and ψ are

bounded and compactly supported, and
∫

φ = 1. Let

φi0j(x) = 2i0/2φ(2i0x− j), ψij(x) = 2i/2ψ(2ix− j), x ∈ R, i0, i, j ∈ Z.

Then the collection {φi0j, ψij, i ≥ i0, j ∈ Z} is an orthonormal basis (ONB) of L2(R).

Furthermore, let Vi0 and Wi be linear subspaces of L2(R) with the ONB φi0j, j ∈ Z and

ψij, j ∈ Z, respectively, we have the following decomposition

L2(R) = Vi0 ⊕Wi0 ⊕Wi0+1 ⊕Wi0+2 ⊕ · · · .

Therefore, for all f ∈ L2(R),

f(x) =
∑

j∈Z
αi0jφi0j(x) +

∑
i≥i0

∑

j∈Z
βijψij(x),

where

αi0j =

∫
f(x)φi0j(x) dx, βij =

∫
f(x)ψij(x) dx.

The orthogonality properties of φ and ψ imply:
∫

φi0j1φi0j2 = δj1j2 ,

∫
ψi1j1ψi2j2 = δi1i2δj1j2 ,

∫
φi0j1ψij2 = 0, ∀i0 ≤ i, (2.2)

where δij denotes the Kronecker delta, i.e., δij = 1, if i = j; and δij = 0, otherwise.

In our regression model, the mean function g is supported on the unit interval [0, 1].

Therefore, we confine our attention to the wavelet basis of L2[0, 1] given by Cohen, et al.

(1993). That is, we assume that the collection of {φi0j, j = 0, 1, . . . , 2i0−1; ψij, i ≥ i0 ≥
0, j = 0, 1, . . . , 2i−1} forms an orthonormal basis of L2[0, 1]. Since, in this paper, we require

varnishing moments up to N − 1 for both φ and ψ (
∫

xkφ(x)dx = 0, k = 1, 2, . . . , N −
1;

∫
xkψ(x)dx = 0, k = 0, 1, . . . , N − 1), the so-called Coiflets will be used here. Moreover,

we will assume the wavelets φ and ψ are continuous in [0, 1]. Since the supports of our

wavelets are contained in the interval [0, 1], we confine the function spaces H with v = 1.

For more on these compactly supported wavelets with high order varnish moments and

continuous derivative, see Daubechies (1992).

Hence, the corresponding wavelet expansion of g(x) is

g(x) =
2i0−1∑
j=0

αi0jφi0j(x) +
∑
i≥i0

2i−1∑
j=0

βijψij(x), (2.3)
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where

αi0j =

∫ 1

0

g(x)φi0j(x) dx and βij =

∫ 1

0

g(x)ψij(x) dx.

Before we provide the wavelet estimator of the mean regression function, we assume

the sample size n = 2i1 for the convenience of exposition. Also in the statement below, the

notation 2i(n) ' h(n) means that i(n) is chosen to satisfy the inequalities 2i(n) ≤ h(n) <

2i(n)+1. For the sake of simplicity, we always omit the dependence on n for i. The idea

of defining a block thresholding estimator is to threshold empirical wavelet coefficients in

groups rather than individually (Hall, et al. 1998, 1999). At each resolution level i, the

integers {0, 1, . . . , 2i − 1} are divided among consecutive, nonoverlapping blocks of length l,

say Γik = {j : (k − 1)l + 1 ≤ j ≤ kl}, −∞ < k < ∞.

Since the convergence rates of the estimators are different for long memory parameter

α ∈ (0, 1) and α = 1, we treat these two cases separately (see Theorem 3.1 in next section).

Define

Ĝi1(x) = n−1/2

n∑
m=1

Ymφi1m(x).

Let the coefficients α̂i0j and β̂ij be given by

ProjVi0
(Ĝi1) =

2i0−1∑
j=0

α̂i0jφi0j and ProjWi
(Ĝi1) =

2i−1∑
j=0

β̂ijψij,

and put B̂ik = l−1
∑

(ik) β̂2
ij, where

∑
(ik) denotes summation over j ∈ Γik and l denotes the

block length.

When α ∈ (0, 1), our wavelet estimator of g is defined as

ĝ(x) =
2i0−1∑
j=0

α̂i0jφi0j(x) +

i1−1∑
i=i0

∞∑

k=−∞

(∑

(ik)

β̂ijψij(x)
)
I
(
B̂ik > δi

)
, (2.4)

where the smoothing parameter i0 satisfies 2i0 ' nα/(2N+α), the block-length l = (log n)θ

with θ > 1/α and δi (i0 ≤ i < i1) are the level-dependent thresholding satisfying δi = 48τ 2
i

with τ 2
i = C4n

−α2−i(1−α), where C4 > 0 is the constant defined by

C4 = C0

∫ 1

0

∫ 1

0

|x− y|−α ψ(x) ψ(y) dxdy. (2.5)

Similarly for α = 1, our wavelet estimator of g is defined as

ĝ1(x) =
2i0−1∑
j=0

α̂i0jφi0j(x) +

i1−1∑
i=i0

∞∑

k=−∞

(∑

(ik)

β̂ijψij(x)
)
I
(
B̂ik > δi

)
, (2.6)
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where the smoothing parameter i0 is chosen to satisfy 2i0 ' n1/(2N+1), the block-length

l = (log n)θ with θ > 1 and δi (i0 ≤ i < i1) are the level-dependent thresholding satisfying

δi = 48ξ2
i with ξ2

i = 2C0n
−1 log(n2−ie). Note that the only difference for α = 1 is in the

threshold δi.

In practice, the empirical coefficients α̂i0j and β̂ij in (2.4) and (2.6) can be computed

from the observations Ym by “subband filtering schemes”. It is worthwhile to note that, for

each fixed i0 ≤ i < i1 in (2.4) and (2.6), the sum in k only contains at most 2il−1 non-zero

terms.

Throughout this paper, we use C to denote positive and finite constants whose value

don’t depend on sample size n and may change from line to line. Specific constants are

denoted by C0, C1, C2 and so on.

3 Main results and discussions

The following theorem shows that the wavelet-based estimator, based on block thresholding

of the wavelet coefficients, attains exactly the optimal convergence rate over a large range of

function classes.

Theorem 3.1 Let the wavelets φ and ψ, and the estimators ĝ and ĝ1 be given as in Section

2. Then there exists a constant C5 = C(s1, s2, γ, C1, C2, C3, N, v) > 0 such that the following

hold:

(i). When α ∈ (0, 1),

sup
g∈H(s1,s2,γ,C1,C2,C3,N,v)

E

∫ (
ĝ − g

)2 ≤ C5 n−2s2α/(2s2+α).

(ii). When α = 1,

sup
g∈H(s1,s2,γ,C1,C2,C3,N,v)

E

∫ (
ĝ1 − g

)2 ≤ C5

( log n

n

)2s2/(2s2+1)

.

Remark 3.1 Hall and Hart (1990, Theorem 2.2 and Remarks on p.343–345) showed that,

for the regression model (1.1) with Gaussian autoregression errors {εm}, the minimax conver-

gence rate over the Hölder class Hs2(C2) (where s2 ≥ 2 is an integer) is n−2s2α/(2s2+α) when

α ∈ (0, 1) and (n−1 log n)2s2/(2s2+1) when α = 1, respectively. Since H contains Hs2(C2) as

a subset, our block thresholded estimator attains optimal convergence rates over a larger

range of function classes.
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Remark 3.2 Cai (2002) investigated the asymptotic and numerical properties of a class of

block thresholding estimators for wavelet regression, when the errors {εm} are independent

homoscedastic Gaussian noise. Our results can easily be extended to heteroscedastic errors

case. Cai (2002) also showed that the block length l = (log n)s, s = 1 attains both global and

local optimal convergence rates for i.i.d errors, i.e., in order to attain optimal convergence

rates, the block length size l = (log n)s shouldn’t be too large ( s ≤ 1) for local estimation

and shouldn’t be too small (s ≥ 1) for global estimation. Hall, et al. (1999) consider block

length l = (log n)2 for i.i.d. errors and suggest block length l = nc, for some c > 0 for long

range dependent errors. We find that, in order to attain the minimax convergence rates

in the long memory case, we can choose the block lengths l = (log n)θ with θ > 1/α for

α ∈ (0, 1]. It is interesting to note that our block lengths l depend on the long memory

parameter α, but they are much smaller than l = nc suggested by Hall, et al. (1999). From

Cai (2002), one would expect that our estimator could achieve simultaneously the global and

local adaptivity.

Remark 3.3 This is a technical remark about the choice of block length related to Remark

3.2. From Lemma 4.2 and the proof of Theorem 3.1, it can be seen that, for any α ∈ (0, 1],

one can choose the block length l = C (log n)1/α (log log n), where C > 0 is a large constant

and the same conclusions of Theorem 3.1 hold. We have chosen l = (log n)θ so that it doesn’t

involve an unknown constant C in the block length.

Remark 3.4 For long-range dependent errors, one generally assumes r(j) = E(ε1ε1+j) =

L(j) · |j|−α, where L(x) is a slowly varying function at ∞, i.e., for all a > 0,

lim
x→∞

L(ax)/L(x) = 1.

See Bingham, et al. (1987) for more information on slowly varying functions. In this paper,

we have taken the slowly varying function L to be the constant C0 in (2.1) to simplify the

presentations of our results (The threshold δi can be expressed in terms of C0 explicitly and

the proof later on is much clearer than that involving L(x)). With some modifications, one

can show that results similar to Theorems 3.1 hold under the more general slowly varying

functions L assumption.

Remark 3.5 Because of the long-range dependence, our thresholds δi depend not only on

the level but also on the unknown long memory parameter α. So are the smoothing parameter

i0 and the block length l. Wang (1996, p.480) and Johnstone and Silverman (1997, p.340)

have provided simple methods to estimate the long memory parameter α. Delbeke and Van

Assche (1998) and Abry and Veitch (1998) have also provided wavelet-based, statistically and

computationally efficient estimators of α based on the wavelet coefficients and have shown
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that these estimators are unbiased, consistent and have asymptotically a normal distribution.

Thus, in practice, we assume that the parameter α has been estimated and treat it as known.

Another remark is on the threshold δi = 48τ 2
i for α ∈ (0, 1) or δi = 48ξ2

i for α = 1, where

τ 2
i = σ2

i = Var(β̂ij) = C4n
−α2−i(1−α) or ξ2

i = σ2
i = 2C0n

−1 log(n2−ie) (for details, see Section

4). This noise variance σ2
i at each level i can be estimated from the data by using, for example,

the robust median absolute deviation estimator σ̂i = MAD{β̂ij, j = 0, 1, · · · , 2i−1}/0.6745.

Hence, we can also treat σ2
i as known (see Johnstone and Silverman (1997) for more details).

4 Proof of Theorem 3.1

The method of proving Theorem 3.1 is similar to that of Theorem 4.1 of Hall, et al. (1999).

The difference is that we consider the errors {εm,m ≥ 1} to be a stationary Gaussian process

with long memory, instead of i.i.d. random variables in their paper. Hence, several nontrivial

technical difficulties have to be overcome.

We will break the proof of Theorem 3.1 into several parts. Observing that the orthog-

onality (2.2) implies

E||ĝ − g||22 = T1 + T2 + T3 + T4, (4.1)

where

T1 =
∞∑

i=i1

2i−1∑
j=0

β2
ij,

T2 =
2i0−1∑
j=0

E(α̂i0j − αi0j)
2 = E||ProjVi0

(Ĝi1 − g)||22,

T3 =

i1−1∑
i=i0

∞∑

k=−∞
E

{
I(B̂ik > δi)

∑

(ik)

(β̂ij − βij)
2
}

,

T4 =

i1−1∑
i=i0

∞∑

k=−∞
P

(
B̂ik ≤ δi

) ∑

(ik)

β2
ij.

The reminder of the proof consists of bounding T1, . . . , T4. For this purpose, we need some

preparatory results.

The first lemma, which characterizes some properties of the wavelet coefficients of g ∈ H,

is due to Hall, et al. (1999, Proposition 3.2).

Lemma 4.1 For every function g ∈ H(s1, s2, γ, C1, C2, C3, N, v) and our selected Coiflets,

9



the wavelet coefficients of g, denoted by αij and βij, have the following properties:

|βij| ≤ ||ψ||1C12
−i(s1+1/2) if j ∈ Si,

|βij| ≤ ||ψ||1C22
−i(s2+1/2) if j 6∈ Si,

|αij − 2−i/2g(j/2i)| ≤ ||φ||1C12
−i(s1+1/2) if j ∈ Si,

|αij − 2−i/2g(j/2i)| ≤ ||φ||1C22
−i(s2+1/2) if j 6∈ Si.

(4.2)

As in Hall, et al. (1999, p.42), there exist real numbers ri1m (m = 1, . . . , n), which are

small when n is large, such that

αi1m =

∫
g(x)φi1m(x)dx

= n−1/2

∫
g
(m

n
+

y

n

)
φ(y)dy

=: n−1/2g
(m

n

)
− ri1m.

(4.3)

Thus, we can write (2.4) as

Ĝi1(x) =
n∑

m=1

(αi1m + ri1m)φi1m(x) + n−1/2

n∑
m=1

εmφi1m(x).

Consequently, we may write for every integer 0 ≤ i < i1,

ProjWi
(Ĝi1) =

2i−1∑
j=0

(βij + uij + Uij)ψij(x),

ProjVi0
(Ĝi1) =

2i−1∑
j=0

(αi0j + vi0j + Vi0j)φi0j(x).

Since ProjVi1
(g) =

∑
j αi1jφi1j(x), we have, for 0 ≤ i < i1, ProjWi

(g) = ProjWi
(ProjVi1

(g)).

Now from ProjWi
(g) =

∑
j βijψij(x), we have

βij =
n∑

m=1

αi1m〈φi1m, ψij〉.

There are several results related to uij, vi0j, Uij and Vi0j which will be used in the sequel.

The real numbers uij and vi0j can be expressed as

uij =
n∑

m=1

ri1m〈φi1m, ψij〉, vi0j =
n∑

m=1

ri1m〈φi1m, φi0j〉, (4.4)

and

Uij =
1√
n

n∑
m=1

εm〈φi1m, ψij〉, Vi0j =
1√
n

n∑
m=1

εm〈φi1m, φi0j〉. (4.5)
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In the above, 〈f, g〉 =
∫

fg is the inner product in L2([0, 1]). It follows from Parseval’s

identity that
i1−1∑
i=i0

2i−1∑
j=0

u2
ij +

2i0−1∑
j=0

v2
i0j =

n∑
m=1

r2
i1m.

Thus, from (4.2), (4.3) and our choice of γ, we have

n∑
m=1

r2
i1m ≤ C1C3n

−(2s1+1−γ) + C2n
−2s2 ≤ Cn−2s2/(2s2+1). (4.6)

Because our wavelets have compact support, there are at most 2i1−i non-zero terms of

〈φi1m, ψij〉,m = 1, 2, . . . , n. Moreover,

|〈φi1l, ψij〉| ≤ 2i/2−i1/2||ψ||∞||φ||1 and |ri1l| ≤ (C1 ∨ C2)2
−i1(s1+1/2).

Hence we have, for ∀i ≥ i0,

|uij| ≤ C2i1−i2−i1(s1+1/2)2i/2−i1/2 ≤ C2−i(s1+1/2). (4.7)

Now let us calculate the variance of Uij. Since EUij = 0, we have

Var(U2
ij) =

1

n

n∑
m=1

E(ε2
m) 〈φi1m, ψij〉2 +

1

n

n∑
m=1

∑

k 6=m

E(εmεk) 〈φi1m, ψij〉〈φi1k, ψij〉

=
σ2

n
+

1

n

n∑
m=1

∑

k 6=m

r(m− k) 〈φi1m, ψij〉〈φi1k, ψij〉

=:
σ2

n
+ I1.

(4.8)

Recall that n = 2i1 and by a change of variables, we may write

I1 = 2i

n∑
m=1

∑

k 6=m

r(m− k)

∫∫
φ(2i1x−m)φ(2i1y − k)ψ(2ix− j)ψ(2iy − j) dxdy

= 2i

∫∫
φ(u)φ(v)

{ n∑
m=1

∑

k 6=m

r(m− k)ψ
(
2i u + m

n
− j

)
ψ

(
2i v + k

n
− j

) 1

n2

}
dudv.

(4.9)

We first consider the case when α ∈ (0, 1). It follows from (2.1) that as n →∞,

n∑
m=1

∑

k 6=m

r(m− k) ψ
(
2i u + m

n
− j

)
ψ

(
2i v + k

n
− j

) 1

n2

∼ C0 n−α

n∑
m=1

∑

k 6=m

∣∣m
n
− k

n

∣∣−α
ψ

(
2i u + m

n
− j

)
ψ

(
2i v + k

n
− j

) 1

n2

∼ C0 n−α

∫ 1

0

∫ 1

0

|x− y|−α ψ(2ix− j)ψ(2iy − j) dxdy

= C0 n−α 2(α−2)i

∫ 1

0

∫ 1

0

|x− y|−α ψ(x)ψ(y) dxdy.

(4.10)
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uniformly for all u, v in the support of φ. Combining (4.9) and (4.10), we have

I1 ∼ C4n
−α2−i(1−α) as n →∞, (4.11)

where C4 > 0 is the constant defined by (2.5). Thus, it follows from (4.8), (4.11) and the

fact that 0 < α < 1 that for any fixed integer i,

Var(Uij) ∼ C4 n−α 2−i(1−α) as n →∞. (4.12)

Similarly, we have EVi0j = 0 and for any fixed integer i,

Var(Vi0j) ∼ C6 n−α 2−i0(1−α) as n →∞, (4.13)

where C6 > 0 is the constant given by

C6 = C0

∫ 1

0

∫ 1

0

|x− y|−α φ(x) φ(y) dxdy.

Next we consider the case when α = 1. Similar to (4.9), we have for each c > 0,

I1 ∼ 2i

n∑
n=1

∑

|m−k|>c

r(m− k)

∫∫
φ(2i1x−m)φ(2i1y − k)ψ(2ix− j)ψ(2iy − j) dxdy

∼ 2i

∫∫
φ(u)φ(v)

{ n∑
m=1

∑

|m−k|>c

r(m− k)ψ
(
2i u + m

n
− j

)
ψ

(
2i v + k

n
− j

) 1

n2

}
dudv.

(4.14)

Apply similar argument as in (4.10) (see also Hall and Hart (1990, p.350), we have

n∑
m=1

∑

|m−k|>c

r(m− k) ψ
(
2i u + m

n
− j

)
ψ

(
2i v + k

n
− j

) 1

n2

∼ C0 n−1

∫∫

|x−y|>c/n

|x− y|−1 ψ(2ix + 2iu/n)ψ(2iy + 2iv/n) dxdy

∼ C0 n−1 2−i

∫∫

|p−q|>c2i/n

|p− q|−1 ψ(p)ψ(q) dpdq

= C0 n−1 2−i

∫
ψ(q)

∫

|y|>c2i/n

|y|−1ψ(y + q)dydq

∼ C0 n−1 2−i 2 log(n2−ie)

∫
ψ2(q)dq

= 2C0 n−1 2−i log(n2−ie).

(4.15)

Therefore, when α = 1, from (4.8), (4.14) and (4.15), we have

Var(Uij) ∼ 2C0 n−1 log(n2−ie). (4.16)
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Similarly, we have

EVi0j = 0, Var(Vi0j) ∼ 2C0 n−1 log(n2−i0e). (4.17)

Now we are in the position to bound the four terms T1, . . . , T4 in (4.1), respectively.

Bound for T1: Since g ∈ H, we use Lemma 4.1 to derive

T1 =
∞∑

i=i1

(∑
j∈Si

+
∑

j 6∈Si

)
β2

ij

≤ C

∞∑
i=i1

2iγ2−i(2s1+1) + C

∞∑
i=i1

2i2−i(2s2+1)

≤ Cn−(2s1+1−γ) + Cn−2s2

≤ Cn−2s2/(2s2+1).

Therefore, we have T1 ≤ Cn−2s2α/(2s2+α) when α ∈ (0, 1), and T1 ≤ C
(
n−1 log n

)2s2/(2s2+1)

when α = 1.

Bound for T2. From the definition of α̂i0j, (4.6) and (4.13), we have for α ∈ (0, 1)

T2 =
2i0−1∑
j=0

v2
i0j +

2i0−1∑
j=0

EV 2
i0j

≤ Cn−2s2/(2s2+1) + C2i0n−α2−i0(1−α)

≤ Cn−2s2α/(2s2+α),

where the last inequality follows from our choice of i0 in (2.4).

When α = 1, from (4.6) and (4.17), we have

T2 ≤ Cn−2s2/(2s2+1) + 2i02C0 n−1 log(n2−i0e)

≤ C
( log n

n

)2s2/(2s2+1)

,

where the last inequality follows from our choice of i0 also and N > s2.

Bound for T3. In order to derive an upper bound for T3, we will make use of the following

lemma, whose proof will be deferred to the end of our paper.

Lemma 4.2 Let Uij be the Gaussian random variables defined as in (4.5) and let τ 2
i =

C4n
−α2−i(1−α) and ξ2

i = 2C0n
−1 log(n2−ie).

(i). If α ∈ (0, 1), then for all integers i, k, and for all real numbers λ ≥ 4l τ 2
i ,

P
{∑

(ik)

U2
ij ≥ λ

}
≤ exp

(
− λ

C7 l1−α τ 2
i

)
, (4.18)

where C7 > 0 is an absolute constant.
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(ii). If α = 1, then for all real numbers λ ≥ 4l ξ2
i ,

P
{∑

(ik)

U2
ij ≥ λ

}
≤ exp

(
− λ

C8 ξ2
i log l

)
, (4.19)

where C8 > 0 is an absolute constant.

In order to bound T3, we write it as

T3 =

i1−1∑
i=i0

∞∑

k=−∞
E

{
I(B̂ik > δi)

∑

(ik)

(uij + Uij)
2
}

≤ 2

i1−1∑
i=i0

∑

k

E
{

I(B̂ik > δi)
∑

(ik)

U2
ij

}
+ 2

i1−1∑
i=i0

∑

k

E
{

I(B̂ik > δi)
∑

(ik)

u2
ij

}

=: 2T
′
3 + 2T

′′
3 .

(4.20)

It follows from (4.6) that

T
′′
3 ≤

i1−1∑
i=i0

∑

k

∑

(ik)

u2
ij ≤

i1−1∑
i=i0

∑
j

u2
ij ≤ Cn−2s2/(2s2+1).

Thus, we only need to bound T
′
3. For this purpose, let

Ai = {blocks at level i contains at least one coefficient βij with indices in Si};
A
′
i = {blocks at level i contains no coefficient βij with indices in Si}.

As in Hall, et al. (1999, p.44), we may split T ′
3 into several parts:

T
′
3 =

is∑
i=i0

∑

k

E
{

I(B̂ik > δi)
∑

(ik)

U2
ij

}

+

i1−1∑
i=is+1

∑

k∈Ai

E
{

I(B̂ik > δi)I(Bik > δi/2)
∑

(ik)

U2
ij

}

+

i1−1∑
i=is+1

∑

k∈A
′
i

E
{

I(B̂ik > δi)I(Bik > δi/2)
∑

(ik)

U2
ij

}

+

i1−1∑
i=is+1

∑

k

E
{

I(B̂ik > δi)I(Bik ≤ δi/2)
∑

(ik)

U2
ij

}

=: T31 + T32 + T33 + T34.

(4.21)

Here Bik = l−1
∑

(ik)(βij + uij)
2 and l = (log n)θ is the block length.

14



We will distinguish two cases: α ∈ (0, 1) and α = 1. In the first case, let is be an integer

satisfying 2is ' nα/(2s2+α). By (4.12), we see that the first term in (4.21) satisfies

T31 ≤
is∑

i=i0

∑

k

∑

(ik)

E(U2
ij) ≤ C

is∑
i=i0

2i−1∑
j=0

n−α2−i(1−α)

= C

is∑
i=i0

n−α2iα = C n−α2isα

≤ Cn−2s2α/(2s2+α),

(4.22)

where the last inequality follows from our choice of is.

In order to estimate T32, we recall that δi = 48τ 2
i in (2.4), where τ 2

i = C4n
−α2−i(1−α).

From (4.2), (4.7) and (4.12), we may write, for all t > 0,

T32 ≤
i1−1∑

i=is+1

∑

k∈Ai

I(Bik > δi/2)
∑

(ik)

E(U2
ij)

≤ C

i1−1∑
i=is+1

∑

k∈Ai

δ−t
i Bt

ik

∑

(ik)

E(U2
ij)

≤ Cl

i1−1∑
i=is+1

∑

k∈Ai

n−α(1−t)2−i(1−α)(1−t)2−i(2s1+1)t

≤ Cl

i1−1∑
i=is+1

2iγn−α(1−t)2−i(1−α)(1−t)2−i(2s1+1)t

≤ Cn−2s2α/(2s2+α),

(4.23)

the last inequality follows from our choice of t such that 0 < t < (1− γ)/[2(s2 − s1)].

As to T33, from (4.12) and the definition of δi and Bik, we have

T33 ≤
i1−1∑

i=is+1

∑

k∈A
′
i

I(Bik > δi/2)
∑

(ik)

EU2
ij ≤ C

i1−1∑
i=is+1

∑

k∈A
′
i

δ−1
i Bik lδi

= C

i1−1∑
i=is+1

∑

k∈A
′
i

(∑

(ik)

(βij + uij)
2
)

≤ C

i1−1∑
i=is+1

∑

k∈A
′
i

∑

(ik)

β2
ij + C

i1−1∑
i=is+1

∑
j

u2
ij

≤ C

i1−1∑
i=is+1

2i2−i(2s2+1) + C

i1−1∑
i=is+1

∑
j

u2
ij

≤ Cn−2s2α/(2s2+α),

(4.24)
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the last inequality follows from the choice of is, (4.6) and the fact that 0 < α < 1.

Therefore, in order to bound T3, it remains to bound the last term T34. Applying the

same argument as Lemma 5.1 in Hall, et al. (1999, p.46), we have

{
B̂ik > δi

} ∩ {
Bik ≤ δi/2

} ⊂
{∑

(ik)

U2
ij ≥

l

12
δi

}
=

{∑

(ik)

U2
ij ≥ 4lτ 2

i

}
. (4.25)

Hence, it follows from (4.21) and (4.25) that

T34 ≤
i1−1∑

i=is+1

∑

k

E

{∑

(ik)

U2
ij I

(∑

(ik)

U2
ij ≥ 4lτ 2

i

)}

=

i1−1∑
i=is+1

∑

k

∫ ∞

4lτ2
i

P

{ ∑

(ik)

U2
ij ≥ λ

}
dλ.

(4.26)

By (i) of Lemma 4.2, we have

∫ ∞

4lτ2
i

P

{ ∑

(ik)

U2
ij ≥ λ

}
dλ ≤

∫ ∞

4lτ2
i

exp

(
− λ

C7 l1−ατ 2
i

)
dλ

= C7 l1−ατ 2
i exp

(
− 4 lα

C7

)
.

(4.27)

Combining (4.26) and (4.27), we get

T34 ≤ C l1−α

i1−1∑
i=is+1

2i τ 2
i exp

(
− 4 lα

C7

)

≤ C (log n)θ(1−α) exp
(
− 4 (log n)αθ

C7

)
.

(4.28)

Since αθ > 1, we see that for all constant η > 0,

T34 ≤ n−η (4.29)

for all n large enough. Combining the inequalities (4.22), (4.23), (4.24) and (4.29) together,

we have proved that, for α ∈ (0, 1), T3 ≤ C n−2s2α/(2s2+α).

Now we consider the case of α = 1 and show that

T3 ≤ C
( log n

n

)2s2/(2s2+1)

. (4.30)

The proof of (4.30) follows the same line as that of T3 for α ∈ (0, 1). Hence we only present

the modifications needed.
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When α = 1, let is be an integer satisfying 2is ' (n−1 log n)−1/(2s2+1), which is different

from the previous one. From (4.16) and (4.22), we have

T31 ≤ C

is∑
i=i0

2i−1∑
j=0

2C0n
−1 log(n2−ie)

≤ Cn−1 log n

is∑
i=i0

2i

= Cn−1 log n 2is

≤ C
( log n

n

)2s2/(2s2+1)

,

(4.31)

where the last inequality follows from our choice of is.

In view of (4.23), when α = 1, we have for all t > 1/(2s2 + 1),

T32 ≤ C

i1−1∑
i=is+1

∑

k∈Ai

δ−t
i Bt

ik

∑

(ik)

E(U2
ij)

≤ Cl(log n2−is)1−tn−(1−t)

i1−1∑
i=is+1

2−i((2s1+1)t−γ)

≤ C
( log n

n

)2s2/(2s2+1)

,

(4.32)

the last inequality follows from our choice of t such that 1/(2s2+1) < t < (1−γ)/[2(s2−s1)].

In view of (4.24), when α = 1, we have

T33 ≤ C

i1−1∑
i=is+1

2i2−i(2s2+1) + C

i1−1∑
i=is+1

∑
j

u2
ij

≤ C

i1−1∑
i=is+1

2−2is2 + Cn−2s2/(2s2+1)

≤ C
( log n

n

)2s2/(2s2+1)

.

(4.33)

In order to estimate T34, note that the inequality (4.26) with τ 2
i replaced by ξ2

i holds.

Applying Part (ii) of Lemma 4.2, we have
∫ ∞

4lξ2
i

P

{∑

(ik)

U2
ij ≥ λ

}
dλ ≤

∫ ∞

4lξ2
i

exp

(
− λ

C8 ξ2
i log l

)
dλ

= C ξ2
i (log l) exp

(− 4 l

C8 log l

)
.

(4.34)

Therefore, we bound term T34 with

T34 ≤ C log l

i1−1∑
i=is+1

2i τ 2
i exp

(
− 4l

C8 log l

)
. (4.35)
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Since we have chosen the block-length l = (log n)θ with θ > 1, we have for any constant

η > 0, we obtain

T34 ≤ n−η. (4.36)

Then (4.30) follows from (4.31), (4.32), (4.33) and (4.36). Hence we have bounded the term

T3 as desired.

Bound for T4: As to the last term in (4.1), we may write

T4 ≤
i1−1∑
i=i0

∑

k∈Ai

P
(
B̂ik ≤ δi and Bik ≥ 2δi

) ∑

(ik)

β2
ij

+
is∑

i=i0

∑

k∈A
′
i

P
(
B̂ik ≤ δi and Bik ≥ 2δi

) ∑

(ik)

β2
ij

+
is∑

i=i0

∑

k

P
(
B̂ik ≤ δi and Bik < 2δi

) ∑

(ik)

β2
ij

+

i1−1∑
i=is+1

∑

k∈Ai

P
(
B̂ik ≤ δi and Bik < 2δi

) ∑

(ik)

β2
ij

+

i1−1∑
i=is+1

∑

k∈A
′
i

P
(
B̂ik ≤ δi

) ∑

(ik)

β2
ij

=: T41 + T42 + T43 + T44 + T45.

Again, we first consider α ∈ (0, 1) case. The proofs of T41 and T42 are similar, which involve

the large deviation result. Here we only provide the proof of T41. Since

{
B̂ik ≤ δi

} ∩ {
Bik ≥ 2δi

} ⊂
{∑

(ik)

U2
ij ≥

l

6
δi

}
⊂

{∑

(ik)

U2
ij ≥ 4lτ 2

i

}
,

thus, from Lemma 4.2, we have for any t > 0

T41 ≤ C

i1−1∑
i=i0

n−t2iγ2−i(2s1+1) ≤ Cn−2s2α/(2s2+α).

As to T43, since 1
2

∑
(ik) β2

ij ≤
∑

(ik)(βij + uij)
2 +

∑
(ik) u2

ij, and recall Bik, we have

T43 ≤ C

is∑
i=i0

2iδi + C

is∑
i=i0

∑
j

u2
ij ≤ Cn−2s2α/(2s2+α),

the last inequality follows from our choice is and (4.6).
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Similar to T43, for any t > 0, we have

T44 ≤ 2

i1−1∑
i=is+1

∑

k∈Ai

I
(
Bik < 2δi

) ∑

(ik)

(βij + uij)
2 + 2

i1−1∑
i=is+1

∑
j

u2
ij

≤ C

i1−1∑
i=is+1

∑

k∈Ai

δt
i(Bik)

−t
∑

(ik)

(βij + uij)
2 + Cn−2s2/(2s2+1)

≤ C

i1−1∑
i=is+1

∑

k∈Ai

n−αt2−i(1−α)tlt
[∑

(ik)

(βij + uij)
2
]1−t

+ Cn−2s2/(2s2+1)

≤ Cln−αt

i1−1∑
i=is+1

2iγ2−i(1−α)t2−i(2s1+1)(1−t) + Cn−2s2/(2s2+1)

≤ Cn−2s2α/(2s2+α),

The last inequality follows from the choice of t such that 1 > t > 1− (1− γ)/[2(s2 − s1)].

For the last term, we have T45 ≤ C
∑i1−1

i=is+1 2i2−i(2s2+1) ≤ Cn−2s2/(2s2+1). Together with

the other four terms, it bounds the T4, hence we have completed the proof of the theorem

for α ∈ (0, 1).

When α = 1, the proof is similar to and simpler than that of α ∈ (0, 1). Simply replace

δi with Cn−1 log(n2−ie), we have

T41 ≤ C

i1−1∑
i=i0

n−t2iγ2−i(2s1+1) = Cn−t(2i0)−(2s1+1−γ) ≤ C
( log n

n

)2s2/(2s2+1)

.

T43 ≤ C

is∑
i=i0

2iδi + C

is∑
i=i0

∑
j

u2
ij

≤ C

is∑
i=i0

2in−1 log(n2ie) + Cn−2s2/(2s2+1) ≤ C
( log n

n

)2s2/(2s2+1)

.

T44 ≤ C

i1−1∑
i=is+1

2iγn−t
(
log(n2−ie)

)t
lt
[∑

(ik)

(βij + uij)
2
]1−t

+ Cn−2s2/(2s2+1)

≤ Cln−t
(
log(n2−ise)

)t
i1−1∑

i=is+1

2−i[(2s1+1)(1−t)−γ] + Cn−2s2/(2s2+1)

≤ C
( log n

n

)2s2/(2s2+1)

,

where the last inequality follows from the choice of t such that 1− (1− γ)/[2(s2− s1)] < t <

1− γ/(2s1 + 1). The term T45 ≤ C
(
n−1 log n

)2s2/(2s2+1)
is obvious. Combining all the above

terms, we have proved the theorem for the α = 1 case.
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Finally, we prove Lemma 4.2.

Proof of Lemma 4.2 Let A = {a = (a1, . . . , al) ∈ Rl :
∑l

j=1 a2
j = 1} be the unit sphere

in Rl. Note that for all integers i and k, we have

( ∑

(ik)

U2
ij

)1/2

= sup
a∈A

l∑
j=1

ajUij. (4.37)

Hence, in order to prove (4.18) for 0 < α < 1, it is sufficient to show that for all u > 2
√

l τi,

P

{
sup
a∈A

l∑
j=1

ajUij ≥ u

}
≤ exp

(
− u2

C7 l1−ατ 2
i

)
(4.38)

for some constant C7 > 0. To this end, we appeal to Borell’s inequality [see, e.g., Adler

(1990)] about tail probability of the supremum of a general Gaussian process.

Consider the centered Gaussian process {Z(a), a ∈ A} defined by

Z(a) =
l∑

j=1

ajUij. (4.39)

Firstly, by the Cauchy-Schwarz inequality, Jensen’s inequality and (4.12), we have

E
(

sup
a∈A

Z(a)
)
≤ E

{( l∑
j=1

U2
ij

)1/2}

≤
{ l∑

j=1

E(U2
ij)

}1/2

≤
√

l τi.

(4.40)

Secondly, for every a ∈ A, by (4.39) and (4.5) we have

E
(
Z(a)2

)
= E

(
1√
n

n∑
m=1

εm〈φi1m,

l∑
j=1

ajψij〉
)2

=
σ2

n

n∑
m=1

〈φi1,m,

l∑
j=1

ajψij〉2

+
1

n

n∑
m=1

∑

m′ 6=m

r(m−m′)〈φi1,m,

l∑
j=1

ajψij〉 〈φi1,m′ ,

l∑
j=1

ajψij〉

=: J1 + J2.

(4.41)

By the orthogonality of φi1,m and ψij, we have

J1 ≤ σ2

n

∥∥∥∥
l∑

j=1

aj ψij

∥∥∥∥
2

2

=
σ2

n

l∑
j=1

a2
j =

σ2

n
.

(4.42)
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In the above, ‖ · ‖2 denotes the usual norm in L2(R).

In order to bound J2, we note that

J2 =
1

n

l∑
j=1

l∑

j′=1

aj aj′

{ n∑
m=1

∑

m′ 6=m

r(m−m′) 〈φi1,m, ψij〉 〈φi1,m′ , ψij′〉
}

≤
∫ ∫

φ(u)φ(v)
l∑

j=1

l∑

j′=1

aj aj′

·
{

2i

n2

n∑
m=1

∑

m′ 6=m

r(|m−m′|) ψ
(
2i u + m

n
− j

)
ψ

(
2i v + m′

n
− j′

)}
dudv.

(4.43)

Using the same argument in (4.9)–(4.11), we derive that for all integers j, j′ ≥ 1 and

all u, v ∈ [0, 1],

2i

n2

n∑
m=1

∑

m′ 6=m

r(|m−m′|) ψ
(
2i u + m

n
− j

)
ψ

(
2i v + m′

n
− j′

)

≤ C n−α 2−i(1−α)

∫ ∫
ψ(x)ψ(y)

|x− y + j − j′|α dxdy

≤ C τ 2
i

(1 + |j − j′|)α
.

(4.44)

In deriving the first inequality, we have used the fact that ψ is supported on [0, 1].

In the case of α ∈ (0, 1), we have for all a ∈ A,

l∑
j=1

l∑

j′=1

aj aj′
1

(1 + |j − j′|)α
=

l∑
j=1

a2
j + 2

l∑
j=1

j−1∑

j′=1

aj aj ′

(1 + |j − j ′|)α

≤ 1 +
l∑

j=1

j−1∑

k=1

a2
j + a2

j−k

(1 + k)α

= 1 +
l∑

j=1

a2
j

j−1∑

k=1

1

(1 + k)α
+

l∑
j=1

j−1∑

k=1

a2
j−k

(1 + k)α

≤ 1 +
l−1∑

k=1

1

(1 + k)α
+

l−1∑

k=1

1

(1 + k)α

l∑

j=k+1

a2
j−k

≤ C l1−α.

(4.45)

Combining (4.43), (4.44) and (4.45), we obtain

J2 ≤ C9 l1−α τ 2
i . (4.46)

Since 0 < α < 1, (4.42) and (4.46) together yield

D2 := sup
a∈A

E
(
Z(a)2

) ≤ C10 l1−α τ 2
i . (4.47)
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Denote m̃ := E(supa∈A Z(a)). It follows from Borell’s inequality [see, Adler (1990)],

(4.40) and (4.47) that for all u ≥ 2m̃ [by (4.40), this holds whenever u ≥ 2
√

l τi],

P

{
sup
a∈A

l∑
j=1

ajUij ≥ u

}
≤ exp

(
− (u− m̃)2

2D2

)

≤ exp
(
− u2

8 C10 l1−α τ 2
i

)
.

(4.48)

This proves (4.38) with C7 = 8 C10.

Now we consider the case α = 1. The proof of (4.19) is similar to the above, but we

need to modify the estimation of J2. When j = j′, similar to (4.14) and (4.15), we use the

fact that ψ is bounded and has its support in [0, 1] to derive that for all u, v ∈ [0, 1],

2i

n2

n∑
m=1

∑

m′ 6=m

r(|m−m′|) ψ
(
2i u + m

n
− j

)
ψ

(
2i v + m′

n
− j

)

≤ C n−1 log(n 2−i e).

(4.49)

When j 6= j′, we apply the same method as above and the elementary inequalities
b∑

k=a

k−1 ≤
C log(b/a) and log(1 + x) ≤ x (∀x > 0) to derive the following better bound:

2i

n2

n∑
m=1

∑

m′ 6=m

r(|m−m′|) ψ
(
2i u + m

n
− j

)
ψ

(
2i v + m′

n
− j′

)

≤ C n−1 1

|j − j′| .
(4.50)

It follows from (4.43), (4.49), (4.50) and the same argument as in deriving (4.45) that

J2 ≤ C

{ l∑
j=1

a2
j n−1 log(n 2−i e) +

l∑
j=1

∑

j′ 6=j

ajaj′

|j − j′| n
−1

}

≤ C
(
n−1 log(n 2−i e) + n−1 log l

)

≤ C ξ2
i log l.

(4.51)

Hence, we have D2 ≤ C ξ2
i log l and (4.19) follows from Borell’s inequality. The proof of

Lemma 4.2 is finished.
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