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Weak Variation of Gaussian Processes
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Let X(l) ( t e R ) be a real-valued centered Gaussian process with stationary
increments. We assume that there exist positive constants S, C1, and c2 such
that for any t e R and heR with |h| ^ <S0

and for any 0 < r < min{ |t|, £0}

where a: [0, Sn) -> [0, oc ) is regularly varying at zero of order a (0 < a < 1). Let
T be an inverse function of a near zero such that $(s) = T(S) log log(1/s) is
increasing near zero. We obtain exact estimates for the weak p-variation of X(t)
on [0,a].

KEY WORDS: Weak variation; Gaussian processes; local times; symmetric
Levy processes.

1. INTRODUCTION

The elegant result of P. Levy on the quadratic variation of Brownian
motion has been extended in different ways (see Taylor,(21) K6no,(10)

Kawada and K6no,(9) Marcus and Rosen,(12,13) and references therein). Let

be a partition of [0,a], and let m(n) = sup 1 < k ( p ) ) ( t i —ti-1) denote the
length of the largest interval in n (m(n) is called the mesh of n). Let Qa(S)
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be the family of the partitions n of [0, a] with m(n) < d. For any function
f : R + - > R d and any function 0: [0, S]-> R + with 0(0) = 0, the weak
f-variation of on [0, a] is defined by

where

and

The sum in (1.2) and all that follows is taken over all the terms in which
both tj-1 and t, are contained in n. The strong p-variation of f on [0, a]
is defined by

Let B= (B(t), teR + } be a Brownian motion in Rd. Taylor(21) proved the
following exact estimates for the weak and strong variation of B: with
probability 1

where $i(s) = s2 log log 1/s, (P2(s) = s2/loglog 1/s and Xd is a positive finite
constant. Strong p-variation result similar to (1.5) has been obtained by
Kawada and K6no(9) for certain Gaussian processes (see also Marcus and
Rosen(12)). The main purpose of this paper is to generalize (1.4) to strongly
locally nondeterministic Gaussian processes.

Let X(t) (teR) be a real-valued, centered Gaussian process with
X(0) = 0. We assume that X(t) (teR) has stationary increments and con-
tinuous covariance function R(t, s) = EX(t) X(s) given by
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where A(dX} is a nonnegative symmetric measure on R\{0} satisfying

Then there exists a centered complex-valued Gaussian random measure
W(dX) such that

and for any Borel sets A, B £ R

It follows from (1.6) that

We assume that there exist constants S0>0, 0<c 1 ; c 2<oo and a non-
decreasing continuous function a: [0, S0) -» [0, oo) which is regularly vary-
ing at zero of order a (0<a< 1) such that for any teR and heR with
|h |^S 0

and for all teR and any 0<r <min{ |t|, d0}

If (1.8) and (1.9) hold, we shall say that X(t) (teR) is strongly locally
cr-nondeterministic. A typical example of strongly locally nondeterministic
Gaussian process is the so-called fractional Brownian motion of index a
(0«x<l) , the centered, real-valued Gaussian process X(t) (teR) with
covariance

We refer to Herman(2-4) and Cuzick and Du Peez(5) for more information
on (strongly) locally nondeterminism.

Based on an isomorphism theorem of Dynkin,(6,7), Marcus and
Rosen,(12-14) studied the sample path properties of the local times of
strongly symmetric Markov processes through their associated Gaussian
processes. In particular, they proved results similar to (1.5) for the (strong)
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p-variation of the local times of symmetric Levy processes in the spatial
variable (see Refs. 13 and 14). It is natural to consider the weak p-variation
of the local times of symmetric Levy processes. In this case, the argument
of Marcus and Rosen seems not enough and we have not been able to
prove an analogous result for the local times of symmetric Levy processes.

Throughout the paper, we let r(s) to be an inverse of a(s) near zero.
Then t ( s ) is regularly varying at zero of order 1/a. We may and will choose
r(s) to be continuous and such that (j>(s) = r(s) log log(1 /s ) is strictly
increasing near zero (see e.g., Senata,(17), p. 22).

2. 0-1 LAW

Let X(t) ( e R ) be a real-valued Gaussian process with stationary
increments and X(0) = 0. We assume that X(t] satisfies (1.8), where a(s) is
regularly varying at zero of order a (0 < a < 1), and it has a representation
(1.7). It is well known that X(t) has continuous sample paths almost surely
[see e.g., Jain and Marcus,(8) (Sect. IV, Thm. 1.3)]. The following lemma
is a corollary of Proposition 2 of Wichura.(22)

Lemma 1. Let

Then with probability 1

converges uniformly on [0, 1].
Now we prove a 0-1 law about the weak 0-variation of X(t) on [0, 1].

0-1 laws for other types of variation were obtained by Kono(10) and by
Kawada and Kono.(9)

Theorem 1. Let X(t) ( t e R ) be a real-valued Gaussian process with
stationary increments and X(0) = 0 satisfying (1.8). Then there exists a
constant 0 < L < c o such that

Proof. Let (Q, B, P) be a basic probability space such that for every
weQ, the series Z=i Z n ( t , w ) in Lemma 1 converges uniformly in t on
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[0, 1 ]. Let Bn be the a-algebra generated by {Zn(t), n = N, N+ 1, • • • }. An
event which is measurable with respect to B = HN=1 BN is called a tail
event. Since {Zn(t), n > 1} is a sequence of independent random variables,
it follows from Kolmogorov's 0-1 law that for any A eBx, P(A) = 0 or 1.

Let

We will show that A is a tail event and then (2.1) follows.
Let N be an arbitrary positive integer and set

Let dn 10 be a decreasing sequence. For any 0<n<min{I/a — 1, 1/3} and
any positive integer n, let

Clearly

Since for each weQ, YN(t, co) is continuously differentiable on [0, 1] and
a(1 +n)< 1, we have

We note that P ( s ) is regularly varying at zero of order I/a, then for any
£>0 there exists s0>0 such that for 0<s<s0

[see e.g., Seneta,(71) Thm. 1.1]. For any weQ, there exists n1 such that
weCn for all n>n1 and hence for any n e Q 1 ( S n ) and any t i _ 1 , t i € n , we
have
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and

Let

Then by (2.2)-(2.5) we have

and

Similarly we have

Combining (2.6)-(2.8) and noticing that r > 0, e > 0 are arbitrary, we have
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for any positive integer N. Hence A is a tail event. This completes the proof
of (2.1). D

3. WEAK p-VARIATION FOR GAUSSIAN PROCESSES

Let X(t) ( t e R ) be a real-valued Gaussian process with stationary
increments and X(0) = 0 satisfying (1.8) and (1.9), where a(s) is regularly
varying at zero of order a ( 0 < x < 1). In this section, we study the weak
P-variation of X(t) on [0, a].

We will need several lemmas. Lemma 2 is proved in Xiao,(23) which
generalizes a result of Talagrand.(20) Lemma 3 is from Talagrand.(19)

Lemma 4 gives an estimate for the small ball probability of the Gaussian
processes satisfying (1.8) and (1.9), which is a modification of Theorem 2.1
in Monrad and Rootzen(51) (see also Shao(81)).

We will use K to denote an unspecified positive constant, which may
be different in each appearance.

Lemma 2. There exists a constant < S , > 0 such that for any
0 < rQ ̂  S 1, we have

f ( ( 1V1/;VM
P\3re[r2

0,r0] such that sup | X ( t ) | <Ko (r log log- U
[ \t\Hr V V rJ I)

Let Z(t) (t e 5") be a Gaussian process. We provide S with the following
metric

where ||Z||2 = (£(Z2))1/2. We denote by Nd(S,e) the smallest number of
open (d-balls of radius £ needed to cover S.

Lemma 3. Consider a function Y such that Nd(S,e)^ Y(s) for all
£ > 0. Assume that for some constant C > 0 and all £ > 0 we have
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Then

where K depends on C only.

Lemma 4. For any 0 < r < S0 and any e <a(r), we have

where K>0 is an absolute constant.

Proof. The left-hand side follows immediately from Lemma 3. The
proof of the right-hand side by using (1.9) is the same as that of
Theorem 2.1 in Monrad and Rootzen.(15)

Proposition 3. For any t e R, with probability 1

where £{s) is the inverse function of $(s) = T(S) log log( 1/s) near zero and
y > 0 is a finite constant.

Proof. Clearly,

Then (3.3) follows from (3.2) and the Borel-Cantelli lemma in a standard
way.

Remark. By using an argument similar to the proof of Theorem 3.3
in Monrad and Rootzen,(15) we can strengthen (3.3) to

for some constant K>0. But we will not need (3.4) in the present paper.
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Proposition 2. For any t e R, with probability 1

where £(s) and y>0 are as in Proposition 1.

Proof. Since the proof of (3.5) is similar to that of Lemma 3.4 in
Taylor,(21) there seems no need in reproducing it.

We are now in a position to prove the main result of this section.

Theorem 2. Let X(t) ( t e R ) be a Gaussian process with stationary
increments and X(0) = 0 satisfying (1.8) and (1.9). Let p ( s ) = r(s) log log( 1 / s ) .
Then there exists a positive finite constant A such that for any a > 0 with
probability 1

Proof. For Eq. (3.6), we start by proving that with probability 1, for
5 small enough

For k ^ 1, consider the set

By Lemma 2, we have that for k ^ log l/<5,

Denote by \A\ the Lebesgue measure of A. It follows from Fubini's theorem
that P(Q0) = 1, where
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On the other hand, it is well known [see e.g., Jain and Marcus,(8), Sect. IV,
Thm. 1.3] that there exists an event Q1 such that P(Q 1 ) =1 and for all
to e Q1, there exists n4 = n4(co) large enough such that for all n ̂  »4 and any
dyadic cube C of order n in [0, 1 ], we have

Now fix an w e Q0 n Q\, we show that V^X; n) ̂  K< co.
For any x e R, we denote by C,(x) the unique dyadic interval of order

/ containing x. Consider k > 1 such that

For any x e Rk we can find l with k^l^Ik such that

Let V, be the union of such dyadic intervals Cl, then { Vl,} are disjoint and
Rk<^V={J2,llkV,. Let n be the partition of [0, 1] formed by the end
points of the dyadic intervals in V and the end points of the dyadic inter-
vals of order 2k that do not meet Rk. Then

where £' sums over all the intervals in V and £" sums over all the dyadic
intervals of order 2k that do not intersect Rk. By (3.10) we have

On the other hand, the number of the dyadic intervals of order 2k that do
not meet Rk is at most

For each C', of these intervals, by (3.9) we have

It follows that
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for k large enough. Since k can be arbitrarily large, (3.8) follows from
(3.11)-(3.13).

To prove the opposite inequality for a = 1, we set for any s > 0, 5 > 0,

Then EeA is measurable in (t, ca). Define Irf(t, w) = 1 for (t,a>)eEf.A and
Ig(t, ca) = 0 otherwise. By Proposition 2, for any fixed te[0, 1] almost
surely

It follows from Fatou's lemma that

Hence with probability 1

This implies that for any s'>0, there exists almost surely Ss = Ss(a})>0
such that for any 0 < s < s 5 , \Ef. A ( w ) \ ^ 1 —e ' , where

For any partition peQ1(S), 7r = {0 = to<t1< ••• <tk(n}= 1}, let

Then we have
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This proves that

It follows from (3.8), (3.14) and Theorem 1 that (3.6) holds for a=1.
For any a>0, let G(t) = X(at). By applying this result to G(t)

( r e [0 ,1 ] ) we get (3.6).

For Eq. (3.7), we divide [0, a] into m 5* 1 equal subintervals Ij,m(a) =
\ _ ( j - 1 / m ) a , ( j /m}a], j=1,...,m and denote Q(Ilm(a}\8} the family
of partitions Uj of I j - m(0) with m(nj)<8. For any partition P = {0 =
t 0<t1 < ••• <tkM = a] of [0, a], define

Consider the partitions of Ij,-,„,(a) given by

and

Thus for any ne Qa(d), we can write

where
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It follows from (3.17) that

Since </> is regularly varying at zero, for any e > 0, v > u > 0, for s sufficiently
small, we have

Since with probability 1, X(t) is uniformly continuous on [0, a], there
exists almost surely <J6 = <56(w) > 0 such that for any 0 < d < 66, we have, by
(3.18) and (3.19)

where I(A) is the indicator function of the set A. It follows from Jain and
Marcus,(8) [Sect. IV, Thm. 1.3] that

for some constant K. Let <5-»0 in (3.20), by (3.6) we have
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Let m -> oo, we see that the left-hand side of (3.21) is

Since e > 0, u > 0 are arbitrary, we get

To prove the opposite inequality, we note that for any s > 0, v > u > 0,
for s sufficiently small, we have

However for b small enough, p ( s b ) < p ( s ) \b\1 / x . Therefore for any
0 < v< co and any e > 0, if s is sufficiently small we have

Similar to (3.18), by (3.23) we have

Let <5-> 0, it follows from (3.6) that
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Letting m -» oo and noticing that s > 0 and v > 0 are arbitrary, we obtain
(3.22) but with a less than or equal to sign. This completes the proof
of (3.7). 

The argument in Taylor(21) can be applied to prove Corollary 1.

Corollary 1. Let

where the infimum is taken over all the partitions of [0, a]. Then with
probability 1, 0 < U^X; [0, 1 ]) ^ la.

Remark. If X(t] ( ? e R ) is the fractional Brownian motion of index a
(0«x< 1) in R, then (1.8) and (1.9) are satisfied with s(t) = t*. It follows
from Theorem 2 and Corollary 1 immediately that with probability 1

and

where 0(S) = s1/aloglog 1/s. In the case of Brownian motion, i.e., a = 1/2,
(3.24) and (3.25) recover the result of Taylor(21) mentioned in (1.4).

4. CONCLUSIONS

Let Y= { Y(t), teR + } be a symmetric real-valued Levy process with
characteristic function

and Levy exponent

where v is a Levy measure, i.e., f I min{l1u 2 } dv(u) < oo. If u ( A ) = L2/2 ,
then Y is Brownian motion. We assume that u(A) is regularly varying at
infinity of order 1 < B< 2. It follows from a result of Barlow(1) that Y has
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an almost surely jointly continuous local time, which is denoted by
L= {Lx

t, (t, x)eR + xR} normalized such that

where

is the 1-potential density of Y.
The mean zero Gaussian process G= {G(x)xeR} with covariance

E(G(x) G ( y ) ) = u l ( x —y) is said to be associated with Y. Then we have

where

By a result of Pitman(16) we know that o2(x) is regularly varying at zero
of order B— 1. Marcus and Rosen(12) proved a corollary of the Dynkin
Isomorphism Theorem,(6,7) which enables them(13,14) to obtain almost sure
results for the (strong) variations of the local times of symmetric Levy
processes from analogous results about the associated Gaussian processes.
It would be interesting to study the weak variation of the local times L of
symmetric Levy processes.

Let G(x) (xeR) be the associated Gaussian process and let (J2G, Pa)
be the probability space of G. Then G(x) (x e R) is strongly locally cr-non-
deterministic if: (i) a2(x) is concave near zero and a2(x) -> 0 as x-* 0 (see
Marcus(11); or ( I I ) f ( L ) ^ K W ~ ^ for large |A|, where

and
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(see Berman(21). Hence Theorem 2 holds under the condition (i) or (ii). It
follows from Lemma 4.3 in Ref. 12, and (3.7) that for almost all weCG ,

for almost all t e R + almost surely. However, it is not known whether the
following weak variation result for the local time L holds or not: almost
surely

for almost all t eR + . This can not be derived from (3.7) and (4.1) by using
the argument of Marcus and Rosen.(13)
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