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Abstract. Let X1, . . . , XN denote N independent, symmetric Lévy processes on Rd. The
corresponding additive Lévy process is defined as the following N -parameter random field
on Rd:

(0.1) X(t) := X1(t1) + · · ·+ XN (tN ) (t ∈ RN
+ ).

Khoshnevisan and Xiao (2002) have found a necessary and sufficient condition for the zero-
set X−1({0}) of X to be non-trivial with positive probability. They also provide bounds for
the Hausdorff dimension of X−1({0}) which hold with positive probability in the case that
X−1({0}) can be non-void.

Here we prove that the Hausdorff dimension of X−1({0}) is a constant almost surely on
the event {X−1({0}) 6= ∅}. Moreover, we derive a formula for the said constant. This
portion of our work extends the well known formulas of Horowitz (1968) and Hawkes (1974)
both of which hold for one-parameter Lévy processes.

More generally, we prove that for every nonrandom Borel set F in (0 ,∞)N , the Hausdorff
dimension of X−1({0}) ∩ F is a constant almost surely on the event {X−1({0}) ∩ F 6= ∅}.
This constant is computed explicitly in many cases.

1. Introduction

Let X1, . . . , XN denote N independent symmetric Lévy processes on Rd, all starting from

0. We construct the N -parameter random field X := {X(t)}t∈RN
+

on Rd as follows:

(1.1) X(t) := X1(t1) + · · ·+ XN(tN),

where t := (t1, . . . , tN) ranges over RN
+ . Thus, X is called a “symmetric additive Lévy

process,” and has found a number of applications in the study of classical Lévy processes

(Khoshnevisan and Xiao, 2002; 2003; 2005; Khoshnevisan, Xiao and Zhong, 2003). Occa-

sionally we follow the notation of these references and denote the random field X also by

X1 ⊕ · · · ⊕XN .
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Consider the level set at x,

(1.2) X−1({x}) :=
{
t ∈ (0 ,∞)N : X(t) = x

}
for x ∈ Rd.

By defining X−1({x}) in this way we have deliberately ruled out the points t ∈ ∂RN
+ with

X(t) = x, where ∂RN
+ := {t ∈ [0,∞)N : ti = 0 for some 1 ≤ j ≤ N} denotes the boundary

of RN
+ , since the problems for the latter can be reduced to the level sets of additive Lévy

processes with fewer parameters.

Khoshnevisan and Xiao (2002) assert that, under a mild technical condition, X−1({0}) 6= ∅
with positive probability if and only if a certain function Φ is locally integrable. Moreover,

the function Φ is easy to describe: It is the density function of X(|t1| , . . . , |tN |) at x = 0.

As a by-product of their arguments, Khoshnevisan and Xiao (2002) produce bounds on

the Hausdorff dimension of X−1({0}) as well. In fact, they exhibit two numbers γ ≤ γ, both

computable in terms of the Lévy exponents of X1, . . . , XN , such that

(1.3) γ ≤ dim
H

X−1({0}) ≤ γ̄ with positive probability.

Originally, the present paper was motivated by our desire to have better information on

the Hausdorff dimension of X−1({0}) in the truly multiparameter setting N ≥ 2. Recall that

when N = 1, X is a Lévy process in the classical sense, and in addition,

(1.4) either P
{
X−1({0}) = ∅

}
= 1 or P

{
X−1({0}) is uncountable

}
= 1.

This is a consequence of the general theory of Markov processes; see Proposition 3.5 and The-

orem 3.8 of Blumenthal and Getoor (1968, pp. 213 and 214). Moreover, it is known exactly

when X−1({0}) is uncountable and, in general, X−1({0}) differs from the range of a subor-

dinator in at most countably-many places. Consequently, a nice formula for dim
H

X−1({0})
can be derived from the result of Horowitz (1968) on the Hausdorff dimension of the range

of a subordinator. For a modern elegant treatment see Theorem 15 of Bertoin (1996, p.

94). See also Hawkes (1974) where dim
H

X−1({0}) is described solely in terms of the Lévy

exponent of X.

We were puzzled by why the extension of the said refinements to N ≥ 2 are so much

more difficult to obtain. For example, the issue of when {0} is regular for itself—i.e., (1.4)—

becomes much more delicate once N ≥ 2. [We hope to deal with this matter elsewhere.]

Thus, it is not obvious—nor does it appear to be true—that dim
H

X−1({0}) is a.s. a constant.

In the present paper we prove that, under a mild technical condition, the Hausdorff di-

mension of X−1({0}) is a simple function of ω. In fact, it is a constant a.s. on the set where

X−1({0}) is non-trivial.
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We are even able to find a nice formula for the Hausdorff dimension of the zero set

X−1({0}), a.s. on the event that it is nonempty. See Theorem 1.1 below. It can be shown

that when N = 1 our formula agrees with the one-parameter findings of Horowitz (1968) and

Hawkes (1974). Moreover, suppose X−1({0}) were replaced by the closure of X−1({0}) in

(0 ,∞)N , then our derivations show that the same formula holds almost surely on the event

that the said closure is nonempty.

The remainder of the Introduction is dedicated to developing the requisite background

needed to describe our dimension formula precisely.

Let Ψ1, . . . , ΨN denote the respective Lévy exponents of X1, . . . , XN . That is, for all

1 ≤ j ≤ N , ξ ∈ Rd, and u ≥ 0,

(1.5) E
[
eiξ·Xj(u)

]
= exp (−uΨj(ξ)) .

We recall that the functions Ψ1, . . . , ΨN are real, non-negative, and symmetric. We say that

X is absolutely continuous if

(1.6)

∫

Rd

exp

(
−u

∑
1≤j≤N

Ψj(ξ)

)
dξ < ∞ for all u > 0.

Define for all t ∈ RN ,

(1.7) Φ(t) :=
1

(2π)d

∫

Rd

exp

(
−

∑
1≤j≤N

|tj|Ψj(ξ)

)
dξ.

This defines Φ on RN\{0}; Φ is uniformly continuous and bounded away from {0}, and

Φ(0) = ∞. As a consequence of the results of Khoshnevisan and Xiao (2002) we have

P
{
X−1({0}) 6= ∅}

> 0 ⇐⇒ P
{

X−1({0}) ∩ (0 ,∞)N 6= ∅
}

> 0

⇐⇒ Φ ∈ L1
loc(R

N),
(1.8)

where Ā denotes the closure of A and Φ ∈ L1
loc(R

N) means Φ ∈ L1([−T, T ]N) for every

T > 0. Define ‖x‖ to be the Euclidean `2 norm of x. Then the following is our main result:

Theorem 1.1. If X1, . . . , XN are symmetric absolutely continuous Lévy processes in Rd,

then almost surely on {X−1({0}) 6= ∅},

(1.9) dim
H

X−1({0}) = sup

{
q > 0 :

∫

[0,1]N

Φ(t)

‖t‖q
dt < ∞

}
.

Suppose, in addition, that there is a constant K > 0 such that

(1.10) Φ(t) ≤ Φ(K‖t‖ , . . . , K‖t‖) for all t ∈ (0 , 1]N .
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Then,

(1.11) dim
H

X−1({0}) = N − lim sup
t→0

log Φ(t)

log(1/‖t‖) .

When N = 1, (1.10) holds automatically, and so (1.9) and (1.11) coincide (Hawkes, 1974;

Horowitz, 1968). We will show in Example 3.6 that when N > 1, formula (1.11) does not

hold in general; an extra condition such as (1.10) is necessary.

Compared to the one-parameter case, the proof of Theorem 1.1 is considerably more

complicated when N > 1. This is mainly due to the fact that classical covering arguments

produce only (1.3) in general. Thus, we are led to a different route: We introduce a rich

family of random sets with nice intersection properties, and strive to find exactly which of

these random sets can intersect X−1({0}). There is a sense of symmetry about our arguments,

since everything is described in terms of additive Lévy processes; the said random sets are

constructed by means of introducing auxiliary additive Lévy processes. This argument allows

us to establish a formula for the Hausdorff dimension of X−1({0})∩ F for every nonrandom

Borel set F ⊂ (0 ,∞)N . See Theorem 3.2 and the examples in Section 3.

The idea of introducing random sets to help compute dimension seems to be due to Taylor

(1966, Theorem 4). Since its original discovery, this method has been used by many others;

in diverse ways, and to good effect (Barlow and Perkins, 1984; Benjamini et al., 2003; Blath

and Mörters, 2005; Dalang and Nualart, 2004; Dembo et al., 2002; 1999; Khoshnevisan,

2003; Khoshnevisan et al., 2005a; 2005b; Khoshnevisan et al., 2000; Khoshnevisan and Shi,

2000; Khoshnevisan and Xiao, 2005; Klenke and Mörters, 2005; Lyons, 1992; 1990; Mörters,

2001; Peres, 1996a; 1996b; Peres and Steif, 1998).

We conclude the Introduction by introducing some notation that is used throughout and

consistently.

• For every integer m ≥ 1, and for all x ∈ Rm,

(1.12) ‖x‖ :=
(
x2

1 + · · ·+ x2
m

)1/2
, |x| := max

1≤j≤m
|xj|, and [x] := |x1|+ · · ·+ |xm|.

They respectively denote the `2, `∞, and `1 norms of x.

• Multidimensional “time” variables are typeset in bold letters in order to help the

reader in his/her perusal.

• For all integers m ≥ 1 and s, t ∈ Rm
+ , we write

(1.13) s ≺ t iff t Â s iff si ≤ ti for all 1 ≤ i ≤ m.
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• Let m ≥ 1 be a fixed integer and q ≥ 0 a fixed real number. Suppose f : Rm → R+

is Borel measurable, and µ is a Borel probability measure on Rm. Then,

(1.14) I
(q)
f (µ) :=

∫∫
f(x− y)

‖x− y‖q
µ(dx) µ(dy).

When f ≡ 1 and q > 0, this is the q-dimensional Bessel–Riesz energy of µ, which

will be denoted by I(q)(µ).

• For any Borel set G ⊂ Rm, let P(G) denote the collection of all Borel probability

measures on G. The q-dimensional Bessel–Riesz capacity of G is defined by

(1.15) Cq(G) :=

[
inf

µ∈P(G)
I(q)(µ)

]−1

.

• If f : RN \ {0} → R+, then we define the upper index and lower index of f (at

0 ∈ RN) respectively as

(1.16) ind(f) := lim sup
‖x‖→0

log f(x)

log(1/‖x‖) , ind(f) := lim inf
‖x‖→0

log f(x)

log(1/‖x‖) .

Consequently, Theorem 1.1 asserts that if (1.10) holds then a.s. on the event that X−1({0}) 6=
∅,

(1.17) dim
H

X−1({0}) = N − ind(Φ).

Acknowledgement. We thank the anonymous referee for his/her careful reading, and for

making several suggestions which led to improvements of the original manuscript.

2. Background on Additive Lévy Processes

2.1. Absolute Continuity. We follow Khoshnevisan and Xiao (2002) and call the following

function Ψ the Lévy exponent of X. It is defined as follows. For ξ ∈ Rd,

(2.1) Ψ(ξ) := (Ψ1(ξ) , . . . , ΨN(ξ)) .

In this way, we can write

(2.2) E
[
eiξ·X(t)

]
= e−t·Ψ(ξ) for ξ ∈ Rd and t ∈ RN

+ .

Also, we declare X to be absolutely continuous if the function ξ 7→ exp{−t · Ψ(ξ)} is in

L1(Rd) for all t ∈ (0 ,∞)N .

If any one of the Xj’s is absolutely continuous, then so is X. A similar remark continues

to apply if Xj is replaced by an additive process based on a proper, nonempty subset of
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{X1, . . . , XN}. However, it is possible to construct counter-examples and deduce that the

converse to these assertions are in general false.

Here and throughout, we assume, without fail, that

(2.3) X is absolutely continuous.

It is possible to check that this is equivalent to the absolute-continuity condition (1.6) men-

tioned in the Introduction.

We may apply the inversion theorem and deduce that X(t) has a density function pt(•)
for all t ∈ (0 ,∞)N . Moreover, for all x ∈ Rd and t ∈ (0 ,∞)N ,

(2.4) pt(x) =
1

(2π)d

∫

Rd

cos(ξ · x) e−t·Ψ(ξ) dξ.

Let RN
6= be the set of all t ∈ RN such that (|t1| , . . . , |tN |) ∈ (0 ,∞)N . We abuse the notation

slightly and also use pt(x) to denote the density function of X(|t1| , . . . , |tN |) for all t ∈ RN
6= .

Evidently, p is continuous on RN
6= ×Rd and for all t ∈ RN

6= ,

(2.5) sup
x∈Rd

pt(x) = pt(0) = Φ(t).

See (1.7) for the definition of Φ.

Throughout, we consider the probabilities:

Φr(x ; t) :=
1

(2r)d
P

{∣∣X(|t1| , . . . , |tN |)− x
∣∣ ≤ r

}
,

Φr(t) := Φr(0 ; t),

(2.6)

valid for all r > 0, x ∈ Rd, and t = (t1, . . . , tN) ∈ RN . Evidently, for all t ∈ RN
6= ,

lim
r→0+

Φr(t) = Φ(t),

sup
x∈Rd

Φr(x ; t) ≤ Φ(t).
(2.7)

The first statement follows from the continuity of x 7→ pt(x), and the second from (2.5).

Similarly, we have

(2.8) lim
r→0+

Φr(x ; t) = pt(x),

valid for all t ∈ RN
6= .

2.2. Weak Unimodality. We follow Khoshnevisan and Xiao (2002) and say that a Borel

probability measure µ on Rk is weakly unimodal (with constant κ) if for all r > 0,

(2.9) sup
x∈Rk

µ
(
B(x ; r)

) ≤ κµ
(
B(0 ; r)

)
,
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where B(x ; r) :=
{
y ∈ Rk : |x − y| ≤ r

}
. Evidently, we can choose κ to be its optimal

value,

(2.10) κ := sup
r>0

sup
x∈Rk

µ
(
B(x ; r)

)

µ
(
B(0 ; r)

) < ∞,

where 0/0 := 1.

Since X is a symmetric additive Lévy process, Corollary 3.1 of Khoshnevisan and Xiao

(2003) implies that the distribution of X(t) is weakly unimodal with constant 16d for all

t ∈ (0 ,∞)N . Equivalently, the growth of the function Φr of (2.6) is controlled as follows:

(2.11) sup
x∈Rd

Φr(x ; t) ≤ 16dΦr(t) for all t ∈ RN .

This and Lemma 2.8(i) of Khoshnevisan and Xiao (2002) together imply the following “dou-

bling property”:

(2.12) Φ2r(t) ≤ 32dΦr(t) for all t ∈ RN .

Another important consequence of weak unimodality is that t 7→ Φr(t) is “quasi-monotone.”

This means that if s ≺ t and both are in (0 ,∞)N , then

(2.13) Φr(t) ≤ 16dΦr(s) for all r > 0.

See Lemma 2.8(ii) of Khoshnevisan and Xiao (2002).

3. Some Key Results and Examples

Khoshnevisan and Xiao (2002, Theorem 2.9) have proven that

(3.1) Φ ∈ L1
loc(R

N) iff P
{
X−1({0}) 6= ∅}

> 0.

They proved also that the same is true for X−1({0}) ∩ (0 ,∞)N . This was mentioned earlier

in the Introduction of the present paper; see (1.8). In addition, Khoshnevisan and Xiao

(2002) have computed bounds for the Hausdorff dimension of X−1({0}) in the case that Φ

is locally integrable. The said bounds are in terms of γ and γ̄, where

γ := sup

{
q > 0 :

∫

[0,1]N

Φ(t)

‖t‖q
dt < ∞

}
,

γ̄ := inf

{
q > 0 : lim inf

‖t‖→0

Φ(t)

‖t‖q−N
> 0

}
.

(3.2)

First, we offer the following.
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Lemma 3.1. It is always the case that

(3.3) 0 ≤ γ ≤ γ̄ ≤ N − d

2
.

If, in addition, (1.10) holds, then also,

(3.4) γ = inf

{
q > 0 : lim sup

‖t‖→0

Φ(t)

‖t‖q−N
> 0

}
.

Thus, in light of (1.16), we arrive at the following consequence:

(3.5) γ̄ = N − ind(Φ) whereas γ = N − ind(Φ) if (1.10) holds.

Proof of Lemma 3.1. By definition, 0 ≤ γ. Also, if q > γ̄ then there exists a positive and

finite A such that Φ(t) ≥ A ‖t‖q−N for all t ∈ [0 , 1]N . Consequently,
∫
[0,1]N

Φ(t)‖t‖−q dt ≥
A

∫
[0,1]N

‖t‖−N dt = ∞. It follows that q ≥ γ. Let q ↓ γ̄ to deduce that γ̄ ≥ γ.

In order to prove that γ̄ ≤ N − (d/2), we first recall that Ψj(ξ) = O(‖ξ‖2) as ‖ξ‖ → ∞
(Bochner, 1955, eq. (3.4.14), p. 67). Therefore, there exists a positive and finite constant A

such that |s · Ψ(ξ)| ≤ A ‖s‖ (1 + ‖ξ‖2) for all ξ ∈ Rd and s ∈ RN . Consequently, for all

s ∈ RN ,

(3.6) Φ(s) ≥
∫

Rd

e−A ‖s‖ (1+‖ξ‖2) dξ =
A′e−A ‖s‖

‖s‖d/2
,

where A′ depends only on d and A. This yields γ̄ ≤ N − (d/2) readily.

It remains to verify (3.4) under condition (1.10). From now on, it is convenient to define

temporarily,

(3.7) θ := inf

{
q > 0 : lim sup

‖t‖→0

Φ(t)

‖t‖q−N
> 0

}
.

If 0 < q < θ, then Φ(t) = o(‖t‖q−N), and for all ε > 0 and for all sufficiently large n,

(3.8)

∫

{2−n−1<‖t‖≤2−n}

Φ(t)

‖t‖q−ε
dt = O(2−nε) as n →∞.

Consequently, the left-most terms form a summable sequence indexed by n. In other words,

for all ε > 0, t 7→ ‖t‖ε−qΦ(t) is integrable on neighborhoods of the origin in RN . We have

proved that q ≤ γ + ε. Let ε ↓ 0 and q ↑ θ to find that θ ≤ γ. [This does not require (1.10).]

If 0 < q < γ and (1.10) holds, then

(3.9) ∞ >

∫

{‖t‖≤1}

Φ(t)

‖t‖q
dt =

∑
1≤n<∞

∫

{2−n−1<‖t‖≤2−n}

Φ(t)

‖t‖q
dt.
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Thus,

(3.10) lim
n→∞

∫

{2−n−1<‖t‖≤2−n}

Φ(t)

‖t‖q
dt = 0.

But the preceding integral is at least 2nqΦ(2−n, . . . , 2−n) times the volume of {t ∈ RN
+ :

2−n−1 < ‖t‖ ≤ 2−n}. This follows from the coordinate-wise monotonicity of Φ, and proves

that

(3.11) Φ(2−n, . . . , 2−n) = o
(
2−n(q−N)

)
as n →∞.

From this we conclude also that for the constant K > 0 in (1.10),

(3.12) Φ(K2−n, . . . , K2−n) = o
(
2−n(q−N)

)
as n →∞.

We appeal to (1.10) to deduce that

(3.13)
Φ(K2−n, . . . , K2−n)

2−(n−1)(q−N)
≥ A sup

2−n−1<‖t‖≤2−n

Φ(t)

‖t‖q−N
,

where A is positive and finite, and depends only on N . This and (3.12) prove that q < θ,

whence it follows that γ ≤ θ. The converse bounds has already been proved. ¤

We are ready to present the main theorem of this section. This theorem is new even when

X is an ordinary Lévy process [i.e., X := X and N = 1].

Theorem 3.2. Let X denote an N-parameter symmetric, absolutely continuous additive

Lévy process on Rd. Choose and fix a compact set F ⊂ (0 ,∞)N . Then, almost surely on

{X−1({0}) ∩ F 6= ∅},
(3.14) dim

H

(
X−1({0}) ∩ F

)
= sup

{
0 < q < N : I

(q)
Φ (µ) < ∞ for some µ ∈ P(F )

}
.

Remark 3.3. The proof of Theorem 3.2 implies that the Hausdorff dimension of X−1({0}) ∩F

has the same formula, almost surely on {X−1({0}) ∩ F 6= ∅}.

In order to have a complete picture it remains to know when X−1({0}) ∩ F is nonempty

with positive probability. This issue is addressed by Corollary 2.13 of Khoshnevisan and

Xiao (2002) as follows:

P
{
X−1({0}) ∩ F 6= ∅}

> 0 ⇐⇒ P
{

X−1({0}) ∩ F 6= ∅
}

> 0

⇐⇒ there exists µ ∈ P(F ) such that I
(0)
Φ (µ) < ∞.

(3.15)
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[The weak unimodality assumption of Khoshnevisan and Xiao (2002, Corollary 2.13) is

redundant in the present setting; see Corollary 3.1 of Khoshnevisan and Xiao (2003).] It

follows from (3.15) that X−1({0}) ∩ F = ∅ a.s. whenever dim
H

F < ind(Φ).

The following is an immediate consequence of Theorem 3.2, used in conjunction with

Frostman’s theorem (Khoshnevisan, 2002, Theorem 2.2.1, p. 521). Note that, here and in

the sequel, dim
H

E < 0 means E = ∅.

Corollary 3.4. If the conditions of Theorem 3.2 are met, then for all nonrandom compact

sets F ⊂ (0 ,∞)N ,

(3.16) dim
H

F − ind(Φ) ≤ dim
H

(
X−1({0}) ∩ F

) ≤ dim
H

F − ind(Φ),

almost surely on {X−1({0}) ∩ F 6= ∅}.

Khoshnevisan and Xiao (2002, Theorem 2.10) have proved the following under the as-

sumption that X is absolutely continuous and symmetric:

(1) For all C > c > 0,

(3.17) P
{
γ ≤ dim

H

(
X−1({0}) ∩ [c , C]N

) ≤ γ̄
}

> 0.

(2) If there is a K > 0 such that Φ(t) ≤ Φ(K‖t‖ , . . . , K‖t‖), then

(3.18) P
{
dim

H

(
X−1({0}) ∩ [c , C]N

)
= γ

}
> 0.

Thus, Corollary 3.4 improves (3.17) and (3.18) in several ways.

We end this section with some examples showing applications of Theorems 1.1 and 3.2.

Example 3.5. Let X1, . . . , XN be N independent, identically distributed symmetric Lévy

processes with stable components (Pruitt and Taylor, 1969). More precisely, let X1(t) =

(X1,1(t) , . . . , X1,d(t)) for all t ≥ 0, where the processes X1,1, . . . , X1,d are assumed to be

independent, symmetric stable processes in R with respective indices α1 , . . . , αd ∈ (0 , 2].

Let X be the associated additive Lévy process in Rd. Then X is anisotropic in the space-

variable unless α1 = · · · = αd.

It can be verified that X satisfies the conditions of Theorem 3.2 and for all t ∈ (0 , 1]N ,

Φ(t) =

∫

Rd

exp

(
−

∑
1≤j≤N

tj
∑

1≤k≤d

|ξk|αk

)
dξ

³ ‖t‖−
P

1≤k≤d(1/αk).

(3.19)

In the above and sequel, “f(t) ³ g(t) for all t ∈ T” means that f(t)/g(t) is bounded from

below and above by constants that do not depend on t ∈ T . It follows from Corollary 3.4
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that for every compact set F ⊂ (0 ,∞)N ,

(3.20) dim
H

(
X−1({0}) ∩ F

)
= dim

H
F −

d∑

k=1

1

αk

,

almost surely on {X−1({0}) ∩ F 6= ∅}.
The same reasoning implies that if X is an additive α-stable process in Rd [i.e., if X1, . . . , XN

are symmetric α-stable Lévy processes in Rd], then for every compact set F ⊂ (0 ,∞)N ,

(3.21) dim
H

(
X−1({0}) ∩ F

)
= dim

H
F − d

α
,

almost surely on {X−1({0}) ∩ F 6= ∅}.
Next we consider additive Lévy processes which are anisotropic in the time-variable.

Example 3.6. Suppose X1, . . . , XN are N independent symmetric stable Lévy processes in

Rd with indices α1, . . . , αN ∈ (0 , 2], respectively. Let X be the additive Lévy process in Rd

defined by X(t) = X1(t1) + · · ·+ XN(tN). Because, for every 1 ≤ j ≤ N and fixed ti (i 6= j),

the process R+ 3 tj 7→ X(t) is [up to an independent random variable] an αj-stable Lévy

process in Rd, X = {X(t)}t∈RN
+

is anisotropic in the time-variable.

The following result is concerned with the Hausdorff dimension of the zero set X−1({0}).
For convenience, we assume

(3.22) 2 ≥ α1 ≥ · · · ≥ αN > 0.

Define

(3.23) k(α) := min

{
` = 1 , . . . , N :

∑

1≤j≤`

αj > d

}
,

where min∅ := ∞. In particular, k(α) = ∞ if and only if
∑

1≤j≤N αj ≤ d.

Theorem 3.7. Let X = {X(t)}t∈RN
+

be the additive Lévy process defined above. Then,

P{X−1({0}) 6= ∅} > 0 if and only if k(α) is finite. Moreover, if k(α) < ∞, then almost

surely on {X−1({0}) 6= ∅},

(3.24) dim
H

X−1({0}) = N − k(α) +

∑
1≤j≤k(α) αj − d

αk(α)

.

First, we derive a few technical lemmas. The first is a pointwise estimate for Φ.

Lemma 3.8. Under the preceding conditions, for all t ∈ (0 , 1]N ,

(3.25) Φ(t) ³ 1∑
1≤j≤N |tj|d/αj

.
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Proof. For any fixed t ∈ (0 , 1]N we let i ∈ {1 , . . . , N} satisfy |ti|1/αi = max1≤j≤N |tj|1/αj .

Because Φ(t) ≤ ∫
Rd exp(−|ti| · ‖ξ‖αi) dξ, it follows that

Φ(t) ≤ A

|ti|d/αi
≤ A′

∑
1≤j≤N |tj|d/αj

,(3.26)

where A and A′ < ∞ do not depend on t ∈ (0 , 1]N .

For the other bound we use (3.22) to deduce the following:

Φ(t) =
1

(2π)d

∫

Rd

exp

(
−

∑
1≤j≤N

(|tj|1/αj‖ξ‖)αj

)
dξ

≥ 1

(2π)d

∫

Rd

exp

(
−

∑
1≤j≤N

(|ti|1/αi‖ξ‖)αj

)
dξ

≥ 1

(2π)d

∫

{‖ξ‖≥|ti|−1/αi}
exp

(−N |ti|α1/αi‖ξ‖α1
)

dξ.

(3.27)

A change of variables then shows that

(3.28) Φ(t) ≥ A′′
∑

1≤j≤N |tj|d/αj
,

where A′′ > 0 does not depend on t ∈ (0 , 1]N . The lemma follows from (3.26) and (3.28). ¤

Our second technical lemma follows directly from Lemma 10 of Ayache and Xiao (2005)

and its proof.

Lemma 3.9. Let a, b, c ≥ 0 be fixed. Define for all u, v > 0,

(3.29) Ja,b,c(u , v) :=

∫ 1

0

dt

(u + ta)b(v + t)c
.

Define for all u, v > 0,

(3.30) J̄a,b,c(u , v) :=





u−b+(1/a)v−c, if ab > 1,

v−c log
(
1 + vu−1/a

)
, if ab = 1,

1 + v−ab−c+1, if ab < 1 and ab + c 6= 1.

Then, as long as u ≤ va, we have Ja,b,c(u , v) ³ J̄a,b,c(u , v).

Proof of Theorem 3.7. It can be verified that the additive process X satisfies the symmetry

and absolute continuity conditions of Theorem 1.1.
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According to Lemma 3.8, we have that for all q ≥ 0,
∫

[0,1]N

Φ(t)

‖t‖q
dt ³

∫

[0,1]N

1(∑
1≤j≤N t

d/αj

j

)
|t|q

dt

=

∫

[0,1]N−1

J(d/α1),1,q

( ∑
2≤j≤N

t
d/αj

j ,
∑

2≤j≤N

tj

)
dt.

(3.31)

This means that the left-most term converges if and only if the right-most one does. We apply

induction on N , several times in conjunction with Lemma 3.9, to find that
∫
[0,1]N

Φ(t) dt = ∞
if and only if k(α) = ∞. Therefore, in accord with Khoshnevisan and Xiao (2002), k(α) < ∞
if and only if P{X−1({0}) 6= ∅} > 0. This proves the first part of Theorem 3.7

It remains to prove that γ equals to the right-hand side of (3.24). This is proved by

appealing, once again, to (3.31), Lemma 3.9, and induction [on N ]. The details are tedious

but otherwise elementary. So we omit them. ¤

4. Proof of Theorem 3.2

Our proof of Theorem 3.2 is technical and long. We will carry it out in several parts.

Throughout the remainder of this section we enlarge the probability space enough that

we can introduce symmetric, α-stable Lévy processes {Sj}∞j=1—all taking values in RN—

such that S1, S2, . . . are i.i.d., and totally independent of X1, . . . , XN . We choose and fix

an integer M ≥ 1, and define S to be the additive stable process S1 ⊕ · · · ⊕ SM . That is,

S(t) = S1(t1) + · · · + SM(tM) for all t = (t1, . . . , tM) ∈ RM
+ . The parameters 0 < α < 2

and M ≥ 1 will be determined at the end of the proof of Theorem 3.2. For the sake of

concreteness we normalize each Sj as follows:

(4.1) E
[
eiξ·Sj(u)

]
= exp (−u‖ξ‖α) for ξ ∈ RN and u ≥ 0.

Let G be a nonrandom measurable subset of RN . According to Theorem 4.1.1 of Khosh-

nevisan (2002, p. 423), P{G ∩ S(RM
+ ) 6= ∅} > 0 if and only if CN−αM(G) > 0. Owing

to the independence of S and X we can apply the preceding with G := X−1({0}) ∩ F

to find that P{X−1({0}) ∩ F ∩ S(RM
+ ) 6= ∅} > 0 iff CN−αM(X−1({0}) ∩ F ) > 0 with

positive probability. The Frostman theorem of potential theory (Khoshnevisan, 2002, The-

orem 2.2.1, p. 521) asserts that the Hausdorff dimension of X−1({0}) ∩ F is the critical

β ∈ (0 , N) such that Cβ(X−1({0}) ∩ F ) > 0. Because α and M can be chosen as we

like, the computation of dim
H
(X−1({0}) ∩ F ) is thus reduced to deciding when, and exactly

when, X−1({0}) ∩ S(RM
+ ) ∩ F is nonempty with positive probability. The main contribu-

tion of this paper is a precise analytic condition on F that is equivalent to the positivity of
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P{X−1({0})∩F ∩S(RM
+ ) 6= ∅}. See Propositions 4.7 and 4.8 below. Once we have this, the

formula for the Hausdorff dimension of X−1({0}) ∩ F follows from the preceding arguments

that involve the Frostman theorem.

For all Borel probability measures µ on RN
+ , and for every ε > 0, define

(4.2) Jε(µ) :=
1

(2ε)d+N

∫

RM
+

(∫

RN
+

1{|X(s)|≤ε , |S(t)−s|≤ε} µ(ds)

)
e−[t] dt.

It might help to recall that [t] denotes the `1-norm of t.

4.1. Some Moment Estimates. For all x ∈ Rd, we let Px denote the law of x + X.

Similarly, for all y ∈ RN , we define Qy to be the law of y+S. These are actually measures on

canonical “path spaces” defined in the usual way; see Khoshnevisan and Xiao (2002, Section

5.2) for details. Without loss of much generality, we can think of the underlying probability

measure P as P0 ×Q0.

On our enlarged probability space, we view Px × Qy as the joint law of (x + X , y + S).

Define Lk to be the Lebesgue measure on Rk for all integers k ≥ 1. Then we can construct

σ-finite measures,

(4.3) PLd(•) :=

∫

Rd

Px(•) dx and QLN (•) :=

∫

RN

Qy(•) dy,

together with corresponding expectation operators,

(4.4) EP[f ] :=

∫

Rd

f dPLd and EQ[f ] :=

∫

RN

f dQLN .

We are particularly interested in the σ-finite measure PLd × QLN and its corresponding

expectation operator EP×Q.

It is an elementary computation that for all s ∈ RN
+ and t ∈ RM

+ , the distribution of

(X(s) ,S(t)) under PLd ×QLN is Ld × LN . In particular,

(4.5) (PLd ×QLN ) {|X(s)| ≤ ε , |S(t)− s| ≤ ε} = (2ε)d+N .

Thus, we are led to the following formula: For all Borel probability measures µ on RN
+ and

every ε > 0,

(4.6) EP×Q [Jε(µ)] = 1.

Next we bound the second moment of Jε(µ).
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Proposition 4.1. If N > αM then there exists a finite and positive constant A—depending

only on (α, d,N, M)—such that for all Borel probability measures µ on RN
+ and all ε > 0,

(4.7) EP×Q

[
(Jε(µ))2] ≤ A

∫∫
Φ(s′ − s) µ(ds′) µ(ds)

max (|s′ − s|N−αM , εN−αM)
.

Proof. Combine Lemma 5.6 of Khoshnevisan and Xiao (2002) with (2.11) of the present

paper to find that for all s, s′ ∈ RN
+ and ε > 0,

PLd {|X(s)| ≤ ε , |X(s′)| ≤ ε} ≤ (64ε)dP {|X(s)− X(s′)| ≤ ε}
= 128dε2dΦε(s

′ − s).
(4.8)

The last line follows from symmetry; i.e., from the fact that X(s) − X(s′) has the same

distribution as X(r), where the jth coordinate of r is |sj − s′j|. Thanks to (2.7) we obtain

the following:

(4.9) PLd {|X(s)| ≤ ε , |X(s′)| ≤ ε} ≤ 128d ε2d Φ(s− s′).

We follow the implicit portion of the proof of the preceding to find that for all x, y ∈ RN ,

t, t′ ∈ RM
+ and ε > 0,

(4.10) QLN {|S(t)− x| ≤ ε , |S(t′)− y| ≤ ε} = E

[∫

RN

1{|z+S(t)−x|≤ε , |z+S(t′)−y|≤ε} dz

]
.

We change the variables to find that

QLN {|S(t)− x| ≤ ε , |S(t′)− y| ≤ ε}

=

∫

|z|≤ε

P {|z + S(t′)−S(t)− (y − x)| ≤ ε} dz

≤ (2ε)NP {|S(t′)−S(t)− (y − x)| ≤ 2ε} .

(4.11)

Thus,

(4.12) EP×Q

[
(Jε(µ))2] ≤ 32d

(2ε)N

∫

RN
+

∫

RN
+

Φ(s− s′)Fε(s− s′) µ(ds) µ(ds′),

where

(4.13) Fε(x) :=

∫

RM
+

∫

RM
+

P {|S(t′)−S(t)− x| ≤ 2ε} e−[t]−[t′] dtdt′,

for all x ∈ RN and ε > 0. Because [t] + [t′] = [t− t′] + 2[t ∧ t′] for all t, t′ ∈ RM
+ ,

Fε(x) =

∫

|z−x|≤2ε

∫

RM
+

∫

RM
+

ft−t′(z)e−[t−t′]−2[t∧t′] dt dt′ dz,(4.14)
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where f is the generalized “transition function,”

fu(z) :=
P {S(|u1| , . . . , |uN |) ∈ dz}

dz
for u ∈ RM and z ∈ RN .(4.15)

A computation based on symmetry yields

(4.16)

∫

RM
+

∫

RM
+

ft−t′(z)e−[t−t′]−2[t∧t′] dt dt′ =
∫

RM
+

fu(z)e−[u] du := υ(z).

In order to see the first equality, we write the double integral as a sum of integrals over the

2M regions:

(4.17) Dπ =
{
(t , t′) ∈ RM

+ ×RM
+ : ti ≤ t′i if i ∈ π and ti > t′i if i /∈ π

}
,

where π ranges over all subset sets of {1, 2, . . . , M} including the empty set. It can been

verified that the integral over Dπ equals 2−M
∫
RM

+
fu(z)e−[u] du. Hence (4.16) follows.

The function υ(z) in (4.16) is the one-potential density of S (Khoshnevisan, 2002, pp. 397

and 406). We cite two facts about υ:

(1) υ(z) > 0 for all z ∈ RN , and is continuous away from 0 ∈ RN . This is a consequence

of eq. (3) of (loc. cit., p. 406) and Bochner’s subordination (loc. cit., p. 378).

(2) If N > αM , then for all R > 0 there exists a finite constants A′ > A > 0 such that

(4.18)
A

|z|N−αM
≤ υ(z) ≤ A′

|z|N−αM
whenever |z| ≤ R.

Moreover, A′ can be chosen to be independent of R > 0. This follows from (1),

together used with Proposition 4.1.1 of (loc. cit., p. 420).

It follows from (4.14), (4.16) and (4.18) that for all x ∈ RN and ε > 0,

(4.19) Fε(x) ≤ A′
∫

z∈RN :
|z−x|≤2ε

dz

|z|N−αM
≤ A′′(2ε)N min

(
1

|x|N−αM
,

1

εN−αM

)
.

Here, A′′ is positive and finite, and depends only on (N,M,α). The proposition is a ready

consequence of this and symmetry; see (4.12). ¤

We mention the following variant of Proposition 4.1. It is proved by the same argument,

without using (4.9).

Proposition 4.2. If N > αM then there exists a finite and positive constant A—depending

only on (α, d,N, M)—such that for all Borel probability measures µ on RN
+ and all ε > 0,

(4.20) EP×Q

[
(Jε(µ))2] ≤ A

∫∫
Φε(s

′ − s)

max (|s′ − s|N−αM , εN−αM)
µ(ds′) µ(ds).
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Next we define two multi-parameter filtrations (Khoshnevisan, 2002, p. 233). First, define

Xj to be the filtration of the Lévy process Xj, augmented in the usual way. Also, define Sk

to be the corresponding filtration for Sk. Then, we consider

(4.21) X (s) :=
∨

1≤j≤N

Xj(sj) and S (t) :=
∨

1≤k≤M

Sk(tk),

as s and t range respectively over RN
+ and RM

+ . It follows from Theorem 2.1.1 of Khosh-

nevisan (2002, p. 233) that X is an N -parameter commuting filtration. Similarly, S is an

M -parameter commuting filtration. Theorem 2.1.1 of the same reference (p. 233) can be

invoked, yet again, to help deduce that F is an (N + M)-parameter commuting filtration,

where

(4.22) F (s⊗ t) := X (s) ∨S (t) for s ∈ RN
+ and t ∈ RM

+ .

We need only the following consequence of commutation; it is known as Cairoli’s strong

(2, 2)-inequality (Khoshnevisan, 2002, Theorem 2.3.2, p. 235): For all f ∈ L2(P),

(4.23) E

[
sup

s∈QN
+ , t∈QM

+

|E [f |F (s⊗ t) ]|2
]
≤ 4N+ME

[
f 2

]
.

[Qk
+ denotes the collection of all x ∈ Rk

+ such that xj is rational for all 1 ≤ j ≤ k.] Moreover,

and this is significant, the same is true if we replace E by EP×Q; i.e., for all f ∈ L2(PLd×QLN ),

(4.24) EP×Q

[
sup

s∈QN
+ , t∈QM

+

∣∣∣E [f |F (s⊗ t) ]
∣∣∣
2
]
≤ 4N+MEP×Q

[
f 2

]
.

A proof is hashed out very briefly in Khoshnevisan and Xiao (2002, p. 90).

Proposition 4.3. Suppose R > 0 is fixed. Choose and fix s ∈ [0 , R]N and t ∈ RM
+ . Then,

there exists a positive finite constant A = A(α, d,N, M, R) such that for all Borel probability

measures µ that are supported on [0 , R]N ,

(4.25) EP×Q [Jε(µ) | F (s⊗ t)] ≥ Ae−[t]

∫

s′Âs

Φε(s
′ − s)

max (|s′ − s|N−αM , εN−αM)
µ(ds′),

(PLd ×QLN )-almost everywhere on {|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2}.

Proof. Define

(4.26) χ := (PLd ×QLN )
(
|X(s′)| ≤ ε , |S(t′)− s′| ≤ ε

∣∣∣ F (s⊗ t)
)

.
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Owing to the Markov random-field property of Khoshnevisan and Xiao (2002, Proposition

5.8), whenever s′ Â s and t′ Â t, we have

χ = (PLd ×QLN )
(
|X(s′)| ≤ ε , |S(t′)− s′| ≤ ε

∣∣∣ X(s), S(t)
)

= PLd

(
|X(s′)| ≤ ε

∣∣∣ X(s)
)
·QLN

(
|S(t′)− s′| ≤ ε

∣∣∣S(t)
)

.
(4.27)

We apply Lemma 5.5 of Khoshnevisan and Xiao (2002) to each term above to find that

(PLd ×QLN )-almost everywhere,

(4.28) χ = P {|X(s′)− X(s) + z| ≤ ε}
⌋

z=X(s)
× P {|S(t′)−S(t)− s′ + w| ≤ ε}

⌋
w=S(t)

.

Because s′ Â s and t′ Â t, the distributions of X(s′) − X(s) and S(t′) − S(t) are the

same as those of X(s′ − s) and S(t′ − t), respectively. Therefore, (PLd × QLN )-a.e. on

{|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2},
χ ≥ P {|X(s′)− X(s)| ≤ ε/2} · P {|S(t′ − t)− (s′ − s)| ≤ ε/2}

≥ 1

32d+N
Pε(s

′ − s ; t′ − t),
(4.29)

where

(4.30) Pε(s
′ − s ; t′ − t) := P {|X(s′)− X(s)| ≤ ε} · P {|S(t′ − t)− (s′ − s)| ≤ ε} .

For the last inequality in (4.29), we have applied (2.12) to both processes X and S. This

implies that

EP×Q [Jε(µ) | F (s⊗ t)]

≥ 1

32d+N(2ε)d+N

∫
t′∈RM

+ :

t′Ât

(∫

s′Âs

Pε(s
′ − s ; t′ − t) µ(ds′)

)
e−[t′] dt′,

(4.31)

(PLd ×QLN )-almost everywhere on {|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2}.
Recall from (4.16) the one-potential density υ of S. According to the Fubini–Tonelli

theorem, for all x ∈ RN ,
∫

t′∈RM
+ :

t′Ât

P {|S(t′ − t)− x| ≤ ε} e−[t′] dt′ ≥ e−[t]

∫

RM
+

P {|S(u)− x| ≤ ε} e−[u] du

= e−[t]

∫
z∈RN :
|z−x|≤ε

υ(z) dx.

(4.32)
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Thanks to (1) and (2) [confer with the paragraph following (4.16)], we can find a finite

constant a > 0—not depending on (ε , t)—such that as long as |x| ≤ R,

(4.33)

∫
t′∈RM

+ :

t′Ât

P {|S(t′ − t)− x| ≤ ε} e−[t′] dt′ ≥ ae−[t](2ε)N min

(
1

|x|N−αM
,

1

εN−αM

)
.

[Compare with (4.19).] The proposition follows from (4.31) and (4.33) after a few lines of

direct computation. ¤

We can use the earlier results of Khoshnevisan and Xiao (2002) to extend Proposition 4.3

further, which will be useful for proving Proposition 4.8. In light of the existing proof of

Proposition 4.3, the said extension does not require any new ideas. Therefore, we will not

offer a proof. However, we need to introduce a fair amount of notation in order to state the

extension in its proper form.

Any subset π of {1, . . . , N} induces a partial order on RN
+ as follows: For all s, t ∈ RN

+ ,

(4.34) s ≺π t means that





si ≤ ti for all i ∈ π, and

si > ti for all i 6∈ π.

We identify each and every π ⊆ {1, . . . , N} with the partial order ≺π.

For every π ⊆ {1, . . . , N}, 1 ≤ j ≤ N , and u ≥ 0, define

(4.35) X π
j (u) :=





σ
(
{Xj(v)}0≤v≤u

)
if j ∈ π,

σ
(
{Xj(v)}v≥u

)
if j 6∈ π.

As is customary, σ(· · · ) denotes the σ-algebra generated by the parenthesized quantities.

For all π ⊆ {1, . . . , N} and t ∈ RN
+ define

(4.36) X π(t) :=
∨

1≤j≤N

X π
j (tj).

It is not hard to check that X π is an N -parameter filtration in the partial order ≺π. That

is, X π(s) ⊆ X π(t) whenever s ≺π t.

For all π ⊆ {1, . . . , N}, s ∈ RN
+ , and t ∈ RM

+ , define

(4.37) F π(s⊗ t) := X π(s) ∨S (t).

By Lemma 5.7 in Khoshnevisan and Xiao (2002), F π is an (N + M)-parameter commuting

filtration. It follows that, for all f ∈ L2(P) and π ⊆ {1, . . . , N},

(4.38) E

[
sup

s∈QN
+ , t∈QM

+

|E [f |F π(s⊗ t) ]|2
]
≤ 4N+ME

[
f 2

]
.
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Also, for all f ∈ L2(PLd ×QLN ) and π ⊆ {1, . . . , N},

(4.39) EP×Q

[
sup

s∈QN
+ , t∈QM

+

∣∣∣E [f |F π(s⊗ t) ]
∣∣∣
2
]
≤ 4N+MEP×Q

[
f 2

]
.

Note that when π = {1, . . . , N}, (4.38) and (4.39) are the same as (4.23) and (4.24), re-

spectively. However, the more general forms above have more content, as can be seen by

considering other partial orders π than {1, . . . , N} [or ∅].

We are ready to present the asserted refinement of Proposition 4.3.

Proposition 4.4. Suppose R > 0 is fixed. Choose and fix s ∈ [0 , R]N and t ∈ RM
+ . Then,

there exists a positive finite constant A = A(α, d,N, M, R) such that for all Borel probability

measures µ that are supported on [0 , R]N , and for all π ⊆ {1, . . . , N},

(4.40) EP×Q [Jε(µ) | F π(s⊗ t)] ≥ Ae−[t]

∫

s′Âπs

Φε(s
′ − s)

max (|s′ − s|N−αM , εN−αM)
µ(ds′),

(PLd ×QLN )-almost everywhere on {|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2}.

4.2. More Moment Estimates. Consider a compact set B ⊂ (0 ,∞)M with nonempty

interior. For any Borel probability measure µ on RN
+ and a real number ε > 0, we define a

random measure on RN
+ by

(4.41) JB, µ
ε (C) :=

1

(2ε)d+N

∫

B

(∫

C

1{|X(s)|≤ε , |S(t)−s|≤ε} µ(ds)

)
dt,

where C ⊆ RN
+ denotes an arbitrary Borel set.

The following is the analogue of (4.6) under the probability measure P.

Lemma 4.5. Choose and fix a compact set B ⊂ (0 ,∞)M with nonempty interior and a real

number R > 1. Then, there exists a positive and finite number A such that for all Borel

probability measures µ on T := [R−1, R]N ,

(4.42) lim inf
ε→0+

E
[
JB, µ

ε (T )
]

> A.

Proof. Thanks to the inversion formula, the density function of X(s) is continuous for every

s ∈ (0 ,∞)N . Also, the density of S(t) is uniformly continuous for each t ∈ (0 ,∞)M . By

Fatou’s lemma,

lim inf
ε→0+

E
[
JB, µ

ε (T )
] ≥

∫

B

(∫

T

Φ(s)ft(s) µ(ds)

)
dt

≥ LN(B) inf
s∈T

Φ(s) · inf
s∈T

inf
t∈B

ft(s).
(4.43)
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Recall that ft(s) is the density function of S(t). It remains to prove that the two infima are

strictly positive. The first fact follows from the monotonicity bound,

(4.44) inf
s∈T

Φ(s) = Φ

(
1

R
, . . . ,

1

R

)
=

∫

Rd

exp

(
− 1

R

∑
1≤j≤N

Ψj(ξ)

)
dξ,

and this is positive. The second fact follows from Bochner’s subordination (Khoshnevisan,

2002, p. 378) and the fact that the cube T is a positive distance away from the axes of

RN
+ . ¤

The analogue of Proposition 4.1 follows next.

Proposition 4.6. Choose and fix R > 1 and a compact set B ⊂ (0 ,∞)M with nonempty

interior. Let K : RN
+ ×RN

+ → R+ be a measurable function. If N > αM , then there exists a

finite and positive constant A—depending only on (α, d, N, M,B, R)—such that for all Borel

probability measures µ on T = [R−1, R]N and all ε > 0,

(4.45) E

[∫

T

∫

T

K(s , s′) JB, µ
ε (ds)JB, µ

ε (ds′)
]
≤ A

∫

T

∫

T

Φ(s− s′)K(s , s′)
|s− s′|N−αM

µ(ds) µ(ds′).

In particular, we have

(4.46) sup
ε>0

E
[(

JB, µ
ε (T )

)2
]
≤ AI

(N−αM)
Φ (µ).

Proof. We use an argument that is similar to that of Khoshnevisan and Xiao (2002, Lemma

3.4). For all s, s′ ∈ RN
+ define s∧ s′ to be the N -vector whose jth coordinate is min(sj , s′j).

We write

(4.47) Z1 := X(s ∧ s′), Z2 := X(s′)− X(s ∧ s′),

and

(4.48) Z3 := X(s)− X(s ∧ s′).

Then, it is easy to check that (Z1 , Z2 , Z3) are independent. Therefrom we find that P{|X(s′)| ≤
ε , |X(s)| ≤ ε} is equal to

P {|Z1 + Z2| ≤ ε , |Z1 + Z3| ≤ ε}

=

∫

Rd

P {|z + Z2| ≤ ε , |z + Z3| ≤ ε} ps∧s′(z) dz

≤ Φ(s′ ∧ s)

∫

Rd

P {|z + Z2| ≤ ε , |z + Z3| ≤ ε} dz.

(4.49)
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See also (2.7). After we apply the Fubini-Tonelli theorem and then change variables [w :=

z + Z2], we find that P{|X(s′)| ≤ ε , |X(s)| ≤ ε} is at most

Φ(s′ ∧ s)

∫

{|w|≤ε}
P {|w + Z3 − Z2| ≤ ε} dw ≤ (2ε)dΦ(s′ ∧ s)P {|Z3 − Z2| ≤ 2ε}

≤ 32d(2ε)2dΦ(s′ ∧ s)Φ(s′ − s).

(4.50)

The last inequality is a consequence of (2.11), because Z3−Z2 = X(s′)−X(s) has the same

distribution as X(r), where the jth coordinate of r is rj := |s′j − sj|. In other words, for all

ε > 0 and s, s′ ∈ [1/R , R]N ,

(4.51)
P {|X(s′)| ≤ ε , |X(s)| ≤ ε}

(2ε)2d
≤ A1 Φ(s′ − s),

where A1 := 32d Φ(1/R , . . . , 1/R).

Now consider t, t′ ∈ B and s, s′ ∈ [1/R , R]N . For all ε > 0,

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε}
= P {|W1 + W2 − s′| ≤ ε , |W1 + W3 − s| ≤ ε} ,

(4.52)

where W1 := S(t′∧t), W2 := S(t′)−W1, and W3 := S(t)−W1. A little thought shows that

(W1 ,W2 ,W3) are independent. Moreover, the density function of W1 is ft′∧t. Therefore,

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε}

=

∫

RN

P {|z + W2 − s′| ≤ ε , |z + W3 − s| ≤ ε} ft′∧t(z) dz.
(4.53)

Because the density function ft′∧t is maximized at the origin,

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε}

≤ ft′∧t(0)

∫

RN

P {|z + W2 − s′| ≤ ε , |z + W3 − s| ≤ ε} dz.
(4.54)

Next we argue—as we did earlier in order to derive (4.49) and (4.50)—to deduce that

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε}

≤ ft′∧t(0)

∫

{|x|≤ε}
P {|x + W2 −W3 − (s′ − s)| ≤ ε} dx

≤ (2ε)Nft′∧t(0) P {|W2 −W3 − (s′ − s)| ≤ 2ε}
= (2ε)Nft′∧t(0) P {|S(t′)−S(t)− (s′ − s)| ≤ 2ε}

= (2ε)Nft′∧t(0)

∫

{|z−(s′−s)|≤2ε}
ft′−t(z) dz.

(4.55)
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[It might help to confer with (4.15) at this point.]

Now,

ft′∧t(0) =
1

(2π)N

∫

RN

e−[t′∧t]·‖ξ‖α

dξ

=
A

[t′ ∧ t]M/α
,

(4.56)

where A := (2π)−N
∫
RN exp(−‖x‖α) dx is positive and finite. Since t, t′ ∈ B and B is strictly

away from the axes of RM
+ . Therefore, there exists a finite constant A1—depending only on

the distance between B and the axes of RM
+ —such that

∫

B

∫

B

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε} dt′ dt

≤ A1(2ε)
N

∫

{|z−(s′−s)|≤2ε}

∫

B

∫

B

ft′−t(z) dt′ dt dz

≤ A2(2ε)
N

∫

{|z−(s′−s)|≤2ε}

(∫

B

ft(z) dt

)
dz,

(4.57)

where A2 is another finite constant that depends only on: (a) the distance between B and

the axes of RM
+ ; and (b) the distance between B and infinity; i.e., sup{|x| : x ∈ B}. We

can find a constant A3—with the same dependencies as A2—such that exp(−[t]) ≥ A−1
3 for

all t ∈ B. This proves that
∫

B
ft(z) dt ≤ A3υ(z) for all z ∈ RN . It follows that

∫

B

∫

B

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε} dt′ dt

≤ A2A3(2ε)
N

∫

{|z−(s′−s)|≤2ε}

dz

|z|N−αM
.

(4.58)

See (4.18). From this and (4.19) we deduce that
∫

B

∫

B

P {|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε} dt′ dt

≤ A′′A2A3(2ε)
2N min

(
1

|s′ − s|N−αM
,

1

εN−αM

)
.

(4.59)

This and (4.51) together imply that

E

[∫

T

∫

T

K(s , s′) JB, µ
ε (ds)JB, µ

ε (ds′)
]

≤ A′′′
∫

T

∫

T

Φ(s− s′)K(s , s′)
max (|s′ − s|N−αM , εN−αM)

µ(ds) µ(ds′),

(4.60)

where A′′′ depends only on (α, d, N, M,R, B). This proposition follows. ¤
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4.3. Proof of Theorem 3.2. Our proof of Theorem 3.2 rests on two further results. Both

are contributions to the potential theory of random fields, and determine when a given time

set F ⊂ RN
+ is “polar” simultaneously for the range of S and for the level-sets of X.

Proposition 4.7. Choose and fix a compact set F ⊂ (0 ,∞)N . If N > αM and I
(N−αM)
Φ (µ)

is finite for some µ ∈ P(F ), then X−1({0}) ∩ F ∩S(RM
+ ) 6= ∅ with positive probability.

Proof. Since F ⊂ (0 ,∞)N is compact, there exists R > 1 such that F ⊆ T = [R−1, R]N .

Suppose I
(N−αM)
Φ (µ) < ∞ for some Borel probability measure µ on F . Then there exists a

continuous function ρ : RN → [1 ,∞) such that lims→s0 ρ(s) = ∞ for every s0 ∈ RN with

at least one coordinate equals 0 and

(4.61)

∫∫
Φ(s− s′)ρ(s− s′)
|s− s′|N−αM

µ(ds) µ(ds′) < ∞.

See Khoshnevisan and Xiao (2002, p. 73) for a construction of ρ.

For a fixed compact set B ⊂ (0 ,∞)M with nonempty interior, consider the random

measures {JB, µ
ε }ε>0 defined by (4.41). If JB, µ

ε (T ) > 0 then certainly X−1(Uε)∩F∩S(B) 6= ∅,

where Uε := {x ∈ Rd : |x| ≤ ε}.
It follows from Lemma 4.5, Proposition 4.6 and a second moment argument (Kahane,

1985, pp. 204–206) that there exists a subsequence {JB, µ
εn

} which converges weakly to a

random measure ν such that

(4.62) P {ν(T ) > 0} ≥ a2
1

a2

> 0,

where

(4.63) a1 := inf
0<ε<1

E
[
JB, µ

ε (T )
]

> 0 and a2 := sup
ε>0

E
[(

JB, µ
ε (T )

)2
]

< ∞.

Moreover,

(4.64) E

[∫∫
ρ(s− s′) ν(ds) ν(ds′)

]
≤ A

∫∫
Φ(s− s′)ρ(s− s′)
|s− s′|N−αM

µ(ds) µ(ds′).

This and (4.61) together imply that almost surely

(4.65) ν{s ∈ T : sj = a for some j } = 0 for all a ∈ R+.

Therefore, we have shown that

inf
µ∈P(F )

I
(N−αM)
Φ (µ) < ∞ =⇒ P

{
X−1({0}) ∩ F ∩S(B) 6= ∅

}
> 0

=⇒ P
{

X−1({0}) ∩ F ∩S(RM
+ ) 6= ∅

}
> 0.

(4.66)
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Now we need to make use of some earlier results of Khoshnevisan and Xiao (2002; 2005)

and Khoshnevisan et al. (2003) to remove the closure signs in (4.66). First, since the density

function of S(t) (t ∈ (0 ,∞)M) is strictly positive everywhere, a slight modification of the

proof of Lemma 4.1 in Khoshnevisan and Xiao (2005, eq.’s 4.9–4.11) implies that for every

Borel set F̃ ⊆ RN ,

(4.67) F̃ ∩S(RM
+ ) = ∅ a.s. ⇐⇒ LN

(
F̃ ªS(RM

+ )
)

= 0 a.s.

On the other hand, Proposition 5.7 and the proof of Lemma 5.5 in Khoshnevisan et al. (2003)

show that LN
(
F̃ ªS(RM

+ )
)

= 0 a.s. is equivalent to CN−αM(F̃ ) = 0, where Cβ denotes the

β-dimensional Bessel-Riesz capacity.

By applying the preceding facts to F̃ = X−1({0})∩F , we conclude that (4.66) implies that

CN−αM(X−1({0})∩F ) > 0 with positive probability. This and Theorem 4.4 of Khoshnevisan

and Xiao (2005) together yield,

(4.68) P
{

X−1({0}) ∩ F ∩S(RM
+ ) 6= ∅

}
> 0.

We have proved the following:

(4.69) inf
µ∈P(F )

I
(N−αM)
Φ (µ) < ∞ ⇒ P

{
X−1({0}) ∩ F ∩S(RM

+ ) 6= ∅
}

> 0.

It remains to prove that (4.69) still holds when X−1({0}) is replaced by X−1({0}). This

can be done by proving that the random measure ν is supported on X−1({0})∩F ∩S(RM
+ ).

For this purpose, it is sufficient to prove that for every δ > 0, ν(D(δ)) = 0 a.s., where

D(δ) := {s ∈ T : |X(s)| > δ}. However, because of (4.65), the proof of the last statement is

the same as that in Khoshnevisan and Xiao (2002, p. 76). The proof of Proposition 4.7 is

finished. ¤

Proposition 4.8. Choose and fix a compact set F ⊂ (0 ,∞)N . If N > αM and I
(N−αM)
Φ (µ)

is infinite for all µ ∈ P(F ), then X−1({x})∩F ∩S(RM
+ ) = ∅ almost surely, for all x ∈ Rd.

Remark 4.9. It follows from this proposition and Theorem 4.4 of Khoshnevisan and Xiao

(2005) [or Theorem 4.1.1 of Khoshnevisan (2002, p. 423)] that, under the above conditions,

CN−αM

(
X−1({x}) ∩ F

)
= 0 a.s., for every x ∈ Rd. Hence dim

H

(
X−1({x}) ∩ F

) ≤ N − αM

a.s. This is the argument for proving the upper bound in Theorem 3.2.

Proof. By compactness, F ⊆ [1/R , R]N for some R > 1 large enough. We fix this R

throughout the proof. Also throughout, we assume that for all µ ∈ P(F ),

(4.70) I
(N−αM)
Φ (µ) = ∞.
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Let us assume that the collection of all (x , y) ∈ Rd × RN for which the following holds

has positive (Ld × LN)-measure:

(4.71) P
{

X−1({x}) ∩ F ∩ (
y ⊕S

(
[0 , R]M

)) 6= ∅
}

> 0,

where y ⊕ E := {y + z : z ∈ E} for all singletons y and all sets E. The major portion of

this proof is concerned with proving that (4.71) contradicts the earlier assumption (4.70).

Note that (4.71) is equivalent to the statement that for all (x , y) in a set of positive

(Ld × LN) measure,

(4.72) (P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

) 6= ∅
}

> 0.

For all s ∈ [0 , R]N , t ∈ RM
+ , and ε > 0 consider the event,

(4.73) G(ε ; s , t) :=
{
|X(s)| ≤ ε

2
, |S(t)− s| ≤ ε

2

}
.

According to Proposition 4.4, for all s ∈ [0 , R]N , t ∈ RM
+ , ε > 0, and µ ∈ P(F ),

∑

π⊆{1,...,N}
EP×Q [Jε(µ) | F π(s⊗ t)]

≥ Ae−[t]

(2ε)d

∫
P {|X(s′)− X(s)| ≤ ε}

max (|s′ − s|N−αM , εN−αM)
µ(ds′) · 1G(ε ;s ,t)

= Ae−[t]

∫
Φε(s

′ − s)

max (|s′ − s|N−αM , εN−αM)
µ(ds′) · 1G(ε ;s ,t),

(4.74)

(PLd ×QLN )-almost everywhere. [This uses only the fact that given s′, s ∈ RN
+ we can find

π ⊆ {1, . . . , N} such that s′ Âπ s.]

Fix ε > 0. It is possible to see that on the same underlying probability space we can find

extended random variables σ(ε) ∈ (QN
+ ∩F )∪{∞} and τ (ε) ∈ (QM

+ ∩ [0 , R]M)∪{∞}, where

QN
+ ∩ F and QM

+ ∩ [0 , R]M denote respectively dense subsets of F and [0 , R]M , that have

the following properties:

(Σ1) σ(ε) = ∞ if and only if τ (ε) = ∞. These conditions occur, in turn, if and only if

(4.75)
⋃

s∈QN
+∩F

t∈QM
+ ∩[0 ,R]N

G(ε ; s , t) = ∅;

(Σ2) On {σ(ε) 6= ∞},
(4.76) |X(σ(ε))| ≤ ε

2
and |S(τ (ε))− σ(ε)| ≤ ε

2
.
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We can collect countably-many (PLd×QLN )-null sets, lump them together, and then apply

(Σ1) and (Σ2) together with (4.74) to find that
∑

π⊆{1,...,N}
sup

s∈QN
+

t∈QM
+

EP×Q [Jε(µ) | F π(s⊗ t)]

≥ Ae−[τ(ε)]

∫
Φε(s

′ − σ(ε))

max (|s′ − σ(ε)|N−αM , εN−αM)
µ(ds′) · 1{σ(ε)6=∞}

≥ Ae−MR

∫
Φε(s

′ − σ(ε))

max (|s′ − σ(ε)|N−αM , εN−αM)
µ(ds′) · 1{σ(ε)6=∞}

(4.77)

(PLd × QLN )-almost everywhere. This holds for all µ ∈ P(F ). Now we make the special

choice of µ, and replace it with µε,k, which we define shortly.

First of all, we note that for all ε > 0 and k > 1,

(4.78) 0 < PLd {|X(0)| ≤ k} = (2k)d < ∞.

At the same time, thanks to (4.72), there exists k0 > 1 large enough so that for all k > k0,

(PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k}
≥ (PLd ×QLN )

{
X−1({0}) ∩ F ∩S

(
[0 , R]M

) 6= ∅ , |X(0)| ≤ k
}

> 0.

(4.79)

The preceding two displays together prove that for all ε > 0 and k > k0, µε,k ∈ P(F ), where

(4.80) µε,k(Γ) :=
(PLd ×QLN ) {σ(ε) ∈ Γ , σ(ε) 6= ∞ , |X(0)| ≤ k}

(PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k} ,

for all Borel sets Γ ⊆ RN
+ . Apply (4.77) with µ replaced by µε,k, for k > k0 and ε > 0 fixed,

to find that

(4.81) Ξ2 ≥ A′
(∫

Φε(s
′ − σ(ε))

max (|s′ − s|N−αM , εN−αM)
µε,k(ds′)

)2

× 1{σ(ε)6=∞ , |X(0)|≤k}

(PLd ×QLN )-almost everywhere, where

(4.82) Ξ :=
∑

π⊆{1,...,N}
sup

s∈QN
+

t∈QM
+

EP×Q [Jε(µε,k) | F π(s⊗ t)] .

For any sequence {aπ, π ⊆ {1, . . . , N}} of real numbers,

(4.83)

( ∑

π⊆{1,...,N}
aπ

)2

≤ 2N
∑

π⊆{1,...,N}
a2

π.
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Therefore,

(4.84) EP×Q

[
Ξ2

] ≤ 2N
∑

π⊆{1,...,N}
EP×Q

[(
sup

s∈QN
+

t∈QM
+

EP×Q [Jε(µε,k) | F π(s⊗ t)]

)2]
.

We first apply the Cauchy–Schwarz inequality to the σ-finite measure PLd ×QLN , and then

use (4.24) to obtain the following:

EP×Q

[
Ξ2

] ≤ 2N
∑

π⊆{1,...,N}
EP×Q

[
sup

s∈QN
+

t∈QM
+

EP×Q

[
(Jε(µε,k))

2
∣∣ F π(s⊗ t)

]
]

≤ 8N+MEP×Q

[
(Jε(µε,k))

2] .

(4.85)

Consequently, Proposition 4.2 implies the existence of a constant A—not depending on (k , ε)

nor on µε,k—such that

(4.86) EP×Q

[
Ξ2

] ≤ AW (ε , k),

where

(4.87) W (ε , k) :=

∫∫
Φε(s

′ − s)

max (|s′ − s|N−αM , εN−αM)
µε,k(ds′) µε,k(ds).

This estimates the left-hand side of (4.81).

As for the right-hand side, let us write

(4.88) Aε,k := {σ(ε) 6= ∞ , |X(0)| ≤ k} ,

for the sake of brevity. Then, we have

EP×Q

[(∫
Φε(s

′ − σ(ε))

max (|s′ − s|N−αM , εN−αM)
µε,k(ds′)

)2

; Aε,k

]

=

∫ (∫
Φε(s

′ − s)

max (|s′ − s|N−αM , εN−αM)
µε,k(ds′)

)2

µε,k(ds)× (PLd ×QLN ) (Aε,k)

≥ (W (ε , k))2 × (PLd ×QLN ) (Aε,k) ,

(4.89)

thanks to the Cauchy–Schwarz inequality. Thus, (4.81), (4.86), and (4.89) together imply

that

(4.90) (PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k} ≤ A′

W (ε , k)
,

where A′ does not depend on (k , ε), nor on the particular choice of µε,k. Now, {µε,k}ε>0 ,k>k0 is

a collection of probability measures on F . According to Prohorov’s theorem we can extract
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a weakly convergent subsequence and a weak limit µ0 ∈ P(F ), as k → ∞ and ε → 0+.

Without loss of too much generality we denote the implied subsequences by k and ε as well.

[No great harm will come from this, but it is notationally simpler.] We can combine Fatou’s

lemma, (2.7), (4.70) and (4.90) in order to deduce that

(4.91) lim
k→∞
ε→0

(PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k} = 0.

Thanks to the monotone convergence theorem [applied to the σ-finite measure PLd × QLN ]

the left-hand side is precisely

(4.92)

∫

Rd

∫

RN
+

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S ([0 , R]M) 6= ∅
}

dx dy,

which, we just proved, is zero. This implies also that

(4.93)

∫

Rd

∫

RN
+

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

) 6= ∅
}

dx dy = 0.

This contradicts (4.71). That is, we have proved that the condition (4.70) implies that (4.71)

fails to hold. It is the case that if (4.71) fails for some y ∈ RN [with x held fixed] then it

fails for all y ∈ RN (Khoshnevisan et al., 2003, Proposition 6.2). This yields the following:

For all y ∈ RN ,

(4.94)

∫

Rd

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

) 6= ∅
}

dx = 0.

Let R ↑ ∞ to find, via the monotone convergence theorem, that for all y ∈ RN ,

(4.95)

∫

Rd

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
RM

+

) 6= ∅
}

dx = 0.

Recall that F is a compact subset of [1/R , R]N . Fix and choose an arbitrary y ∈
(0 , 1/R)N , and note that

(P0 ×Qy)
{

X−1({0}) ∩S(RM
+ ) ∩ (F ª y) 6= ∅

}

= P
{∃r ∈ F ª y : r ∈ S(RM

+ )ª y , 0 ∈ 〈X(r)〉} ,
(4.96)

where A− y := {a− y : a ∈ A} for all sets A and points y, and

(4.97) 〈X(r)〉 =

{ ∑
1≤j≤N

Xj(rjθ) : θ ∈ {+ ,−}
}

.

For example, when N = 1, X is an ordinary Lévy process, and 〈X(r)〉 has at most two

elements: X(r) and X(r−) [they could be equal]. Or, when N = 2, then the set 〈X(r)〉
contains up to four elements: X1(r1) + X2(r2), X1(r1−) + X2(r2), X1(r1) + X2(r2−), and



30 D. KHOSHNEVISAN, N.-R. SHIEH, AND Y. XIAO

X1(r1−) + X2(r2−). [Some of them are equal a.s.] In general, 〈X(r)〉 contains up to 2N

elements.

Note that s Â y for all s ∈ F . This is so only because F ⊆ [1/R , R]N and y ∈ (0 , 1/R)N .

Therefore, we can apply the Markov property of Xj at yj to find that for all x ∈ Rd,

(P0 ×Qy)
{

X−1({x}) ∩S(RM
+ ) ∩ (F ª y) 6= ∅

}

= P
{∃s ∈ F : s ∈ S(RM

+ ) , x ∈ 〈X(s− y)〉}

=

∫

Rd

P
{∃s ∈ F : s ∈ S(RM

+ ) , x + z ∈ 〈X(s)〉} py(z) dz

=

∫

Rd

P
{

X−1({x + z}) ∩S(RM
+ ) ∩ F 6= ∅

}
py(z) dz

=

∫

Rd

(P−w ×Q0)
{

X−1({0}) ∩S(RM
+ ) ∩ F 6= ∅

}
py(w − x) dw.

(4.98)

[It might help to recall that py is the density function of X(y).] We have used the fact that

with probability one, Xj(yj) = Xj(yj−) for all 1 ≤ j ≤ N , for any fixed y ∈ (0 , 1/R)N . The

preceding, together with (4.95), proves the following: (4.70) implies that for all y ∈ (0 , 1/R)N

and x ∈ Rd,

(4.99) (P0 ×Qy)
{

X−1({x}) ∩S(RM
+ ) ∩ (F ª y) 6= ∅

}
= 0.

Note that the “energy form” µ 7→ I
(q)
Φ (µ) is translation invariant. That is, I

(q)
Φ (µ) = I

(q)
Φ (µ◦τa)

for all a ∈ RN , where (µ ◦ τa)(A) := µ(Aª a). Therefore, for all fixed y ∈ (0 , 1/R)N , (4.70)

is equivalent to the following:

(4.100) I
(N−αM)
Φ (µ) = ∞ for all µ ∈ P(F ⊕ y),

where A ⊕ y := {a + y : a ∈ A} for all sets A and points y. Equation (4.99) is therefore

implying that for all y ∈ (0 , 1/R)N and x ∈ Rd,

(4.101) (P0 ×Qy)
{

X−1({x}) ∩S(RM
+ ) ∩ F 6= ∅

}
= 0.

Khoshnevisan et al. (2003, Proposition 6.2) implies then that the preceding holds for all

y ∈ RM
+ . Apply this with y ≡ 0 to finish. ¤

We are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We can assume without loss in generality that

(4.102) P
{
X−1({0}) ∩ F 6= ∅}

> 0.
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For there is nothing to prove otherwise. We recall that (4.102) is equivalent to the analytic

condition that there exists µ ∈ P(F ) such that the “energy integral”
∫∫

Φ(s′−s) µ(ds) µ(ds′)

is finite (Khoshnevisan and Xiao, 2002).

Let S1,S2, . . . be i.i.d. copies of S, and define

(4.103) K :=
⋃

1≤j<∞
Sj(RM

+ ).

On one hand, according to the Borel–Cantelli lemma, the following is valid for every non-

random Borel set G ⊂ RN :

(4.104) P{K ∩G 6= ∅} =





1 if P{S(RM
+ ) ∩G 6= ∅} > 0,

0 if P{S(RM
+ ) ∩G 6= ∅} = 0.

On the other hand, whenever G 6= ∅,

(4.105) P
{
S(RM

+ ) ∩G 6= ∅}
> 0 iff CN−αM(G) < ∞,

where Cq denotes the q-dimensional Bessel–Riesz capacity of (1.15) (Khoshnevisan, 2002,

Theorem 4.1.1, p. 423). Therefore,

(4.106) P
(
X−1({0}) ∩ F ∩K 6= ∅

∣∣ X−1({0}) ∩ F 6= ∅)
= P

(
Λ

∣∣ X−1({0}) ∩ F 6= ∅)
,

where Λ denotes the event that there exists some σ ∈ P(X−1({0}) ∩ F ) such that

(4.107)

∫∫
σ(dx) σ(dy)

‖x− y‖N−αM
< ∞.

It follows from Propositions 4.7 and 4.8 that a.s. on the event {X−1({0}) ∩ F 6= ∅},
(4.108) CN−αM

(
X−1({0}) ∩ F

)
> 0 iff inf

µ∈P(F )
I

(N−αM)
Φ (µ) < ∞.

This is a statement only about the random field X, and does not concern S. Therefore, the

preceding holds for all integers M ≥ 1, and all reals 0 < α < 2. By adjusting the parameters

α and M , we can ensure that q := N−αM is any pre-described number in (0 , N). Therefore,

outside a single null set

(4.109) Cq

(
X−1({0}) ∩ F

)
> 0 iff inf

µ∈P(F )
I

(q)
Φ (µ) < ∞,

for all rational numbers q ∈ (0 , N), a.s. on {X−1({0}) ∩ F 6= ∅}. By monotonicity, the

preceding holds for all q ∈ (0 , N), off a single null set. Frostman’s theorem (Khoshnevisan,

2002, Theorem 2.2.1, p. 521) then completes our proof. ¤
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5. Proof of Theorem 1.1

Before commencing with our proof, we first develop a real-variable, technical lemma. We

will say that Γ ⊂ Rn is a cube if and only if there exist a ≺ b, both in Rn, such that

(5.1) Γ := [a1 , b1]× · · · × [an , bn].

Lemma 5.1. Let f : Rn 7→ [0 ,∞] be continuous and finite on Rn \ {0}, and assume that f

is “quasi-monotone” in the following sense: There exists 0 < θ ≤ 1 such that f(x) ≥ θf(y)

whenever 0 ≺ x ≺ y. Suppose, in addition, that f(x) depends on x = (x1, . . . , xn) only

through |x1| , . . . , |xn|. Then, for all cubes Γ ⊂ (0 ,∞)n,

(5.2) Ln(Γ) inf
y∈Γ

∫

Γ

f(x− y) dx ≥
(

θ

2

)n ∫

Γ

∫

Γ

f(x− z) dx dz.

Remark 5.2. Lemma 5.1 is a result about symmetrization because it is equivalent to the

assertion that if U and V are i.i.d., both distributed uniformly on Γ, then

(5.3) inf
y∈Γ

E [f(U − y)] ≥
(

θ

2

)n

E [f(U − V )] .

Our proof will make it plain that the inequality is sharp in the sense that

(5.4) sup
y∈Γ

E [f(U − y)] ≤ 2nE [f(U − V )] .

This portion does not require f to be quasi-monotone.

Proof. First we suppose that n = 1, and Γ = [a , b], where 0 < a < b. For all a ≤ y ≤ b,

(5.5)

∫ b

a

f(x− y) dx =

∫ y−a

0

f(z) dz +

∫ b−y

0

f(z) dz.

[This is so because f(x− y) = f(|x− y|).] Now we use the quasi-monotonicity of f to find

that

(5.6)

∫ b−y

0

f(z) dz ≥ θ

∫ b−y

0

f(z + y − a) dz = θ

∫ b−a

y−a

f(z) dz.

According to (5.5) then, for all a ≤ y ≤ b,

(5.7)

∫ b

a

f(x− y) dx ≥ θ

∫ b−a

0

f(z) dz.
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But an argument based on symmetry shows readily that
∫ b

a

∫ b

a

f(x− z) dx dz ≤ 2(b− a)

∫ b−a

0

f(z) dz

≤ 2(b− a)

θ

∫ b

a

f(x− y) dx,

(5.8)

for all a ≤ y ≤ b. Thus, the lemma follows in the case that n = 1. The remainder follows by

induction on n, using the self-evident fact that a cube in Rn has the form Γ × [a , b] where

Γ is a cube in Rn−1. ¤

Proof of Theorem 1.1. We only need to prove (1.9), since (1.11) follows from it and Lemma

3.1.

As before, we introduce S to be an M -parameter additive stable process in RN , where

N > αM . Later, we will choose α and M such that N − αM ↘ γ.

Choose and fix R > 1. According to Proposition 4.4, there exists a finite constant A > 0

such that for all s ∈ [0 , R]N , t ∈ [0 , R]M , ε > 0, and every cube Γ ⊂ [0 , R]N ,
∑

π⊆{1,...,N}
EP×Q [Jε(µΓ

) | F π(s⊗ t)]

≥ A

∫
Φε(s

′ − s)

max (|s′ − s|N−αM , εN−αM)
µ

Γ
(ds′) · 1G(ε ;s ,t),

(5.9)

(PLd×QLN )-almost everywhere. [Recall that G(ε ; s , t) is defined in (4.73).] Here, µ
Γ

denotes

the restriction of the Lebesgue measure LN to Γ, normalized to have mass one. See also

(4.74).

Define for all x ∈ RN ,

(5.10) f(x) :=
Φε(x)

max (|x|N−αM , εN−αM)
.

Evidently, f(x) depends on x ∈ RN only through |x1|, . . . , |xN |. Because N > αM , (2.13)

implies that f is quasi-monotone with θ = 16−d. Thus, Lemma 5.1 can be used to deduce

that there exists A′ such that

(5.11)
∑

π⊆{1,...,N}
EP×Q [Jε(µΓ

) | F π(s⊗ t)] ≥ A′I
Γ
(ε) · 1G(ε ;s ,t),

(PLd ×QLN )-almost everywhere, where

(5.12) I
Γ
(ε) :=

∫∫
Φε(s

′ − s′′)
max (|s′ − s′′|N−αM , εN−αM)

µ
Γ
(ds′) µ

Γ
(ds′′).
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We emphasize that A′ does not depend on ε > 0, s ∈ [0 , R]N , or t ∈ [0 , R]M . The regularity

of the paths of X and S implies that

(5.13) sup
s∈[0,R]N∩QN

t∈[0,R]M∩QM

1G(ε ;s ,t) ≥ 1{X−1({0})∩Γ∩S([0 ,R]M )6=∅}.

Therefore,
∑

π⊆{1,...,N}
sup

s∈[0,R]N∩QN

t∈[0,R]M∩QM

EP×Q [Jε(µΓ
) | F π(s⊗ t)]

≥ A′I
Γ
(ε) · 1{X−1({0})∩Γ∩S([0 ,R]M ) 6=∅},

(5.14)

(PLd ×QLN )-almost everywhere.

We square both sides of (5.14), and then integrate [dPLd × dQLN ]. By way of (4.83), we

arrive at the following:

∑

π⊆{1,...,N}
EP×Q


 sup

s∈[0,R]N∩QN

t∈[0,R]M∩QM

|EP×Q [Jε(µΓ
) | F π(s⊗ t)]|2




≥ A′′ [I
Γ
(ε)]2 · (PLd ×QLN )

{
X−1({0}) ∩ Γ ∩S([0 , R]M) 6= ∅

}
,

(5.15)

where A′′ does not depend on ε > 0. Thanks to (4.39) and Proposition 4.2, the left-hand

side is at most

(5.16) 4N+M
∑

π⊆{1,...,N}
EP×Q

[|Jε(µΓ
)|2] ≤ A′′′I

Γ
(ε),

where A′′′ does not depend on ε > 0. This proves then that

(PLd ×QLN )
{

X−1({0}) ∩ Γ ∩S([0 , R]M) 6= ∅
}
≤ A∗
I

Γ
(ε)

,(5.17)

where A∗ does not depend on ε > 0. According to Fatou’s lemma,

(5.18) lim inf
ε→0+

I
Γ
(ε) ≥ 1

(LN(Γ))2 I
(N−αM)
Φ (µ

Γ
),

which is manifestly infinite if N−αM > γ; see (3.2). Thus, we have proved that if N−αM >

γ, then

(5.19)

∫

Rd

∫

RN
+

(P−x ×Qy)
{

X−1({0}) ∩ Γ ∩S([0 , R]M) 6= ∅
}

dx dy
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is zero. Now we argue precisely as we did in the proof of Theorem 3.2, and find that if Γ is

a cube in [1/R , R]N , then for all y ∈ (0 , 1/R)N ,

(5.20) (P0 ×Qy)
{

X−1({0}) ∩ Γ ∩S(RM
+ ) 6= ∅

}
= 0,

as long as N − αM > γ. See the derivation of (4.101) from (4.92). Hence we have

CN−αM

(
X−1({0}) ∩ Γ

)
= 0 almost surely [P]. Since N − αM can be arbitrary close to

γ, this proves that a.s. [P],

(5.21) dim
H

(
X−1({0}) ∩ Γ

)
≤ γ.

Because the preceding is valid a.s. for all R > 1 and all cubes Γ ⊆ [1/R , R]N , we find that

(5.22) dim
H

X−1({0}) ≤ γ a.s.

On the other hand, according to Theorem 3.2, if R > 1 and Γ is any cube in [1/R ,R]N ,

then a.s. on {X−1({0}) ∩ Γ 6= ∅},
(5.23) dim

H

(
X−1({0}) ∩ Γ

) ≥ sup
{

0 < q < N : I
(q)
Φ (µ

Γ
) < ∞

}
,

and we have seen already that the right-hand side coincides with γ. Let Γ increase and

exhaust RN
+ to complete the proof. ¤
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Benjamini, Itai, Olle Häggström, Yuval Peres, and Jeffrey E. Steif. 2003. Which properties of a random
sequence are dynamically sensitive? , Ann. Probab. 31(1), 1–34.

Bertoin, Jean. 1996. Lévy Processes, Cambridge University Press, Cambridge.
Blath, Jochen and Peter Mörters. 2005. Thick points of super-Brownian motion, Probab. Theory Related

Fields 131(4), 604–630.
Blumenthal, R. M. and R. K. Getoor. 1968. Markov Processes and Potential Theory , Academic Press, New

York.
Bochner, Salomon. 1955. Harmonic Analysis and the Theory of Probability , University of California Press,

Berkeley and Los Angeles.
Dalang, Robert C. and Eulalia Nualart. 2004. Potential theory for hyperbolic SPDEs, Ann. Probab. 32(3),

2099–2148.
Dembo, Amir, Yuval Peres, Jay Rosen, and Ofer Zeitouni. 2002. Thick points for intersections of planar

sample paths, Trans. Amer. Math. Soc. 354(12), 4969–5003 (electronic).



36 D. KHOSHNEVISAN, N.-R. SHIEH, AND Y. XIAO

. 1999. Thick points for transient symmetric stable processes, Electron. J. Probab. 4, no. 10, 13 pp.
(electronic).

Hawkes, John. 1974. Local times and zero sets for processes with infinitely divisible distributions, J. London
Math. Soc. 8, 517–525.

Horowitz, Joseph. 1968. The Hausdorff dimension of the sample path of a subordinator , Israel J. Math. 6,
176–182.

Kahane, Jean-Pierre. 1985. Some Random Series of Functions, Cambridge University Press, Cambridge.
Khoshnevisan, Davar. 2003. The codimension of the zeros of a stable process in random scenery , Séminaire
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Khoshnevisan, Davar and Yimin Xiao. 2005. Lévy processes: capacity and Hausdorff dimension, Ann. Probab.

33(3), 841–878.
. 2003. Weak unimodality of finite measures, and an application to potential theory of additive Lévy
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