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Abstract. In this paper we give a detailed description of the random wavelet series representa-

tion of real-valued linear fractional stable sheet introduced in [3]. By using this representation,

in the case where the sample paths are continuous, an anisotropic uniform and quasi-optimal

modulus of continuity of these paths is obtained as well as an upper bound for their behavior at

infinity and around the coordinate axes. The Hausdorff dimensions of the range and graph of

these stable random fields are then derived.

1. Introduction and main results

Let 0 < α < 2 and H = (H1, . . . , HN ) ∈ (0, 1)N be given. We define an α-stable random field

X0 = {X0(t), t ∈ RN} with values in R by

X0(t) =
∫

RN

hH (t, s) Zα(ds), (1.1)

where Zα is a strictly α-stable random measure on RN with Lebesgue measure as its control

measure and β(s) as its skewness intensity. That is, for every Lebesgue measurable set A ⊆ RN

with Lebesgue measure λN (A) < ∞, Zα(A) is a strictly α-stable random variable with scale

parameter λN (A)1/α and skewness parameter (1/λN (A))
∫
A β(s)ds. If β(s) ≡ 0, then Zα is a

symmetric α-stable random measure on RN . We refer to [20, Chapter 3] for more information on

stable random measures and their integrals. Also in (1.1),

hH (t, s) = κ
N∏

`=1

{
(t` − s`)

H`− 1
α

+ − (−s`)
H`− 1

α
+

}
, (1.2)
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where κ > 0 is a normalizing constant such that the scale parameter of X0(1), denoted by

‖X0(1)‖α, equals 1, t+ = max{t, 0} and 00 = 1. Observe that, if H1 = · · · = HN = 1
α , X0 is the

ordinary stable sheet studied in [9]. In general, the random field X0 is called a linear fractional α-

stable sheet defined on RN (or (N, 1)-LFSS for brevity) in R with index H. LFSS is an extension

of both linear fractional stable motion (LFSM), which corresponds to the case where N = 1, and

of ordinary fractional Brownian sheet (FBS) which corresponds to α = 2, that is, to replacing

the stable measure in (1.1) by a Gaussian random measure.

We will also consider (N, d)-LFSS, with d > 1, that is a linear fractional α-stable sheet defined

on RN and taking its values in Rd. The (N, d)-LFSS that we consider is the stable field X =

{X(t), t ∈ RN} defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (1.3)

where X1, . . . , Xd are d independent copies of X0. It is easy to verify by using the representation

(1.1) that X satisfies the following scaling property: For any N ×N diagonal matrix A = (aij)

with aii = ai > 0 for all 1 ≤ i ≤ N and aij = 0 if i 6= j, we have

{
X(At), t ∈ RN

} d=
{ N∏

j=1

a
Hj

j X(t), t ∈ RN

}
, (1.4)

where d= denotes the equality in the sense of finite dimensional distributions, provided that the

skewness intensity satisfies β(As) = β(s) for almost every s ∈ RN . Relation (1.4) means that the

(N, d)-LFSS X is an operator-self-similar [or operator-scaling] random field in the time variable

(see [6, 24]). When the indices H1, . . . , HN are not the same, X has different scaling behavior

along different directions. This anisotropic nature of X makes it a potential model for various

spatial objects, as is already the case for anisotropic Gaussian fields ([7] and [5]). We also mention

that one can construct (N, d)-stable random fields which are self-similar in the space variables in

the sense of [12, 14]. This will not be discussed in this paper.

Similarly to LFSM and FBS, see for instance [13, 21, 11, 23, 2, 1], there are close connections

between sample path properties of LFSS and its parameters H and α. In this article we study

some of these connections. In all the remainder of this paper we assume that the sample paths

of X are continuous, i.e. min(H1, . . . , HN ) > 1/α. For convenience we even assume that

1/α < H1 ≤ · · · ≤ HN . (1.5)

Of course, there is no loss of generality in the arbitrary ordering of H1, . . . , HN . Let us now state

our main results.

The following theorem is an improved version of Theorems 1.2 and 1.3 in [3]. Relation (1.6)

provides a sharp upper bound for the uniform modulus of continuity of LFSS, while Relation (1.7)

gives an upper bound for its asymptotic behavior at infinity and around the coordinate axes.
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Theorem 1. Let Ω∗0 be the event of probability 1 that will be introduced in Corollary 5. Then for

every compact set K ⊆ RN , all ω ∈ Ω∗0 and any arbitrarily small η > 0, one has

sup
s,t∈K

|X0(s, ω)−X0(t, ω)|
∑N

j=1 |sj − tj |Hj−1/α
(
1 +

∣∣ log |sj − tj |
∣∣)2/α+η

< ∞ (1.6)

and

sup
t∈RN

|X0(t, ω)|∏N
j=1 |tj |Hj (1 +

∣∣ log |tj |
∣∣)1/α+η

< ∞. (1.7)

The following result can be viewed as an inverse of (1.6) in Theorem 1.

Theorem 2. Let Ω∗3 be the event of probability 1 that will be introduced in Lemma 12. Then for

all ω ∈ Ω∗3, all vectors ûn ∈ RN−1 with non-vanishing coordinates, any n = 1, . . . , N and any real

numbers y1 < y2 and ε > 0, one has

sup
sn,tn∈[y1,y2]

|X0(sn, ûn, ω)−X0(tn, ûn, ω)|
|sn − tn|Hn−1/α

(
1 +

∣∣ log |sn − tn|
∣∣)−1/α−ε

= ∞, (1.8)

where, for every real xn, we have set (xn, ûn) = (u1, . . . , un−1, xn, un+1, . . . , uN ).

Observe that Theorems 1 and 2 have already been obtained by Takashima [21] in the particular

case of LFSM (i.e., N = 1). However, the proofs given by this author can hardly be adapted to

LFSS. To establish the above theorems we introduce a wavelet series representation of X0 and

use wavelet methods which are, more or less, inspired from [2]. It is also worth noticing that the

event Ω∗3 in Theorem 2 does not depend on ûn. This is why the latter theorem cannot be obtained

by simply using the fact that LFSS is an LFSM of Hurst parameter Hn along the direction of the

n-th axis.

The next theorem gives the Hausdorff dimensions of the range

X
(
[0, 1]N

)
=

{
X(t) : t ∈ [0, 1]N

}

and the graph

GrX
(
[0, 1]N

)
=

{
(t, X(t)) : t ∈ [0, 1]N

}

of an (N, d)-LFSS X. We refer to [10] for the definition and basic properties of Hausdorff dimen-

sion.

The following result extends Theorem 4 in [2] to the linear fractional stable sheets. Unlike

the fractional Brownian sheet case, we remark that the Hausdorff dimensions of X
(
[0, 1]N

)
and

GrX
(
[0, 1]N

)
are not determined by the uniform Hölder exponent of X on [0, 1]N .

Theorem 3. Let the assumption (1.5) hold. Then, with probability 1,

dimHX
(
[0, 1]N

)
= min

{
d;

N∑

`=1

1
H`

}
(1.9)
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and

dimHGrX
(
[0, 1]N

)
= min

{ k∑

`=1

Hk

H`
+ N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

`=1

1
H`

}

=

{ ∑N
`=1

1
H`

if
∑N

`=1
1

H`
≤ d,∑k

`=1
Hk
H`

+ N − k + (1−Hk)d if
∑k−1

`=1
1

H`
≤ d <

∑k
`=1

1
H`

,

(1.10)

where
∑0

`=1
1

H`
:= 0.

Remark 4. The second equality in (1.10) can be verified by using (1.5) and some elementary

computation; see [2].

In light of Theorem 3 it is a natural question to consider the Hausdorff dimensions of the

image X(E) and graph GrX(E), where E is an arbitrary Borel set in RN . As shown by Wu

and Xiao [22] for fractional Brownian sheets, due to the anisotropic nature of X, the Hausdorff

dimension of E and the index H alone are not enough to determine dimHX(E). By combining

the methods in Wu and Xiao [22] and Xiao [24] with the moment argument in this paper we

determine dimHX(E) for every nonrandom Borel set E ⊆ (0,∞)N ; see Theorem 20.

We end the Introduction with some notation. Throughout this paper, the underlying parameter

spaces are RN , RN
+ = [0,∞)N or ZN . A typical parameter, t ∈ RN is written as t = (t1, . . . , tN ) or

t = 〈tj〉 whichever is more convenient. For any s, t ∈ RN such that sj < tj (j = 1, . . . , N), the set

[s, t] =
∏N

j=1 [sj , tj ] is called a closed interval (or a rectangle). Open or half-open intervals can be

defined analogously. We will use capital letters C, C1, C2, . . . to denote positive and finite random

variables and use c, c1, c2, . . . to denote unspecified positive and finite constants. Moreover, C

and c may not be the same in each occurrence.

Acknowledgment This paper is finished while the third author (Y. Xiao) is visiting the Statis-

tical & Applied Mathematical Sciences Institute (SAMSI). He thanks Professor Jim Berger and

the staff of SAMSI for their support and the good working conditions.

2. Wavelet expansion of LFSS

The goal of this section is to give a detailed description of the wavelet representations of LFSS

X0. First we need to introduce some notation that will be extensively used in all the sequel.

(i) The real-valued function ψ denotes a well chosen compactly supported Daubechies wavelet

(see [8, 16]). Contrary to the Gaussian case the fact that ψ is compactly supported will

play a crucial role in the proof of Theorem 2 (see the proof of Part (b) of Proposition 14).

(ii) For any ` = 1, . . . , N , the real-valued functions ψH` and ψ−H` respectively denote the left-

sided fractional primitive of order H` + 1− 1/α and the right-sided fractional derivative
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of order H` + 1− 1/α of ψ, which are respectively defined for all x ∈ R by

ψH`(x) =
∫

R
(x− y)H`−1/α

+ ψ(y) dy and ψ−H`(x) =
d2

dx2

∫

R
(y − x)1/α−H`

+ ψ(y) dy. (2.1)

Observe that the functions ψH` and ψ−H` are well-defined, continuously differentiable

and well-localized provided that ψ has sufficiently many vanishing moments (and thus is

smooth enough). By saying that a function φ : R→ R is well-localized we mean that

sup
x∈R

(1 + |x|)2 {|φ(x)|+ ∣∣φ′(x)
∣∣} < ∞ . (2.2)

(iii) {εj,k, (j, k) ∈ ZN × ZN} will denote the sequence of random variables defined as

εj,k =
∫

RN

N∏

`=1

{
2j`/αψ(2j`s` − k`)

}
Zα(ds) . (2.3)

They are centered α-stable random variables all with the same scale parameter

‖εj,k‖α =
{∫

R
|ψ(t)|α dt

}N/α

.

and skewness parameter

βj,k = ‖εj,k‖−α
α

∫

RN

N∏

`=1

{
2j`/αψ<α>(2j`s` − k`)

}
β(s) ds ,

where x<α> = |x|αsgn(x) which is the number having the same sign as x and absolute

value |x|α. Moreover, if L > 0 is a constant such that the support of ψ is included in

[−L,L], then for any integers p > 2L, any r ∈ {0, . . . , p− 1}N and j ∈ ZN , {εj,r+kp; k ∈
ZN} is a sequence of independent random variables.

A consequence of the above properties of the sequence {εj,k, (j, k) ∈ ZN ×ZN} is the following.

Corollary 5. There exists an event Ω∗0 of probability 1 such that, for any η > 0, for all ω ∈ Ω∗0
and all j, k ∈ ZN × ZN ,

|εj,k(ω)| ≤ C(ω)
N∏

l=1

{
(1 + |jl|)1/α+η(1 + |kl|)1/α log1/α+η(2 + |kl|)

}
,

where C is a finite positive random variable.

Proof We apply Lemma 22.¤
It is worth noticing that, for every ` = 1, . . . , N , the functions ψH` and ψ−H` can be defined

equivalently to (2.1), up to a multiplicative constant, but in the Fourier domain by (see e.g. [19])

ψ̂H`(ξ) = ei sgn(ξ)(H`−1/α+1)π
2

ψ̂(ξ)
|ξ|H`−1/α+1

(2.4)
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and

ψ̂−H`(ξ) = ei sgn(ξ)(H`−1/α+1)π
2 |ξ|H`−1/α+1ψ̂(ξ). (2.5)

It follows from Parseval’s Formula, (2.4), (2.5) and the orthonormality (in L2(R)) of the sequence

{2j/2ψ(2j · −k), j, k ∈ Z} that ψH` and ψ−H` satisfy, for all (J,K) ∈ Z2 and (J ′,K ′) ∈ Z2, up to

a multiplicative constant,
∫

R
ψH`(2Jx−K)ψ−H`(2J ′x−K ′) dx = 2−Jδ(J,K;J ′, K ′), (2.6)

where δ(J,K; J ′,K ′) = 1 when (J,K) = (J ′,K ′) and 0 otherwise. By putting together (2.4),

(2.5) and the fact that ψ̂(ξ) = O(ξ2) as |ξ| → 0, another useful property is obtained: for every

` = 1, . . . , N , the first moment of the functions ψH` and ψ−H` vanish, namely one has
∫

R
ψH`(u) du =

∫

R
ψ−H`(u) du = 0. (2.7)

We are now in position to state the main results of this section.

Proposition 6. Let Ω∗1 be the event of probability 1 that will be introduced in Lemma 21. For

every n ∈ N, M > 0 and t ∈ RN we set

Un,M (t) =
∑

(j,k)∈DN
n,M

2−〈j,H〉εj,k

N∏

l=1

{
ψHl(2jltl − kl)− ψHl(−kl)

}
, (2.8)

where the random variables {εj,k, (j, k) ∈ ZN × ZN} are defined by (2.3) and

DN
n,M = {(j, k) ∈ ZN × ZN : for all l = 1, . . . , N |jl| ≤ n and |kl| ≤ M2n+1} . (2.9)

Then for every ω ∈ Ω∗1 the functional sequence (Un,M (·, ω))n∈N is a Cauchy sequence in the Hölder

space Cγ(K) for every γ ∈ [0,H1− 1/α) and compact set K ⊆ [−M, M ]N . We denote its limit by

∑

(j,k)∈ZN×ZN

2−〈j,H〉εj,k

N∏

l=1

{
ψHl(2jltl − kl)− ψHl(−kl)

}
.

Proposition 7. With probability 1, the following holds for all t ∈ RN

X0(t) =
∑

(j,k)∈ZN×ZN

2−〈j,H〉εj,k

N∏

l=1

{
ψHl(2jltl − kl)− ψHl(−kl)

}
. (2.10)

Remark 8. By the definition of X0 and by Proposition 6, the both sides of (2.10) are continuous

in t with probability 1. Hence, to prove Proposition 7, it is sufficient to show that




∑

(j,k)∈ZN×ZN

2−〈j,H〉εj,k

N∏

l=1

{
ψHl(2jltl − kl)− ψHl(−kl)

}
, t ∈ RN




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is a modification of X0. This is a natural extension of the wavelet series representations both

of LFSM and FBS (see [4, 1, 2]) and will be called the random wavelet series representation of

LFSS.

Assume for a while that Proposition 6 holds and let us prove Proposition 7.

Proof of Proposition 7 Let us fix l ∈ {1, . . . , N}. For any (jl, kl) ∈ Z× Z and sl ∈ R we set

ψjl,kl
(sl) = 2jl/αψ(2jlsl − kl). (2.11)

Since {ψj,k, j ∈ Z, k ∈ Z} is an unconditional basis of Lα(R) (see [15]) and, for every fixed tl ∈ R,

the function sl 7→ (tl − sl)
Hl−1/α
+ − (−sl)

Hn−1/α
+ ∈ Lα(R) ∩ L2(R), one has

(tl − sl)
Hl−1/α
+ − (−sl)

Hl−1/α
+ =

∑

jl∈Z

∑

kl∈Z
κl,j,k(tl)ψjl,kl

(sl) , (2.12)

where the convergence of the series in the RHS of (2.12), as a function of sl, holds in Lα(R). Next

by using the Hölder inequality and the L2(R) orthonormality of the sequence
{
2jl(1/2−1/α)ψjl,kl

,

jl ∈ Z, kl ∈ Z
}
, one can prove that

κl,jl,kl
(tl) = 2jl(1−1/α)

∫

R
{(tl − sl)

Hl−1/α
+ − (−sl)

Hl−1/α
+ }ψ(2jlsl − kl) dsl

= 2−jl,Hl
{
ψHl(2jltl − kl)− ψHl(−kl)

}
. (2.13)

By inserting (2.12) into (1.1) for every l = 1, . . . , N , we get that for any fixed t ∈ RN , the series

(2.10) converges in probability to X0(t) and Proposition 7 follows from Remark 8. ¤
From now on our goal will be to prove Proposition 6. We need some preliminary results.

Proof of Proposition 6. For the sake of simplicity we suppose that N = 2. The proof for the

general case is similar. The space Cγ(K) is endowed with the norm

‖f‖γ = sup
x∈K

|f(x)|+ |f |γ with |f |γ = sup
x6=y∈K

|f(x)− f(y)|
‖x− y‖γ

,

where ‖ · ‖ denotes the Euclidean norm in R2. For every n ∈ N we set Dc
n = (Z2 × Z2) \D2

n,M .

Let us define Fn(x, y) = Fn(x, y; ψH1 ; M, φ, δ, β, η) and E(x, y) = E(x, y; φ, δ, β, η) by

Fn(x, y) = An(x, y) + Bn(x, y) ,

where An(x, y) and Bn(x, y) are defined in Lemma 23 in the Appendix, and

E(x, y) =
∑

(J,K)∈Z2

2−Jδ |φ(2Jx−K)− φ(2Jy −K)|
|x− y|β (3 + |J |)1/α+η(3 + |K|)1/α+η.
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Using (2.8), the triangle inequality, Lemma 21, one has for any n, p ∈ N and s1, s2, t1, t2 ∈
[−M, M ],

|Un+p,M (s1, s2)− Un+p,M (t1, t2)− Un,M (s1, s2) + Un,M (t1, t2)|
(|s1 − t1|2 + |s2 − t2|2)β/2

≤
∑

(j,k)∈Dc
n

2−〈j,H〉 |εj,k|

∣∣∣∏2
l=1

(
ψHl(2jlsl − kl)− ψHl(−kl)

)−∏2
l=1

(
ψHl(2jltl − kl)− ψHl(−kl)

)∣∣∣
(|s1 − t1|2 + |s2 − t2|2)β/2

≤ Fn(s1, t1;ψH1 ; H1, β, η)E(s2, 0;ψH2 ; H2, 0, η) + E(s1, t1; ψH1 ;H1, β, η)Fn(s2, 0;ψH2 ; H2, 0, η)

+ Fn(s2, t2;ψH2 ; H2, β, η)E(t1, 0;ψH1 ;H1, 0, η) + E(s2, t2;ψH2 ; H2, β, η)Fn(t1, 0;ψH1 ;H1, 0, η).

By Lemma 23, we have that supx,y∈[−M,M ] Fn(x, y) → 0 as n → ∞ and supx,y∈[−M,M ] E(x, y) <

∞; hence the last display yields that supp≥0 |Un+p,M − Un,M |γ → 0 as n → ∞. Observing that

Un,M vanishes on the axes, the same result holds with | · |γ replaced by ‖ · ‖γ and Proposition 6

is proved. ¤

Remark 9. Proposition 6 is much easier to prove in the Gaussian case. Indeed, in this case,

using the fact that the εj,k’s are independent N (0, 1) Gaussian random variables one can easily

show that the sequence (Un,M )n∈N is weakly relatively compact in the space C(K). We refer to

the proof of Proposition 3 in [2] for more details.

From now on we will always identify the LFSS X0 with its random wavelet series representation

(2.10).

3. Uniform modulus of continuity and behavior as |t`| → 0 or ∞

The goal of this section is to prove Theorem 1. An immediate consequence of Proposition 6

is that X0 is locally Cγ for any γ ∈ (0,H1 − 1/α), almost surely. Theorem 1 completes this

result by providing a sharper estimate on the uniform modulus of continuity, see (1.6), and the

behavior at infinity and around the axes, see (1.7). As in our note [3], these results are obtained

by using the representation (2.10). However, we improved the modulus of continuity estimate by

relying on the independence present in the coefficients {εj,k, j, k ∈ ZN × ZN}, see Lemma 22. If

this independence is not taken into account, an alternative result (i.e., Lemma 21) may be used,

resulting in a less precise estimate. The latter result holds in a quite general framework since

they can be extended to a more general class of random wavelet series, see Remark 10 below.
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Proof of Theorem 1. It follows from (2.10), Corollary 5 and Lemma 24 that for every ω ∈ Ω∗0
and every s, t ∈ K, the triangle inequality implies

∣∣X0(s, ω)−X0(t, ω)
∣∣ ≤

N∑

n=1

∣∣X0(t1, . . . , tn−1, sn, , . . . , sN ; ω)−X0(t1, . . . , tn, sn+1, . . . , sN ;ω)
∣∣

≤ C1(ω)
N∑

n=1

( n−1∏

`=1

TH`,1/α,η(t`;ψ
H`)

)
×

( N∏

`=n+1

TH`,1/α,η(s`; ψH`)
)

×SHn,1/α,η(tn, sn;ψHn) (3.1)

≤ C2(ω)
N∑

n=1

|tn − sn|Hn−1/α
(
1 +

∣∣ log |tn − sn|
∣∣)2/α+2η

.

This shows (1.6).

Similarly, using (2.10), Corollary 5 and Lemma 24, we obtain, for every ω ∈ Ω∗0 and every

t ∈ R,

∣∣X0(t, ω)
∣∣ ≤ C3(ω)

N∏

`=1

TH`,1/α,η(t`;ψ
H`) ≤ C4(ω)

N∏

`=1

(
1 +

∣∣ log |t`|
∣∣)1/α+η|t`|H` . (3.2)

The proof of Theorem 1 is finished. ¤

Remark 10. Clearly Proposition 6 holds more generally for any process Y = {Y (t), t ∈ RN}
having a wavelet series representation of the form

Y (t) =
∑

(j,k)∈ZN×ZN

cj,kλj,k

N∏

l=1

{
φl(2jltl − kl)− φl(−kl)

}
,

where the φl’s are well-localized functions, {cj,k, j, k ∈ ZN} is a sequence of complex-valued

coefficients satisfying |cj,k| ≤ c2−〈j,H〉 (c > 0 being a constant) and {λj,k, j, k ∈ ZN} is a sequence

of complex-valued random variables satisfying supj,k E[|λj,k|ν ] < ∞ for all 0 < ν < α. We can

also show that (1.7) holds with probability 1 for such a process Y . In contrast, for this more

general class of process, we cannot show (1.6) but a less precise estimate for the uniform modulus

of continuity. Namely, as announced in our note [3], with probability 1,

sup
s,t∈K

|X0(s, ω)−X0(t, ω)|∑N
j=1 |sj − tj |Hj−1/α−η

< ∞

for all compact sets K ⊆ RN .

4. Optimality of the modulus of continuity estimate

The goal of this section is to prove Theorem 2. For every n ∈ {1, . . . , N} and (jn, kn) ∈ N×Z,

let Gjn,kn = {Gjn,kn(ûn), ûn ∈ RN−1} be the α-stable field defined as the following wavelet
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transformation:

Gjn,kn(ûn) = 2jn(1+Hn)

∫

R
X0(sn, ûn)ψ−Hn(2jnsn − kn) dsn, (4.1)

where the notation (sn, ûn) is introduced in Theorem 2. By using (1.7) and the fact that the

wavelet ψ−Hn is well-localized, the process {Gjn,kn(u), u ∈ RN−1} is well-defined and its tra-

jectories are continuous, almost surely. The proof of Theorem 2 mainly relies on the following

Lemmas 11 and 12.

Lemma 11. Let Ω∗0 be the event of probability 1 in Corollary 5 and let n ∈ {1, . . . , N}. Suppose

that there exist (un, ûn) ∈ RN , ρ > 0, ε > 0 and ω ∈ Ω∗0 such that

sup
sn,tn∈[un−ρ,un+ρ]

|X0(sn, ûn, ω)−X0(tn, ûn, ω)|
|sn − tn|Hn−1/α

(
1 +

∣∣ log |sn − tn|
∣∣)−1/α−ε

< ∞. (4.2)

Then one has

lim sup
jn→∞

(jn2−jn)1/α max
{|Gjn,kn(ûn, ω)| : kn ∈ Z, |un − 2−jnkn| ≤ ρ/8

}
= 0. (4.3)

Lemma 12. Let Ω∗3 be the event of probability 1 defined as Ω∗3 = Ω∗0 ∩ Ω∗2, where Ω∗0 and Ω∗2 are

respectively the events defined in Corollary 5 and Lemma 13. For all ω ∈ Ω∗3, n ∈ {1, . . . , N}, all

integers jn ∈ N, real numbers z1 < z2 and all 0 < τ1 < τ2, one has

lim inf
jn→∞

(jn2−jn)1/α inf
bun∈[τ1,τ2]N−1

max
{
|Gjn,kn(ûn, ω)|; kn ∈ [2jnz1, 2jnz2] ∩ Z

}
> 0. (4.4)

Before proving these lemmas, we show how they yield Theorem 2.

Proof of Theorem 2. For the sake of simplicity we only consider the case where ûn have

positive and non-vanishing coordinates. The general case is similar. Suppose ad absurdum that

there exists ω ∈ Ω∗3 such that (1.8) is not satisfied. Then, for some n ∈ {1, . . . , N}, there exists

ûn ∈ RN−1 with positive and non vanishing coordinates, some real number un, ρ > 0 and ε > 0

arbitrary small such that (4.2) holds. By Lemma 11, this implies (4.3). Then the conclusion of

Lemma 12 leads to a contradiction. This proves Theorem 2. ¤
Proof of Lemma 11. Let jn ∈ N and kn ∈ Z be such that

|un − 2−jnkn| ≤ ρ/8. (4.5)

It follows from (4.1) and (2.7) that Gjn,kn(ûn, ω) can be written as

2jn(1+Hn)

∫

R

(
X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)

)
ψ−Hn(2jnsn − kn) dsn.

Hence, we have
∣∣Gjn,kn(ûn, ω)

∣∣ ≤ 2jn(1+Hn)

∫

R

∣∣X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)
∣∣ ∣∣ψ−Hn(2jnsn − kn)

∣∣ dsn

= 2jn(1+Hn) {Ajn,kn(ûn, ω) + Bjn,kn(ûn, ω)} , (4.6)
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where

Ajn,kn(ûn, ω) =
∫

|sn−un|≤ρ/2

∣∣X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)
∣∣ ∣∣ψ−Hn(2jnsn − kn)

∣∣ dsn (4.7)

and

Bjn,kn(ûn, ω) =
∫

|sn−un|>ρ/2

∣∣X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)
∣∣ ∣∣ψ−Hn(2jnsn − kn)

∣∣ dsn. (4.8)

Let us now give a suitable upper bound for Ajn,kn(ûn, ω). It follows from (4.7) and (4.2) that

Ajn,kn(ûn, ω) is at most

C5(ω)
∫

R

∣∣sn − 2−jnkn

∣∣Hn−1/α (
1 +

∣∣ log |sn − 2−jnkn|
∣∣)−1/α−ε∣∣ψ−Hn(2jnsn − kn)

∣∣ dsn. (4.9)

We claim that

sup
jn≥1

∫

R

∣∣x∣∣Hn−1/α(
1/jn +

∣∣ log 2− (log |x|)/jn

∣∣)−1/α−ε ∣∣ψ−Hn(x)
∣∣ dx < ∞ (4.10)

and differ its proof after we have shown (4.3).

By setting x = 2jnsn − kn in the integral in (4.9) and using (4.10), one obtains, for all jn ≥ 1

and kn ∈ Z satisfying (4.5),

Ajn,kn(ûn, ω) ≤ C6(ω)2jn(−1−Hn+1/α)j−1/α−ε
n . (4.11)

In order to derive an upper bound for Bjn,kn(ûn, ω), we use the fact that ψ−Hn is a well-localized

function and (4.5) to get

Bjn,kn(ûn, ω) ≤ c

∫

|sn−un|>ρ/2

∣∣X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)
∣∣
(
1 + |2jnsn − kn|

)−2
dsn

≤ c

∫

|sn−un|>ρ/2

∣∣X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)
∣∣

×
(
1 + 2jn

(
|sn − un| − |un − 2−jnkn|

))−2
dsn

≤ c 2−2jn

∫

|sn−un|>ρ/2

∣∣X0(sn, ûn, ω)−X0(2−jnkn, ûn, ω)
∣∣ ∣∣sn − un

∣∣−2
dsn.

This last inequality, together with (1.7), implies that, since ω ∈ Ω∗0,

Bjn,kn(ûn, ω) ≤ C7(ω) 2−2jn ,

where C7 is a random variable that does not depend on the integers jn and kn satisfying (4.5).

Hence, putting together the last inequality, (4.11) and (4.6) one obtains (4.3).

Finally, to conclude the proof of the lemma, it remains to show (4.10). We separate the

integral in (4.10) into two domains, |x| > 2jn/2 and |x| ≤ 2jn/2. We bound
(
1/jn +

∣∣ log 2 −



12 ANTOINE AYACHE, FRANÇOIS ROUEFF, AND YIMIN XIAO

(log |x|)/jn

∣∣)−1/α−ε from above by j
1/α+ε
n on the first domain, and by

(
(log 2)/2

)−1/α−ε on the

second domain, yielding that the integral in (4.10) is at most

j1/α+ε
n

∫

|x|>2jn/2

∣∣x∣∣Hn−1/α∣∣ψ−Hn(x)
∣∣ dx +

(
(log 2)/2

)−1/α−ε
∫

R

∣∣x∣∣Hn−1/α ∣∣ψ−Hn(x)
∣∣ dx .

Using that Hn − 1/α ∈ (0, 1) and that ψ−Hn is well localized, we thus get (4.10). ¤
In order to prove Lemma 12, we first prove a weaker result, namely the following lemma.

Lemma 13. There exists Ω∗2, an event of probability 1, such that for all ω ∈ Ω∗2, n ∈ {1, . . . , N}
and real numbers M > 1, z1 < z2, 0 < τ1 < τ2, one has

lim inf
jn→∞

(jn2−jn)1/αν(n, jn; M ; z1, z2; τ1, τ2; ω) > 0 , (4.12)

where

ν(n, jn; M ; z1, z2; τ1, τ2;ω)

= min
bkn∈[Mjnτ1,Mjnτ2]N−1∩ZN−1

max
{∣∣Gjn,kn(M−jn k̂n, ω)

∣∣; kn ∈
[
2jnz1, 2jnz2

]
∩ Z

}
.

(4.13)

In order to prove Lemma 13 we need to show that the the random variables Gjn,kn(ûn) satisfy

some nice properties, namely the following proposition.

Proposition 14. Let ûn ∈ RN−1 be an arbitrary fixed vector with non-vanishing coordinates,

then the following results hold:

(a) {Gjn,kn(ûn), (jn, kn) ∈ N × Z} is a sequence of strictly α-stable random variables with

identical scale parameters given by

‖Gjn,kn(ûn)‖α = ‖ψ‖Lα(R)

∏

l 6=n

∥∥∥(ul − ·)Hl−1/α
+ − (−·)Hl−1/α

+

∥∥∥
Lα(R)

(4.14)

(b) Let L > 0 be a constant such that the support of ψ is included in [−L,L]. Then for all

integers p > 2L and jn ≥ 0, {Gjn,qnp(ûn); qn ∈ Z} is a sequence of independent random

variables.

Proposition 14 is in fact a straightforward consequence of the following proposition and the

fact that any two functions sn 7→ ψ(2jnsn−qnp) with different values of qn have disjoint supports.

Proposition 15. For every vector ûn with non-vanishing coordinates and for every (jn, kn) ∈
N× Z one has almost surely

Gjn,kn(ûn) =
∫

RN

[
2jn/αψ(2jnsn − kn)

∏

l 6=n

{
(ul − sl)

Hl−1/α
+ − (−sl)

Hl−1/α
+

}]
dZα(s) . (4.15)
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Proof of Proposition 15. As in (3.2), we have

sup
t∈RN

∑
(j,k)∈ZN×ZN 2−〈j,H〉 |εj,k|

∣∣∣ ∏N
l=1

{
ψHl(2jltl − kl)− ψHl(−kl)

} ∣∣∣
∏N

j=1 |tj |Hj
(
1 +

∣∣ log |tj |
∣∣)1/α+η

< ∞. (4.16)

It follows from Propositions 7 and 6, (4.16), the Dominated Convergence Theorem, (2.6), (2.7)

and (2.13) that for any ûn ∈ RN−1 one has almost surely, for any increasing sequence (Dm)m∈N
of finite sets in Z× Z such that ∪mDm = Z× Z,

Gjn,kn(ûn) = lim
m→∞

∑

(j,k)∈DN
m

2jn−〈bjn, bHn〉εj,k

×
∫

R

N∏

l=1

[
ψHl(2jlsl − kl)− ψHl(−kl)

]
ψ−Hn(2jnsn − kn) dsn

= lim
m→∞

∑

(bjn,bkn)∈DN−1
m

∏

l 6=n

κl,jl,kl
(ul) ε

(jn,bjn);(kn,bkn)
,

(4.17)

where κl,jl,kl
(ul) is defined in (2.13). On the other hand, it follows from (2.12) that

ψjn,kn(sn)
∏

l 6=n

{
(ul − sl)

Hl−1/α
+ − (−sl)

Hl−1/α
+

}
=

∑

(bjn,bkn)∈Z2(N−1)

∏

l 6=n

κl,jl,kl
(ul)

N∏

l=1

ψjl,kl
(sl), (4.18)

where for all fixed ûn ∈ RN−1 the convergence of the series in the RHS (4.18), as a function of

s ∈ RN , holds in Lα(RN ). Next using (4.18) and (2.3) one has, for every fixed ûn ∈ RN−1,

∫

RN

[
ψjn,kn(sn)

( ∏

l 6=n

{
(ul − sl)

Hl−1/α
+ − (−sl)

Hl−1/α
+

})]
dZα(s)

=
∑

(bjn,bkn)∈Z2(N−1)

∏

l 6=n

κl,jl,kl
(ul)ε(jn,bjn);(kn,bkn)

, (4.19)

where the convergence of the series holds in probability. Finally, putting together (4.17), (4.19)

and (2.11), one obtains the proposition. ¤
We are now in position to prove Lemma 13.

Proof of Lemma 13. For any constants M, c1 > 0, n ∈ {1, . . . , N}, integer jn ≥ 0 and rational

numbers r1 < r2, 0 < θ1 < θ2 and ζ > 0, let Γ(n, jn) = Γ(n, jn; M, c1; r1, r2; θ1, θ2; ζ) be the event

defined as

Γ(n, jn; M, c1; r1, r2; θ1, θ2) =
{

ω : ν(n, jn; M ; r1, r2; θ1, θ2; ω) ≤ (c1 jn2−jn)−1/α
}

, (4.20)

First we will show that, there exists c1 large enough such that
∑

jn∈N
P
(
Γ(n, jn; M, c1; r1, r2; θ1, θ2)

)
< ∞. (4.21)
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Using (A.2), (4.14) and that
∥∥(ul−·)Hl−1/α

+ −(−·)Hl−1/α
+

∥∥
Lα(R)

is increasing with |ul| and non-zero

for ul 6= 0, we have

c2 := min
n=1,...,N

inf
t≥1

inf
(jn,kn)∈N×Z

inf
bun∈[θ1,θ2]N−1

tαP (|Gjn,kn(ûn)| > t) > 0 . (4.22)

Observe finally that

ν(n, jn; M ; r1, r2; θ1, θ2; ω)

≥ min
bkn∈[Mjnθ1,Mjnθ2]N−1∩ZN−1

max
{∣∣Gjn,qnp(M−jn k̂n, ω)

∣∣; qn ∈
[2jnr1

p
,

2jnr2

p

]
∩ Z

}
.

It follows from Proposition 14 and (4.22) and this inequality that

P
(
Γ(n, jn)

)
≤

∑

bkn

∏

qn∈[
2jn r1

p
,
2jn r2

p
]∩Z

P
(
|Gjn,qnp(M−jn k̂n)| ≤ (c1 jn2−jn)−1/α

)

≤ c3 M (N−1)jn

(
1− c2 jn 2−jn/c1

)c42jn

,

(4.23)

where the summation is taken over all k̂n ∈ [M jnθ1,M
jnθ2]N−1 ∩ ZN−1 and the constants c2, c3

and c4 do not depend on jn. Using the last inequality one can prove that (4.21) holds by choosing

c1 > 0 large enough. Hence the Borel-Cantelli Lemma implies that, for such a constant c1,

P
( ⋃

m∈N

⋂

jn≥m

Γc(n, jn; M, c1; r1, r2; θ1, θ2)
)

= 1,

where Γc(n, jn;M, c1, r1, r2; θ1, θ2) denotes the complement event of Γ(n, jn;M, c1; r1, r2; θ1, θ2).

But this implies that the event
{

ω : lim inf
jn→∞

(jn2−jn)1/αν(n, jn;M ; r1, r2; θ1, θ2; ω) > 0
}

has probability 1. Finally setting Ω∗2 as the intersection of such sets over
{

(M ; r1, r2; θ1, θ2) ∈
Q5 : M > 0, r1 < r2 and 0 < θ1 < θ2

}
, one obtains the lemma. ¤

The following proposition will allow us to derive Lemma 12 starting from Lemma 13. Roughly

speaking it means that the increments of the random field {Gjn,kn(ûn), ûn ∈ [τ1, τ2]N−1} can be

bound uniformly in the indices jn and kn,

Proposition 16. Let Ω∗0 be the event of probability 1 that was introduced in Corollary 5. Then

for any reals z1 < z2, 0 < τ1 < τ2 and η > 0 arbitrarily small, there exists an almost surely

finite random variable C8 > 0 such that for every n ∈ {1, . . . , N}, jn ∈ N, kn ∈ [2jnz1, 2jnz2],

ûn ∈ [τ1, τ2]N−1, v̂n ∈ [τ1, τ2]N−1 and ω ∈ Ω∗0, one has
∣∣Gjn,kn(ûn, ω)−Gjn,kn(v̂n, ω)

∣∣ ≤ C8(ω) 2jnHn
∑

l 6=n

|ul − vl|Hl−1/α−η. (4.24)
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Proof. Lemma 24 applied to (3.1) shows that, for all ω ∈ Ω∗0 and any η > 0, there exists

C(ω) > 0 such that, for every n ∈ {1, . . . , N}, sn ∈ R, ûn ∈ [τ1, τ2]N−1, v̂n ∈ [τ1, τ2]N−1,
∣∣X0(sn, ûn, ω)−X0(sn, v̂n, ω)

∣∣ ≤ C(ω)
(∑

l 6=n

|ul−vl|Hl−1/α−η
)
|sn|Hn(1+ | log(|sn|)|)1/α+η. (4.25)

Let ζ > 0 be arbitrary small and consider the integral

I(jn, kn) = 2jn

∫

R
(1 + |sn|)Hn+ζ

∣∣ψ−Hn(2jnsn − kn)
∣∣ dsn .

By setting x = 2jnsn − kn we derive that

sup
jn∈N

max
kn∈[2jnz1, 2jnz2]

I(jn, kn) = sup
jn∈N

max
kn∈[2jnz1, 2jnz2]

∫

R

(
1 + 2−jn |x + kn|

)Hn+ζ ∣∣ψ−Hn(x)
∣∣ dx

≤
∫

R

(
1 + |x|+ max{|z1|, |z2|}

)Hn+ζ ∣∣ψ−Hn(x)
∣∣ dx < ∞. (4.26)

The inequality (4.24) then follows from (4.1), (4.25) and (4.26). ¤
We are now in position to prove Lemma 12.

Proof of Lemma 12. We set

ν̃(n, jn; z1, z2; τ1, τ2;ω) = inf
bun∈[τ1,τ2]N−1

max
{
|Gjn,kn(ûn, ω)|; kn ∈ [2jnz1, 2jnz2] ∩ Z

}
. (4.27)

In view of Lemma 13 it is sufficient to show that there exists γ > 0 small enough and M > 0

such that, for all n ∈ {1, . . . , N}, ω ∈ Ω3 and reals z1 < z2, 0 < τ1 < τ2, one has

lim
jn→∞

2−jn(1/α−γ)
∣∣∣ν̃(n, jn; M ; z1, z2; τ1, τ2; ω)− ν(n, jn; z1, z2; τ1, τ2; ω)

∣∣∣ = 0. (4.28)

As the function fjn(·) = max
{∣∣Gjn,kn(·, ω)

∣∣; kn ∈ [2jnz1, 2jnz2]
}

is continuous, there exists

û0
n(jn) ∈ [τ1, τ2]N−1 such that

fjn(û0
n(jn)) = inf

{
fjn(ûn); ûn ∈ [τ1, τ2]N−1

}
. (4.29)

Moreover, when jn is big enough, one has for some k̂0
n(jn) ∈ [M jnτ1, M jnτ2]N−1 ∩ ZN−1,

‖M−jn k̂0
n(jn)− û0

n(jn)‖∞ ≤ M−jn . (4.30)

Then it follows from Proposition 16 that there exists a constant c5 > 0 (independent of (jn, kn))

such that the following inequality holds
∣∣Gjn,kn(M−jn k̂0

n(jn), ω)−Gjn,kn(û0
n(jn), ω)

∣∣ ≤ c5 2jnHnM−jn(H1−1/α−η).

The last inequality implies that

fjn(M−jn k̂0
n(jn)) ≤ fjn(û0

n(jn)) + c5 2jnHnM−jn(H1−1/α−η). (4.31)
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By using (4.29) and (4.31) one obtains that

fjn(û0
n(jn)) ≤ min

{
fjn(M−jn k̂n); k̂n ∈ [M jnτ1, M

jnτ2]n−1
}

≤ fjn(û0
n(jn)) + c5 2jnHnM−jn(H1−1/α−η).

(4.32)

Let us choose M large enough so that

HN − 1/α

H1 − 1/α
<

log M

log 2
.

and then, using (1.5), we choose η > 0 and γ > 0 small enough so that 2jnHnM−jn(H1−1/α−η) =

o(2−jn(1/α−γ)) as jn → ∞. Finally combining this with (4.31), we obtain (4.28). This proves

Lemma 12. ¤

5. Proof of Theorem 3

As usual, the proof of Theorem 3 is divided into proving the upper and lower bounds separately.

The proofs of the lower bounds rely on the standard capacity argument and the following Lemma

17. However, the proofs of the upper bounds are significantly different from that in [2], due to

the fact that both dimHX
(
[0, 1]N

)
and dimHGrX

(
[0, 1]N

)
are not determined by the exponent

for the uniform modulus of continuity of X. Our argument is based on the moment method in

[12]. Combining this argument with the methods in [24], we are able to determine the Hausdorff

dimension of the image X(E) for all nonrandom Borel sets E ⊆ (0,∞)N .

We start by proving some results on the scale parameter of the stable random variable X0(s)−
X0(t) and the moments of the supremum of stable random fields. Since

∥∥X0(s) − X0(t)
∥∥

α
can

be used as a pseudometric for characterizing the regularity properties of X0 via metric entropy

methods (cf. [20, Chapter 12]), these results will be useful for studying other properties of LFSS

X as well.

Lemma 17 is an extension of Lemma 3.4 in [2] for fractional Brownian sheets.

Lemma 17. For any constant ε > 0, there exist positive and finite constants c6 and c7 such that

for all s, t ∈ [ε, 1]N ,

c6

N∑

`=1

∣∣s` − t`
∣∣H` ≤ ∥∥X0(s)−X0(t)

∥∥
α
≤ c7

N∑

`=1

∣∣s` − t`
∣∣H` . (5.1)

Proof. To prove the upper bound in (5.1), we use induction on N . When N = 1, X0 is an

(H,α)-linear fractional stable motion and one can verify directly that (5.1) holds as an equality.

Suppose the upper bound in (5.1) holds for any linear fractional stable sheet with n parameters.

We now show that it holds for a linear fractional stable sheet X0 with n + 1 parameters.
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It follows from the representation (1.1) that, for any s, t ∈ [ε, 1]n+1,
∥∥X0(s) − X0(t)

∥∥α

α
is a

constant multiple of the following integral:

∫

Rn+1

∣∣∣∣
n+1∏

`=1

{
(t` − r`)

H`− 1
α

+ − (−r`)
H`− 1

α
+

}
−

n+1∏

`=1

{
(s` − r`)

H`− 1
α

+ − (−r`)
H`− 1

α
+

}∣∣∣∣
α

dr

≤ c

∫

Rn

∣∣∣∣
n∏

`=1

{
(t` − r`)

H`− 1
α

+ − (−r`)
H`− 1

α
+

}
−

n∏

`=1

{
(s` − r`)

H`− 1
α

+ − (−r`)
H`− 1

α
+

}∣∣∣∣
α

dr

×
∫

R

{
(tn+1 − rn+1)

Hn+1− 1
α

+ − (−rn+1)
Hn+1− 1

α
+

}α
drn+1

+ c

∫

Rn

[ n∏

`=1

{
(s` − r`)

H`− 1
α

+ − (−r`)
H`− 1

α
+

}]α

×
∫

R

∣∣∣(tn+1 − rn+1)
Hn+1− 1

α
+ − (sn+1 − rn+1)

Hn+1− 1
α

+

∣∣∣
α

drn+1

≤ c

{( n∑

`=1

|s` − t`|H`

)α

+ |tn+1 − sn+1|Hn+1α

}
,

where, in deriving the last inequality, we have used the induction hypothesis, the fact that the

function t 7→ ∫
R{(t − r)H−1/α

+ − (−r)H−1/α
+ }αdr is locally uniformly bounded for any H > 1/α

and that, by a change of variable rn+1 = tn+1 + |tn+1 − sn+1|u, the last integral in the previous

display is less than |tn+1− sn+1|αHn+1 up to a multiplicative constant. Hence we have proved the

upper bound in (5.1).

For proving the lower bound in (5.1), we define the stable field Y = {Y (t), t ∈ RN
+} by

Y (t) =
∫

[0, t]
hH (t, r) Zα(dr), (5.2)

where the function hH (t, r) is defined in (1.2). Then by using (1.1) again we can write

∥∥X0(s)−X0(t)
∥∥

α
≥ ∥∥Y (t)− Y (s)

∥∥
α
. (5.3)

To proceed, we use the same argument as in [2, pp. 428–429] to decompose Y as a sum of

independent stable random fields. For every t ∈ [ε, 1]N , we decompose the rectangle [0, t] into the

following disjoint union:

[0, t] = [0, ε]N ∪
N⋃

j=1

R(tj) ∪∆(ε, t), (5.4)
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where R(tj) = {r ∈ [0, 1]N : 0 ≤ ri ≤ ε if i 6= j, ε < rj ≤ tj} and ∆(ε, t) can be written as a union

of 2N −N − 1 sub-rectangles of [0, t]. It follows from (5.2) and (5.4) that for every t ∈ [ε, 1]N ,

Y (t) =
∫

[0,ε]N
hH (t, r) Zα(dr) +

N∑

j=1

∫

R(tj)
hH (t, r) Zα(dr) +

∫

∆(ε,t)
hH (t, r) Zα(dr)

:= Y (ε, t) +
N∑

j=1

Yj(t) + Z(ε, t). (5.5)

Since the processes {Y (ε, t), t ∈ RN}, {Yj(t), t ∈ RN} (1 ≤ j ≤ N) and {Z(ε, t), t ∈ RN} are

defined by the stochastic integrals with respect to Zα over disjoint sets, they are independent.

Only the Yj(t)’s will be useful for proving the lower bound in (5.1).

Now let s, t ∈ [ε, 1]N and j ∈ {1, . . . , N} be fixed. Without loss of generality, we assume

sj ≤ tj . Then
∥∥Yj(t)− Yj(s)

∥∥α

α
=

∫

R(sj)

(
hH (t, r)− hH (s, r)

)α
dr +

∫

R(sj ,tj)
hα

H
(t, r) dr, (5.6)

where R(sj , tj) = {r ∈ [0, 1]N : 0 ≤ ri ≤ ε if i 6= j, sj < rj ≤ tj}. By (5.6) and some elementary

calculations we derive
∥∥Yj(t)− Yj(s)

∥∥α

α
≥

∫

R(sj ,tj)
hα

H
(t, r) dr

=
∫

[0,ε]N−1

∏

k 6=j

(tk − rk)αHk−1

∫ tj

sj

(tj − rj)αHj−1 dr

≥ c |tj − sj |αHj ,

(5.7)

where c > 0 is a constant depending on ε, α and Hk (1 ≤ k ≤ N) only. The lower bound in (5.1)

follows from (5.5), (5.6) and (5.7). ¤
In order to estimate E

[
supt∈T |X0(t)−X0(a)|] for all intervals T = [a, b] ⊆ [ε, 1]N , we will make

use of a general moment inequality of Móricz [17] for the maximum partial sums of multi-indexed

random variables. This approach has the advantage that it is applicable to non-stable random

fields as well. Another way for proving Lemma 19 below is to establish sharp upper bounds for

the tail probability P
[
supt∈T |X0(t)−X0(a)| > u

]
by modifying the arguments in [18].

First we adapt some notation from [17] to our setting. Let {ξk, k ∈ NN} be a sequence of

random variables. For any m ∈ ZN
+ (Z+ is the set of nonnegative integers) and k ∈ NN , let

R = R(m, k) = (m,m + k] ∩ ZN
+ , which will also be called a rectangle in ZN

+ , and we denote

S(R) = S(m, k) =
∑

p∈R

ξp and M(R) = max
1≤q≤k

∣∣S(m, q)
∣∣. (5.8)

It can be verified that M(R) ≤ maxQ⊆R

∣∣S(Q)
∣∣ ≤ 2N M(R), where the maximum is taken over all

rectangles Q ⊆ R. Let f(R) be a nonnegative function of the rectangle R with left-lower vertex
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in ZN
+ . We call f superadditive if for every rectangle R = R(m, k) the inequality

f(Rj1) + f(Rj2) ≤ f(R) (5.9)

holds for every 1 ≤ j ≤ N and 1 ≤ qj < kj , where

Rj1 = R
(
(m1, . . . , mN ), (k1, . . . , kj−1, qj , kj+1, . . . , kN )

)

and

Rj2 = R
(
(m1, . . . ,mj−1, mj + qj ,mj+1, . . . , mN ), (k1, . . . , kj−1, kj − qj , kj+1, . . . , kN )

)
.

In other words, Rj1 ∪Rj2 = R is a disjoint decomposition of R by a hyperplane which is perpen-

dicular to the jth axis. Together with the nonnegativity of f , (5.9) implies that, for every fixed

m ∈ ZN
+ , f(R(m, k)) is nondecreasing in each variable kj (1 ≤ j ≤ N).

The following moment inequality for the maximum M(R) follows from Corollary 1 in [17].

Lemma 18. Let β > 1 and γ ≥ 1 be given constants. If there exists a nonnegative and su-

peradditive function f(R) of the rectangle R in ZN
+ such that E

[|S(R)|γ] ≤ fβ(R) for every R,

then

E
[
M(R)γ

] ≤
(5

2

)N(
1− 2(1−β)/γ

)Nγ
fβ(R) (5.10)

for every rectangle R in ZN
+ .

It is useful to notice that the constant in (5.10) is independent of R. Applying Lemma 18 to

the linear fractional stable sheets, we obtain

Lemma 19. Let the assumption (1.5) hold. Then there exists a positive and finite constant c8

such that for all rectangles T = [a, b] ⊆ [ε, 1]N ,

E
(

sup
t∈T

∣∣X0(t)−X0(a)
∣∣
)
≤ c8

N∑

j=1

(bj − aj)Hj . (5.11)

Proof. For all n ∈ N we define a grid in [a, b] with mesh 2−n by the collection of points

τn(p) = 〈aj + (pj − 1)(bj − aj)2−n〉, p ∈ R(0, 〈2n〉) = {1, . . . , 2n}N .

We rank these points using the lexicographical order, that is, p ∈ R(0, 〈2n〉) has rank k(p) =

p1 + 2n(p2− 1) + · · ·+ 2(N−1)n(pN − 1) ∈ {1, . . . , 2Nn}. Observing that, for all p ∈ R(0, 〈2n〉) and

all p′ ∈ R(0, 〈p〉) \ {p}, we have k(p′) ≤ k(p). Now we define a sequence {ξp, p ∈ R(0, 〈2n〉))} of

random variables by induction on the rank of p ∈ R(0, 〈2n〉) as follows: ξ〈1〉 = 0 (rank 1), and for

any p ∈ R(0, 〈2n〉) having rank k(p) ∈ {2, . . . , 2Nn}, assuming that ξp′ is already defined for all

p′ having rank at most k(p)− 1, we define ξp by the relationship
∑

p′∈R(0,p)

ξp′ = X0(τn(p))−X0(a) . (5.12)
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This equation means that {ξp} defines a signed measure with finite support in R(0, 〈2n〉) and

whose repartition function is given by X0(τn(p))−X0(a) for p ∈ R(0, 〈2n〉). Hence (5.12) can be

extended to any rectangle R(m, k) ⊆ R(0, 〈2n〉) for m 6= 0 as follows

∑

p∈R(m,k)

ξp =
2`−1∑

i=1

{X0(τn(q(i)))−X0(τn(r(i)))} , (5.13)

where ` ∈ {1, . . . , N} is the number of non-zero coordinates of m and, for all i ∈ {1, . . . , 2`−1},
q(i) and r(i) are the points of ZN

+ satisfying, for all j ∈ {1, . . . , N}, |qj(i)− rj(i)| = kj if mj 6= 0

and qj(i) = rj(i) otherwise.

We are now ready to prove (5.11). By the continuity of the sample function X0(t) and the

monotone convergence theorem, since the set ∪n≥1{τn(p) : p ∈ R(0, 〈2n〉)} is dense in [a, b], it is

sufficient to show that for all integers n ≥ 1,

E
(

max
p∈R(0,〈2n〉)

∣∣X0(τn(p))−X0(a)
∣∣
)
≤ c9

N∑

j=1

(bj − aj)Hj , (5.14)

where c9 > 0 is a finite constant independent of [a, b] ⊆ [ε, 1]N and n. Because of (5.12), we see

that this can be done by applying Lemmas 17 and 18.

It follows from Lemma 22 in the Appendix that for any strictly α-stable random variable Z

with scale parameter 1 and every γ < α, we have E(|Z|γ) ≤ c10, where c10 depends on α and γ

only. This fact, (5.12), (5.13) and Lemma 17 imply that for every 1 < γ < α and every rectangle

R = R(m, k) ⊆ R(0, 〈2n〉),

E
(∣∣∣∣

∑

p∈R

ξp

∣∣∣∣
γ)

≤ c11

[ N∑

j=1

(
kj(bj − aj)

2n

)Hj
]γ

≤
[
c12

N∑

j=1

(
kj(bj − aj)

2n

)Hj/H1
]H1γ

,

(5.15)

where the last inequality follows from Hölder’s inequality. For every rectangle R = R(m, k)

included in R(0, 〈2n〉), let

f(R) = c12

N∑

j=1

(
kj(bj − aj)

2n

)Hj/H1

.

Note that, under assumption (1.5), we have α ∈ (1, 2), H1α > 1 and Hj ≥ H1 for every j =

1, . . . , N . Hence the inequality xHj/H1 + yHj/H1 ≤ (x + y)Hj/H1 for all x, y > 0 implies that f is

superadditive.
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We take γ ∈ (1, α) such that β = γH1 > 1 and apply Lemma 18 to derive

E
(

sup
k∈R(0,〈2n〉)

∣∣∣∣
∑

p∈R(0,k)

ξp

∣∣∣∣
γ)

≤ c13

[ N∑

j=1

(bj − aj)Hj/H1

]H1γ

≤ c13

[ N∑

j=1

(bj − aj)Hj

]γ

,

(5.16)

where c13 > 0 is a finite constant independent of [a, b] and n. It can be seen that (5.14) follows

from (5.12), (5.16) and Hölder’s inequality. This finishes the proof of Lemma 19. ¤
We now proceed to prove Theorem 3.

Proof of Theorem 3. We only prove (5.28), which is done by modifying the proof of Theorem

4 in [2] and by making use of Lemmas 17 and 19. The formula (1.10) can be proven using similar

arguments and we leave it to the interested reader.

First we prove the lower bound in (5.28). Let ε ∈ (0, 1) be given and let I = [ε, 1]N . We will

prove that for every 0 < γ < min{d,
∑N

`=1
1

H`
}, dimHX(I) ≥ γ almost surely. By Frostman’s

theorem, it is sufficient to show that we have

E
∫

I

∫

I

1
‖X(s)−X(t)‖γ

dsdt < ∞, (5.17)

where ‖ · ‖ denotes the Euclidean norm in Rd.

It is known that for any d-dimensional distribution function F in Rd with characteristic function

ϕ and any γ > 0, we have

2γ/2−1Γ
(γ

2

) ∫

Rd

‖x‖−γ F (dx) = (2π)−d/2

∫ +∞

0
uγ−1du

∫

Rd

exp
(
− ‖x‖2

2

)
ϕ(ux) dx. (5.18)

This equality can be verified by replacing ϕ in the right side of (5.18) by its expression as a

Fourier integral and then performing a routine calculation. Applying (5.18) to the distribution

of the stable random variable ξ =
(
X(s) − X(t)

)
/‖X(s) − X(t)‖α and using Fubini’s theorem,

we obtain

E
(‖ξ‖−γ

) ≤ c14

∫

Rd

exp
(
− ‖x‖2

2

)
dx

∫ ∞

0
uγ−1 exp

(
− c15|u|α‖x‖α

)
du

= c16

∫

Rd

exp
(
− ‖x‖2

2

)
‖x‖−γdx < ∞,

(5.19)

where the last integral is convergent because γ < d. Combining (5.19) with Lemma 17 yields

E
∫

I

∫

I

1
‖X(s)−X(t)‖γ

dsdt ≤
∫

I

∫

I

1( ∑N
`=1 |s` − t`|H`

)γ dsdt < ∞, (5.20)

where the finiteness of the last integral is proved in [2, p. 432]. This proves (5.17) and hence the

lower bound in (5.28).
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To prove the upper bound in (5.28), we use the covering argument in [12] and [2]. Since clearly

dimHX
(
[0, 1]N

) ≤ d a.s. and Hausdorff dimension is σ-stable [10], it is sufficient to show that for

every ε ∈ (0, 1),

dimHX
(
[ε, 1]N

) ≤
N∑

j=1

1
Hj

a.s. (5.21)

This will be done by using a covering argument.

For any integer n ≥ 2, we divide [ε, 1]N into mn sub-rectangles {Rn,i} with sides parallel to

the axes and side-lengths n−1/Hj (j = 1, . . . , N), respectively. Then

mn ≤ c n
PN

j=1
1

Hj (5.22)

and X
(
[ε, 1]N

)
can be covered by X(Rn,i) (1 ≤ i ≤ mn). Denote the lower-left vertex of Rn,i by

an,i. Note that the image X(Rn,i) is contained in a rectangle in Rd with sides parallel to the axes

and side lengths at most 2 sups∈Rn,i

∣∣Xk(s) − Xk(an,i)
∣∣ (k = 1, . . . , d), respectively. Hence each

X(Rn,i) can be covered by at most

d∏

k=1

[2 sups∈Rn,i

∣∣Xk(s)−Xk(an,i)
∣∣

n−1
+ 1

]

cubes of side-lengths n−1. In this way, we have obtained a (
√

dn−1)-covering for X
(
[ε, 1]N

)
.

By Lemma 19, we derive that for every 1 ≤ i ≤ mn and 1 ≤ k ≤ d,

E
(

sup
s∈Rn,i

∣∣Xk(s)−Xk(an,i)
∣∣
)
≤ c n−1. (5.23)

It follows from (5.22), (5.23) and the independence of X1, . . . , Xd that for any γ >
∑N

j=1
1

Hj
,

we have

E
{ mn∑

i=1

d∏

k=1

[2 sups∈Rn,i

∣∣Xk(s)−Xk(an,i)
∣∣

n−1
+ 1

] (√
dn−1

)γ
}

≤ c n
PN

j=1
1

Hj n−γ → 0 as n →∞.

(5.24)

This and Fatou’s lemma imply that dimHX
(
[ε, 1]N

) ≤ γ almost surely. By letting γ ↓ ∑N
j=1

1
Hj

along rational numbers, we derive (5.21). This completes the proof of Theorem 3. ¤
The above method can be extended to determine the Hausdorff dimension of the image X(E)

for every nonrandom Borel set E ⊆ (0,∞)N , thus extending the results in Wu and Xiao [22] and

Xiao [24] for anisotropic Gaussian random fields to (N, d)-LFSS.

For this purpose, let us first recall from [24] the definition of a Hausdorff-type dimension which

is more convenient to capture the anisotropic nature of X.
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For a fixed (H1, . . . , HN ) ∈ (0, 1)N , let ρ be the metric on RN defined by

ρ(s, t) =
N∑

j=1

|sj − tj |Hj , ∀ s, t ∈ RN . (5.25)

For any β > 0 and E ⊆ RN , define the β-dimensional Hausdorff measure [in the metric ρ] of E

by

Hβ
ρ (E) = lim

δ→0
inf

{ ∞∑

n=1

(2rn)β : E ⊆
∞⋃

n=1

Bρ(rn), rn ≤ δ

}
, (5.26)

where Bρ(r) denotes a closed (or open) ball of radius r in the metric space (RN , ρ). Then Hβ
ρ

is a metric outer measure and all Borel sets are Hβ
ρ -measurable. The corresponding Hausdorff

dimension of E is defined by

dimρ
H
E = inf

{
β > 0 : Hβ

ρ (E) = 0
}
. (5.27)

We refer to [24] for more information on the history and basic properties of Hβ
ρ and dimρ

H
.

Theorem 20. Let the assumption (1.5) hold. Then, for every nonrandom Borel set E ⊆ (0,∞)N ,

dimHX(E) = min
{
d; dimρ

H
E

}
a.s. (5.28)

Proof. The proof is a modification of those of Theorem 3 above and Theorem 6.11 in [24]. For

any γ > dimρ
H
E, there is a covering {Bρ(rn), n ≥ 1} of E such that

∑∞
n=1(2rn)γ ≤ 1. Note that

X(E) ⊆ ∪∞n=1X
(
Bρ(rn)

)
and we can cover each X

(
Bρ(rn)

)
as in the proof of Theorem 3. The

same argument shows that dimHX(E) ≤ γ almost surely, which yields the desired upper bound

for dimHX(E).

By using the Frostman lemma for Hβ
ρ (Lemma 6.10 in [24]) and the capacity argument in the

proof of Theorem 3, one can show dimHX(E) ≥ min
{
d; dimρ

H
E

}
almost surely. We omit the

details. ¤

Appendix A. Technical lemmas

The following lemma allows to control the growth of an arbitrary sequence of strictly α-stable

random variables having the same scale parameter.

Lemma 21. Let {ελ, λ ∈ Zd} be an arbitrary sequence of strictly α-stable random variables

having the same scale parameter. Then, there exists an event Ω∗1 of probability 1, such that for

any η > 0 and any ω ∈ Ω∗1,

|ελ(ω)| ≤ C(ω)
d∏

l=1

(3 + |λl|)1/α+η, (A.1)

where C > 0 is an almost surely finite random variable, only depending on η.
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Proof This lemma simply follows from the fact that for any ν ∈ ((1/α + η)−1, α) one has

E

(
sup
λ∈Zd

|ελ|ν∏d
j=1(3 + |λj |)ν(1/α+η)

)
≤ c

∑

λ∈Zd

d∏

j=1

(3 + |λj |)−ν(1/α+η) < ∞.

¤

Lemma 22. Let α ∈ (0, 2). There exists a constant c17 depending only on α such that for

any strictly α-stable random variable Z with scale parameter ‖Z‖α > 0 and skewness parameter

β ∈ [−1, 1] and all t ≥ ‖Z‖α,

c−1
17 ‖Z‖α

α t−α ≤ P(|Z| > t) ≤ c17 ‖Z‖α
α t−α. (A.2)

Let N ≥ 1. Suppose now that {Zj,k, j` ≥ 1, k` ≥ 2 for ` = 1, . . . , N} is a sequence of strictly

α-stable random variables such that

(i) For all j ∈ (N \ {0})N , {Zj,k, k` ≥ 2 for ` = 1, . . . , N} are independent;

(ii) For all j ∈ (N \ {0})N and k ∈ (N \ {0, 1})N , ‖Zj,k‖α ≤ 1.

Then, with probability 1, one has, for any γ > 0,

sup

{
|Zj,k|

N∏

`=1

j
−1/α−γ
` k

−1/α
` log−1/α−γ(k`) : j` ≥ 1, k` ≥ 2 for ` = 1, . . . , N

}
< ∞ . (A.3)

Proof Relation (A.2) follows from Property 1.2.15 in [20]. Let us now show (A.3) for N = 1, the

proof for N > 1 is similar. By using (A.2), we obtain, for all j ≥ 1 and n ≥ 1,

P
(
max{|Zj,2|, . . . , |Zj,n|} > uj,n

) ≤ 1− (1− c17 u−α
j,n )n,

where uj,n = j1/α+γn1/α log1/α+γ n. Defining nm = [exp(m)], we obtain

E


∑

j≥1

∑

m≥1

1max{|Zj,2|,...,|Zj,nm |}>uj,nm


 =

∑

j≥1

∑

m≥1

P
(

max{|Zj,2|, . . . , |Zj,nm |} > uj,nm

)
< ∞ .

Thus the random variable
∑

j≥1

∑
m≥1 1max{|Zj,2|,...,|Zj,nm |}>uj,nm

is a.s. finite. As a consequence

there exists an a.s. finite positive random variable C such that

max{|Zj,2|, . . . , |Zj,nm |} ≤ C uj,nm for all j ≥ 1, m ≥ 1 .

Let m(k) is the unique integer satisfying nm(k) ≤ k < nm(k)+1. Thus for all j ≥ 1, k ≥ 2, we have

|Zj,k| ≤ C uj,nm(k)+1
= C j1/α+γ n

1/α
m(k)+1 log1/α+γ(nm(k)+1) ,

Observe now that we have, for all k ≥ 2,

nm(k)+1 ≤ exp(m(k) + 1) ≤ e (nm(k) + 1) ≤ e (k + 1) .

Relation (A.3) follows from the last two displays. ¤
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Lemma 23. For any M > 0, η > 0 small enough, δ ∈ (1/α + η, 1), β ∈ [0, δ − 1/α − η), any

well-localized function φ and x, y ∈ R, let An(x, y) := An(x, y; M, φ, δ, β, η) be the quantity defined

as

An(x, y) =
∑

|J |≤n

∑

|K|>M2n+1

2−Jδ |φ(2Jx−K)− φ(2Jy −K)|
|x− y|β (3 + |J |)1/α+η(3 + |K|)1/α+η (A.4)

and let Bn(x, y) := Bn(x, y; φ; δ, β, η) be the quantity defined as

Bn(x, y) =
∑

|J |≥n+1

∑

K∈Z
2−Jδ |φ(2Jx−K)− φ(2Jy −K)|

|x− y|β (3 + |J |)1/α+η(3 + |K|)1/α+η, (A.5)

with the convention that An(x, x) = Bn(x, x) = 0 for any x ∈ R. These quantities converge to 0,

uniformly in x, y ∈ [−M, M ], as n goes to infinity.

Proof. Let x, y ∈ [−M, M ] and J0 ≥ − log2(2M) be the unique integer such that

2−J0−1 < |x− y| ≤ 2−J0 . (A.6)

Let us first prove that An(x, y) converges to 0, uniformly in x, y as n goes to infinity. From now

on we suppose that J is an arbitrary integer satisfying |J | ≤ n. We need to derive suitable upper

bounds for the quantity

A(J)
n (x, y) =

∑

|K|>M2n+1

|φ(2Jx−K)− φ(2Jy −K)|
|x− y|β (3 + |K|)1/α+η. (A.7)

For this purpose, we consider two cases J ≤ J0 and J ≥ J0 + 1 separately. First we suppose that

J ≤ J0. (A.8)

Using the Mean Value Theorem, (2.2), (A.6) and (A.8) one obtains that

|φ(2Jx−K)− φ(2Jy −K)| ≤ c 2J |x− y| sup
u∈I

(3 + |u|)−2

≤ c 2J |x− y|(2 + |2Jx−K|)−2,

where I denotes the compact interval with end-points 2Jx−K and 2Jy −K, whose length is at

most 1 by (A.6) and (A.8). Next the last inequality and (A.7) entail that

A(J)
n (x, y) ≤ c 2J |x− y|1−β

∑

|K|>M2n+1

(3 + |K|)1/α+η

(2 + |2Jx−K|)2 . (A.9)

On the other hand, using that |x| ≤ M and |J | ≤ n, for all |K| > M2n+1, one gets

(3 + |K|)1/α+η

(2 + |2Jx−K|)2 ≤
(3 + |K|)1/α+η

(2 + |K| −M2n)2
≤ c

(
1 + |K|)−(2−1/α−η)

. (A.10)

Putting together (A.9), (A.10) and (A.6), one obtains that

A(J)
n (x, y) ≤ c 2J0(β−1)2J−n(1−1/α−η). (A.11)
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Let us now study the second case where

J ≥ J0 + 1. (A.12)

It follows from (A.6), (A.12) and (A.7) that

A(J)
n (x, y) ≤ 2Jβ

∑

|K|>M2n+1

{
|φ(2Jx−K)|+ |φ(2Jx−K)|

}
(3 + |K|)1/α+η. (A.13)

On the other hand, using (2.2) and the fact that |J | ≤ n one has, for any real u ∈ [−M,M ] and

any K ∈ Z satisfying |K| > M2n+1,

∣∣φ(2Ju−K)
∣∣ ≤ c (3 + |2Ju−K|)−2 ≤ c (3 + |K| −M2n)−2 ≤ c18 (3 + |K|)−2. (A.14)

Combining (A.13) with (A.14) one gets that

A(J)
n (x, y) ≤ c19 2Jβ−n(1−1/α−η) . (A.15)

It follows from (A.4), (A.7), (A.11) and (A.15) that

An(x, y) ≤ c 2−n(1−1/α−η)


2J0(β−1)

J0∑

J=−∞
2J(1−δ)(3 + |J |)1/α+η +

∞∑

J=J0+1

2J(β−δ)(3 + |J |)1/α+η




≤ c 2−n(1−1/α−η)2J0(β−δ)(3 + |J0|)1/α+η

≤ c20 2−n(1−1/α−η) ,

where we used Lemma 26 to bound the series and then that 2−J0 ≤ 2M , by (A.6). Since c20

does not depend on (x, y), the last inequality proves that An(x, y) converges to 0, uniformly in

x, y ∈ [−M, M ] as n goes to infinity.

Let us now prove that Bn(x, y) converges to 0, uniformly in x, y as n goes to infinity. In all

the sequel J denotes an arbitrary integer satisfying |J | ≥ n + 1. First, we derive a suitable upper

bound for the quantity

B(J)
n (x, y) =

∑

K∈Z

|φ(2Jx−K)− φ(2Jy −K)|
|x− y|β (3 + |K|)1/α+η. (A.16)

As above, we distinguish two cases: J ≤ J0 and J ≥ J0 + 1. First we suppose that (A.8) is

verified. As in (A.9), we have B
(J)
n (x, y) ≤ c 2J |x− y|1−β

∑
K∈Z(3 + |K|)1/α+η(2 + |2Jx−K|)−2.

Next, using (A.6) and Lemma 25 and the fact that |x| ≤ M , one obtains that

B(J)
n (x, y) ≤ c 2J+J0(β−1)(1 + 2J)1/α+η. (A.17)
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Now let us suppose that (A.12) is verified. By using this relation, (A.6), the triangle inequality,

(2.2), Lemma 25 and the fact that x, y ∈ [−M,M ], one gets

B(J)
n (x, y) ≤ 2Jβ

∑

K∈Z

{
|φ(2Jx−K)|+ |φ(2Jy −K)|

}
(3 + |K|)1/α+η

≤ c 2Jβ
∑

K∈Z

{
(3 + |2Jx−K|)−2 + (3 + |2Jy −K|)−2

}
(3 + |K|)1/α+η

≤ c 2Jβ
{

(1 + 2J |x|)1/α+η + (1 + 2J |y|)1/α+η
}

≤ c 2J(β+1/α+η) (A.18)

Since 2−J0 ≤ M , for all n ≥ log2(2M), we have −n ≤ J0, and thus, by (A.17),

∑

J≤−n

2−Jδ(3 + |J |)1/α+ηB(J)
n (x, y) ≤ c 2J0(β−1)

∑

J≤−n

2J(1−δ)(3 + |J |)1/α+η

≤ c 2n(δ−1)(1 + n)1/α+η , (A.19)

where we used Lemma 26 and 2−J0 ≤ M . Applying Lemma (26) with (A.17) and (A.18) yields

∑

J∈Z
2−Jδ(3 + |J |)1/α+ηB(J)

n (x, y) ≤ c 2J0(β+1/a+η−δ)(3 + |J0|)1/α+η , (A.20)

and for any n ≥ J0,

∑

J≥n

2−Jδ(3 + |J |)1/α+ηB(J)
n (x, y) ≤ c 2n(β+1/a+η−δ)(3 + n)1/α+η . (A.21)

Since β + 1/a + η − δ < 0, the function t 7→ 2t(β+1/a+η−δ)(3 + t)1/α+η is decreasing for t large

enough, and hence for n large enough, either n ≥ J0 and we may apply (A.21), or n ≤ J0

and we may apply (A.20) whose right-hand side is smaller than the right-hand side of (A.21).

Hence (A.21) holds for all n large enough independently of J0. This, with (A.19), shows that

Bn(x, y) converges uniformly in x, y, as n goes to infinity. ¤

Lemma 24. Let φ be a well-localized function i.e. a function satisfying the condition (2.2). For

any δ ∈ (0, 1), γ ∈ (0, δ) and η ≥ 0, define

Sδ,γ,η(x, y;φ) =
∑

(J,K)∈Z2

2−Jδ|φ(2Jx−K)− φ(2Jy −K)|(3 + |J |)γ+η(3 + |K|)γ logγ+η(2 + |K|)

(A.22)

and

Tδ,γ,η(x; φ) =
∑

(J,K)∈Z2

2−Jδ
∣∣φ(2Jx−K)− φ(−K)

∣∣(3 + |J |)γ+η(3 + |K|)γ logγ+η(2 + |K|). (A.23)
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Then, there exists a constant c > 0, only depending on δ, γ and φ, such that the inequalities

Sδ,γ,η(x, y; φ) ≤ c |y − x|δ−γ
[|y − x|γ + |x|γ + |y|γ]

× (
1 +

∣∣ log |y − x|∣∣)2γ+2η {
logγ+η(2 + |x|) + logγ+η(2 + |y|)} (A.24)

and

Tδ,γ,η(x; φ) ≤ c
(
1 +

∣∣ log |x|∣∣)γ+η |x|δ (A.25)

hold for all x, y ∈ R (with the convention that 0a × logb 0 = 0 for all a, b > 0).

Proof. We only prove (A.24), the proof of (A.25) is similar. By (2.2), there is a constant c > 0

such that, for all J,K ∈ Z and x, y ∈ R,
∣∣φ(2Jx−K)− φ(2Jy −K)

∣∣ ≤ c
{
(2 + |2Jx−K|)−2 + (2 + |2Jy −K|)−2

}
. (A.26)

The quantity |φ(2Jx − K) − φ(2Jy − K)| can be bounded more sharply when the condition

2J |x− y| ≤ 1 holds, namely by using (2.2) and the Mean Value Theorem one obtains that

|φ(2Jx−K)− φ(2Jy −K)| ≤ c 2J |x− y| sup
u∈I

(3 + |2Ju−K|)−2

≤ c 2J |x− y|(2 + |2Jx−K|)−2 , (A.27)

where I denotes the compact interval whose end-points are x and y. From now on we will assume

that x 6= y (Relation (A.24) is trivial otherwise) and let J0 ∈ Z be the unique integer satisfying

1/2 < 2J0 |y − x| ≤ 1. (A.28)

The inequalities (A.26) and (A.27) entail that

Sδ,γ,η(x, y; φ) ≤ c
(
AJ0 |x− y|+ BJ0

)
, (A.29)

where

AJ0 =
∑

J≤J0

∑

K∈Z
2J(1−δ)(2 + |2Jx−K|)−2(3 + |J |)γ+η(3 + |K|)γ logγ+η(2 + |K|)

and

BJ0 =
∑

J>J0

∑

K∈Z
2−Jδ

{
(2+ |2Jx−K|)−2 +(2+ |2Jy−K|)−2

}
(3+ |J |)γ+η(3+ |K|)γ logγ+η(2+ |K|).

Lemma 25 and Lemma 26 yield

AJ0 ≤ c 2J0(1−δ) (1 + |x|γ2J0γ) (1 + |J0|)2γ+2η logγ+η(2 + |x|)

and, since γ − δ < 0,

BJ0 ≤ c 2−J0δ (1 + (|x|γ + |y|γ)2J0γ) (1 + |J0|)2γ+2η {logγ+η(2 + |x|) + logγ+η(2 + |y|)} .
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Inserting these two bounds into (A.29) and using (A.28), we get (A.24) and the proof is finished.

¤

Lemma 25. For any γ ∈ [0, 1) and η ≥ 0, there exists a constant c > 0 such that, for all u ∈ R,
∑

k∈Z
(2 + |u− k|)−2(1 + |k|)γ logη(2 + |k|) ≤ c (1 + |u|)γ logη(2 + |u|) .

Proof Put k′ = [u]− k, where [u] is the integer part of u. Hence
∑

k∈Z

(1 + |k|)γ logη(2 + |k|)
(2 + |u− k|)2 =

∑

k′∈Z
(2 + |u− [u] + k′|)−2(1 + |[u]− k′|)γ logη(2 + |[u]− k′|)

≤
∑

k′∈Z
(1 + |k′|)−2(2 + |u|+ |k′|)γ logη(2 + |u|+ |k′|) .

The result then follows by observing that (2+|u|+|k′|)γ ≤ (1+|u|)γ(2+|k′|)γ , logη(2+|u|+|k′|) ≤
c logη(2 + |u|) logη(2 + |k′|)} and γ − 2 < −1. ¤

Lemma 26. Let θ 6= 0 and γ ∈ R. Set c :=
∑

n≥0 2−|θ|n(1 + n)|γ| < ∞. Then for any n0 < n1

in {0,±1,±2, . . . ,±∞},
n1∑

n=n0

2nθ(1 + |n|)γ ≤ c





2n0θ(1 + |n0|)γ if θ < 0

2n1θ(1 + |n1|)γ if θ > 0.
(A.30)

Proof.Take e.g. θ < 0 and write
n1∑

n=n0

2nθ(1 + |n|)γ ≤ 2n0θ(1 + |n0|)γ
∑

m≥0

2mθ

(
1 + |m + n0|

1 + |n0|
)γ

.

Now observe that
1

1 + |m| ≤
1 + |m + n0|

1 + |n0| ≤ 1 + |m|

so that supn0

∑
m≥0 2mθ

(
1+|m+n0|

1+|n0|
)γ

< ∞ for any γ ∈ R.¤
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