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Abstract

In this survey, we first review various forms of local nondeterminism
and sectorial local nondeterminism of Gaussian and stable random fields.
Then we give sufficient conditions for Gaussian random fields with station-
ary increments to be strongly locally nondeterministic (SLND). Finally,
we show some applications of SLND in studying sample path properties
of (N, d)-Gaussian random fields. The class of random fields to which the
results are applicable includes fractional Brownian motion, the Brownian
sheet, fractional Brownian sheets and so on.
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1 Introduction

The most important example of self-similar (non-Markovian) Gaussian processes
is fractional Brownian motion (fBm) which was first introduced, as a moving
average Gaussian process, by Mandelbrot and Van Ness (1968)

Bu(t) = ry / [((t— ) 4)T12 — ((=5)4) T~ 1/2]dB(s),

—0o0

where ¢, = max{t,0}, B is the ordinary Brownian motion and xg > 0 is the
normalizing constant so that E(B(1)2) = 1, where H € (0,1) is called the self-
similarity index, or Hurst index. Except the case H = 1/2, fBm does not have
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independent increments, it is not a Markov process, nor a semimartingale; see
Lin (1995) or Rogers (1997) for a proof of this last fact. Due to its self-similarity
and long-range dependence (as H > 1/2), it has been applied to model various
phenomena in telecommunications, turbulence, image processing and finance.
As a result, the theory on fractional Brownian motion has been developed sig-
nificantly. We refer to Doukhan et al. (2003) for further information.

Moreover, in recent years, many authors have proposed to use more general
self-similar Gaussian processes and random fields as stochastic models in sev-
eral different scientific areas; see e.g. Addie et al. (1999), Anh et al. (1999),
Benson et al (2004), Bonami and Estrade (2003), Cheridito (2004), Manner-
salo and Norros (2002), Mueller and Tribe (2002), just to mention a few. Such
applications have raised many interesting theoretical questions about Gaussian
random fields in general.

One of the major difficulties in studying the probabilistic, analytic or statis-
tical properties of Gaussian random fields is the complexity of their dependence
structures. As a result, many of the existing tools from theories on Brownian
motion, Markov processes or martingales fail for Gaussian random fields; and
one often has to use general principles for Gaussian processes or to develop new
tools. In this paper, we show that in many circumstances, the properties of local
nondeterminism can help us to overcome this difficulty so that many elegant
and deep results of Brownian motion (and Markov processes) can be extended
to Gaussian (or stable) random fields.

The rest of this paper is organized as follows. In Section 2, we recall the
definitions of various forms of local nondeterminism. In Section 3, we give
sufficient conditions for ordinary or strong local nondeterminism to hold for
Gaussian random fields with stationary increments. In Section 4, we show
applications of the properties of local nondeterminism in studying small ball
probabilities, Hausdorff dimension and exact Hausdorff measure functions of
the sample paths, and local times of Gaussian random fields.

We end this section with some general notation. Throughout this paper
(except in Section 2.4), X = {X(¢),t € R} will denote an (N, d)-Gaussian
random field, where for every t € RY,

X(t): (Xl(t)a-“,Xd(t))a (11)

and we will assume E(X;(¢)) =0 for every 1 < j < d. When N =1, X is called
a Gaussian process in R%.

A parameter t € RY is written as t = (t1,...,tn) and if t; = t5 = ---
=ty = ¢ € R, then we write ¢ as (c¢). There is a natural partial order, “<”, on
RY. Namely, s<t if and only if s, < t, for all £ = 1,...,N. When s<t, we
define the closed interval or rectangle,

N
[s,t] = [ ] [se,tel-
{=1

We will let A denote the class of all N-dimensional closed intervals T C R¥.



We use (-,-) and | - | to denote the ordinary scalar product and the Euclidean
norm in R™ respectively, no matter the value of the integer m.

Unspecified positive and finite constants will be denoted by ¢ which may have
different values from line to line. Specific constants in Section ¢ will be denoted
byc,,,¢, ,, ... Fortwo non-negative functions f and g on RV, we denote f < g
if there exists a finite constant ¢ > 1 such that ¢! f(z) < g(z) < ¢ f(z) for all
z in some neighborhood of 0.

Acknowledgement. The author thanks Professors Serge Cohen and Jacques
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2 Definitions of local nondeterminism

In this section, we recall the definitions of different forms of local nondetermin-
ism for Gaussian and stable random fields.

2.1 Local nondeterminism for Gaussian random fields

The concept of local nondeterminism (LND, in short) of a Gaussian process was
first introduced by Berman (1973) to unify and extend his methods for study-
ing the existence and joint continuity of local times of real-valued Gaussian
processes. Berman’s definition was later extended by Pitt (1978) and Cuz-
ick (1982a) to (N,d)-Gaussian random fields and by Cuzick (1978) to local
¢-nondeterminism for an arbitrary positive function ¢.

Berman’s definition of LND for Gaussian processes Let X = {X(¢),t €
Ry} be a real-valued, separable Gaussian process with mean 0 and let 7' C Ry
be an open interval. Assume that E[X(¢)?] > 0 for all t € T and there exists
0 > 0 such that

o?(s,t) =E[(X(s) — X(¢))*] >0 for s, t €T with 0<|s—¢t/ <4

Recall from Berman (1973) that X is called locally nondeterministic on T if for
every integer n > 2,
lim inf V, >0, (2.1)

e—0 t,—t1<e

where V,, is the relative prediction error:

V- Var (X (t,) = X (tn-1)|X (1), ..., X (tn—1))
" Var (X (t,) — X (ta—1))

(2.2)

and the infimum in (2.1) is taken over all ordered points t; < to < .-+ < t,, in
T with t,, —t; < e. Roughly speaking, (2.1) means that a small increment of
the process X is not almost relatively predictable based on a finite number of
observations from the immediate past.



It follows from Berman (1973, Lemma 2.3) that (2.1) is equivalent to the
following property which says that X has locally approximately independent
increments: for any positive integer n > 2, there exist positive constants c,, and
0 (both may depend on n) such that

Var(zuj (X(t;) — X(tj_l))) > e 3w (tty) (2.3)

for all ordered points 0 = tg < t; <ty < --- < t, in T with t,, —t; < § and all
u; € R (1 <j <mn). We refer to Nolan (1989, Theorem 2.6) for a proof of the
above equivalence in much more general setting.

Local nondeterminism for Gaussian random fields In order to study the
joint continuity of the local times of an (N, d)-Gaussian random field X =
{X(t), t € RN}, Pitt (1978) extended Berman’s definition (2.1) of LND to the
random field setting; see also Geman and Horowitz (1980). Assume that T € A
is an interval and for all s # t € T, the covariance matrix of X (s) — X (¢) is
positive definite and is denoted by ¥2(s,t). Then there is a non-singular matrix
Y(s,t) such that (s, )Y (s,t) = ¥2(s,t).

According to Pitt (1978), a Gaussian random field X as above is called locally
nondeterministic on T if for every integer n > 2, there exist positive constants
¢, and 6, such that for all @ = (u',...,u") € R*\{0},

n

Var (3 _(ul, 7 (W) - X)) 2 e 3ol (2.4)

j=1

whenever the points t',¢2,...,t" are distinct and all lie in a sub-interval of T
with side-length at most d,, and satisfy

[t/ — 77 < |7 — ]| forall 1<i<j<n. (2.5)

Note that (2.5) introduces a partial order among t!,...,t" € RY; and there are
at least n different ways to order them using (2.5).

Cuzick (1982a) gives another definition of local nondeterminism: an (N, d)-
Gaussian random field X is locally nondeterministic on T if for all integers
n > 1, there exist ¢, > 0 and ¢,, > 0 (depending only on n) such that for any
th,...,t" € T with [t/ —t"| < §,, the conditional vector X (") given X (t/),
j=1,...,n—1 satisfies

detCov(X(t")|X(#),1 < j <n—1) > ¢, detCov(X(t") — X(t)),  (2.6)

where t* = ¢ if [t —t"| = inf;,, [t/ —t"| and detCov(Z) denote the determinant
of the covariance matrix of the random vector Z.

Note that when d =1 or, d > 1 and X has independent components, Theo-
rem 2.6 of Nolan (1989) implies that (2.4) and (2.6) are equivalent. In general,
however, it does not seem clear how these two definitions are related.



Remark 2.1 Both definitions of Pitt and Cuzick are applicable to all (N, d)-
Gaussian random fields. Even though so far most authors have been working
only with (N, d)-Gaussian random fields with independent components, it has
become clear that one also needs to study (N, d)-Gaussian fields with dependent
components. An interesting example of such Gaussian random fields is the op-
erator fractional Brownian motion defined in Mason and Xiao (2002). It would
be interesting to know whether it is LND in the sense of Pitt and/or Cuzick.
An affirmative answer will be useful to establish many interesting sample path
properties of operator fractional Brownian motion. O

The inequalities (2.3) and (2.4) have played significant roles in the works
of Berman (1969-1973) and Pitt (1978) on local time theory of a large class
of Gaussian random fields. Their results, in turn, imply irregularity and frac-
tal properties of the sample paths of Gaussian random fields. See Geman and
Horowitz (1980), Adler (1981), Geman et al. (1984) and the references therein
for further information. Moreover, local nondeterminism has been applied by
Rosen (1984) and Berman (1991) to study the existence and regularity of self-
intersection local times, by Kahane (1985) to study the image and level sets
of fractional Brownian motion, and by Monrad and Pitt (1987) to prove uni-
form Hausdorff dimension results for the image and inverse image of Gaussian
random fields. Because of its various applications, it has been an interesting
question to determine when a given Gaussian process is locally nondeterminis-
tic. Some sufficient conditions for real-valued Gaussian processes to be locally
nondeterministic can be found in Berman (1973, 1988, 1991), Cuzick (1978),
Pitt (1978).

k-th order local nondeterminism Berman’s definition of LND was extended
by Cuzick (1978) who defined local ¢-nondeterminism for real-valued Gaussian
processes by replacing the variance function o2 (t,,,t,_1) in (2.2) by ¢(t, —tn_1),
where ¢ is an arbitrary positive function. Furthermore, he has defined the so-
called kth order local ¢-nondeterminism, not for the process X itself, but for
the k-th divided differences of X; see Cuzick (1978, p.73) for details. He has
given sufficient conditions for a stationary Gaussian processes to have this kth
order LND property and then applied it to estimate the moments of the number
N(0,T) of zero crossings of a smooth stationary Gaussian process X in time
interval [0,7]. In particular, he has provided verifiable sufficient conditions
for the finiteness of the k-th factorial moment My (0,T) of N(0,T); see also
Cuzick (1975) and Miroshin (1977). Even though the rest of this paper will not
discuss the k-th order local ¢-nondeterminism any further, we mention that, in
order to study the rate of growth of M (0,T) as a function of k, Cuzick (1978,
p. 81) has noticed that the k-th order local ¢-nondeterminism is not enough
and has suggested to use a notion of k-th order strong ¢-local nondeterminism.
See Cuzick (1977) for some partial results along this direction on a stationary
Gaussian process X such that X’ exists in the quadratic mean sense. It would
be interesting to study this problem under the more general setting of Section
2.2.




2.2 Strong ¢-local nondeterminism for Gaussian random
fields

There are some drawbacks in the definitions of local nondeterminism in Sec-
tion 2.1: one is that the liminf in (2.1) and the constant ¢, in (2.3) depend on
the number of “time” points; the other is that there are many different ways
to order n points in RY using (2.5). Because of these, the properties of lo-
cal nondeterminism defined by Berman (1973), Pitt (1978) and Cuzick (1978,
1982a) are not enough for establishing fine regularity properties such as the law
of the iterated logarithm and the modulus of continuity for the local times or
self-intersection local times of Gaussian random fields. For studying these and
many other problems on Gaussian random fields, the concept of strong local non-
determinism (SLND) has proven to be more appropriate. See Cuzick (1982b),
Monrad and Pitt (1987), Csorgd et al. (1995), Monrad and Rootzén (1995),
Talagrand (1995, 1998), Xiao (1996, 1997a, b, c¢), Kasahara et al. (1999), Xiao
and Zhang (2002), just to mention a few. In Section 4, we will address some of
these aspects.

The following definition of the strong local ¢-nondeterminism (SLHND) was
essentially given by Cuzick and DuPreez (1982) for Gaussian processes (i.e.,
N = 1). For Gaussian random fields, Definition 2.2 is more general than the
definition of strong local a-nondeterministism of Monrad and Pitt (1987).

Definition 2.2 Let X = {X(t),t € RN} be a real-valued Gaussian random
field with 0 < E[X (t)%] < oo for all t € T, where T € A is an interval. Let ¢
be a given function such that $(0) =0 and ¢(r) > 0 for r > 0. Then X is said
to be strongly locally ¢-nondeterministic (SLoND) on T if there exist positive
constants c, , and ro such that for allt € T and all 0 < r < min{[t|, 7o},

Var(X(¢)|X(s):s €T, r <|s—t| <o) >c,, ¢(r). (2.7)

Remark 2.3 By modifying the proof of Proposition 7.2 of Pitt (1978), we can
verify that if (2.7) holds and T is bounded away from 0, then for all n > 2 there
exists a constant c,, = ¢, ,(n) > 0 such that

Var( D wi(X () = X(41))) = a0 Yooty —tial)  (28)
j=1 j=1

for all u; € Rand t; € T (j = 1,...,n) satisfying (2.5). That is, X is locally
¢-nondeterministic on 7" in the sense of Section 2.1. On the other hand, Cuzick
(1977) has given an example of stationary Gaussian process X = {X (¢),t € R}
in R that satisfies (2.8) for each fixed integer n and a function ¢ < o2, while the
conditional variance in the left-hand side of (2.7) equals 0. Hence SLND (2.7)
is strictly stronger than Berman’s LND (2.1) or (2.3). O



Remark 2.4 When N = 1, one could also define X to be strongly locally
¢-nondeterministic when the constant ¢, in (2.3) (with o2 replaced by ¢) is in-
dependent of n. Clearly, this condition implies (2.7). It is not known whether the
converse is true; see Remark 2.3 for a weaker result. Even though this alterna-
tive way of defining SYLND is not needed for Gaussian processes, a modification
of this is useful for stable processes; see Section 2.4. O

Remark 2.5 We mention that in the studies of Gaussian processes X =
{X(t),t € R}, due to the simple order structure of R, it is sometimes enough
to assume that X is one-sided strongly locally ¢-nondeterministic, namely, for
some constant ¢, ; > 0

Var(X(1)|X(s):s €T, r<t—s<rg) >c,, ¢(r); (2.9)

see Cuzick (1978), Berman (1972, 1978), Monrad and Rootzén (1995). When
X ={X(t),t € R} is a Gaussian process with stationary increments, some suffi-
cient conditions in terms of the variance function o?(h) = E[(X (t+h) — X(t))Q]
for the one-sided strong local nondeterminism have been obtained earlier. Mar-
cus (1968a) and Berman (1978) have proved that if o(h) — 0 as b — 0 and
o2(h) is concave on (0,d) for some § > 0, then X is one-sided strongly locally
¢-nondeterministic for ¢(r) = o?(r). O

The most important example of SLND Gaussian random field is the N-
parameter fractional Brownian motion By = {Bpg(t),t € RN} of index H
(0 < H < 1). This is a centered, real-valued Gaussian random field with
covariance function

E(Bur(1)Bu(s)) = 5 (1P + s — It — ™).

The strong local ¢g-nondeterminism of By with ¢(r) = r2# follows from Lemma
7.1 of Pitt (1978), where the self-similarity of B¥ has played an essential
role. For a stationary Gaussian process X = {X(¢),t € R}, Cuzick and
DuPreez (1982) have given a sufficient condition for X to be strongly locally
¢-nondeterministic in terms of its spectral measure F'. More precisely, they have
proved that if the absolutely continuous part of dF(\) has the property that

W >hVAN V0 <7< 1o (2.10)
and * log h())
og
/0 T dX\ > —o0, (2.11)

then X is SL¢ND. Their proof uses the ideas from Cuzick (1977) and relies on
the special properties of stationary Gaussian processes. Note that when N =1,
the strong local 72-nondeterminism of By can also be derived from the above
result of Cuzick and DuPreez (1982) by using the Lamperti transformation. This
approach can be applied to study self-similar Gaussian processes in general.



In Section 3 we will give a sufficient condition for Gaussian random fields
with stationary increments to be strongly locally nondeterministic.

2.3 Sectorial local nondeterminism for anisotropic Gauss-
ian random fields

In Definition 2.2, (2.7) measures the prediction error in terms of the distance
between ¢t and the region where the information is known. This works if the
Gaussian random field X has certain approximately isotropic property, but can
not be expected to hold for general anisotropic random fields. In fact, it has
been well-known that the Brownian sheet does not have this type of strong
local nondeterminism. This accounts for the significant difference between the
existing methods for studying the fractional Brownian motion and the Brownian
sheet.

Recently, Khoshnevisan and Xiao (2004b) have shown that the Brownian
sheet possesses the so-called sectorial local-nondeterminism. This property leads
to a unification of many of the methods developed for fractional Brownian mo-
tion and those for the Brownian sheet and to solutions of several problems on
the image and multiple points of the Brownian sheet. See Khoshnevisan and
Xiao (2004b), Khoshnevisan, Wu and Xiao (2005) for further information.

In the following, we will discuss sectorial local nondeterminism for fractional
Brownian sheets. Recall that, for a given vector H = (Hy,...,Hy) € (0,1)V, a

real-valued fractional Brownian sheet Bg = {Bg? (t),t € RY} with Hurst index

H is a centered Gaussian random field with covariance function given by

N
i 1
E[Bé’(S)Béq(t)} =11 5(53’{@ +£2He |5, — tg|2Hf), steRY.  (212)

It follows from (2.12) that Bg}(t) = 0 as. for every t € ORY, where ORY
denotes the boundary of RY.

Let BF - ,Bf be d independent copies of Bé;[ . Then the Gaussian random
field BA = {Bﬁ(t), t € RY} with values in R? defined by

BA(t) = (BA),...,BY(t), vteRY (2.13)

is called an (N, d)-fractional Brownian sheet with Hurst index H = (Hj, ...,

Hy). Tt follows from (2.12) that B has the following operator-self-similarity:
for any N x N diagonal matrix A = (a;;) with a;; =a; > 0forall1 <i< N
and a;; = 0 if ¢ # j, we have

(BT (A1), t e RN} i{Haijﬁ(t), teRN}, (2.14)

where X £ Y means that the two processes have the same finite dimensional
distributions. Moreover, for every ¢ = 1,..., N, B is a fractional Brownian
motion in R? of Hurst index H, along the direction of the ¢th axis.



If N>1and H; =---= Hy = 1/2, then B¥ is the (N, d)-Brownian sheet.
See Orey and Pruitt (1973) and Khoshnevisan (2002) for systematic accounts
on the Brownian sheets.

Fractional Brownian sheets arise naturally in many areas such as in stochas-
tic partial differential equations [cf. @ksendal and Zhang (2000), Hu, @ksendal
and Zhang (2000)] and in the studies of most visited sites of symmetric Markov
processes [cf. Eisenbaum and Khoshnevisan (2002)]. One of the important fea-
tures of B is that, when Hq,..., Hy are different, it has different probabilistic
and analytic behaviors along different directions and thus is highly anisotropic.
Recently, there have been interest in using anisotropic Gaussian random fields
to model bone structure [Bonami and Estrade (2003)] and aquifer structure in
hydrology [Benson et al. (2004)]. We believe that the results and techniques
for characterizing the anisotropic properties of the fractional Brownian sheet in
terms of H will also be helpful for studying other types of anisotropic Gaussian
random fields. -

The main tools for analyzing the dependence structure of B} are the fol-
lowing stochastic integral representations. They can be proved by verifying the
covariance functions.

e Moving average representation

o=c [ [ T, 10500 ). (215)

0 p=1
where W = {W(s),s € RV} is a standard real-valued Brownian sheet and for
€ (0,1) and s,t € R,

9. (t,s) = ((t— 5)+)H71/2 B ((75)+)H71/27

with s = max{s, 0}, and where c, , is the normalizing constant given by

/ / HgHZ(l,sz)r ds.

0 Ty=1

¢ Harmonizable representation

Ztaj_l/\

— /RN H Srwiz= W(d\), (2.16)

where W is the Fourier transform of white noise in RY and ¢,5 > 0 is the
normalizing constant so that Var(Bg((1))) = 1. This representation for B{ is
proved by Herbin (2004).

The following sectorial LND of fractional Brownian sheet is proved by Wu
and Xiao (2005), extending a results of Khoshnevisan and Xiao (2004b) on the
Brownian sheet.



Lemma 2.6 Let Bé;' = {Béq(t), t € RY} be a fractional Brownian sheet in R

with Hurst index H = (Hy,...,Hy) € (0,1)N. Then for any e > 0, there is a

constant c, o > 0 such that for all integers n > 2, th. . " € g, 00)V,

N

BEW)1<j<n-— 1) > ¢ min |t — 27, (217)

BHn
Var( 0 ( ) 2,6 pot 0<j<n

where t) = 0 for every £ =1,...,N.

The proof of Lemma 2.6 makes use of the harmonizable representation of

B and a Fourier analytic argument. This lemma plays key roles in Ayache,
Wu and Xiao (2005) who verify a conjecture of Xiao and Zhang (2002) on the

joint continuity of local times of a fractional Brownian sheet B¥, and in Wu
and Xiao (2005) who study the geometric properties of the sample paths of B.

2.4 Local nondeterminism for stable processes

In this subsection, we will discuss briefly the properties of local nondeterminism
for stable random fields. First we mention the following papers which are closely
related to the topics of this paper, but will not be further addressed because
all the random fields considered there possess certain Markovian nature. Ehm
(1981) has established many deep results on the sample path properties of the
stable sheet and his arguments rely crucially on the property of independent
increments of the stable sheet. Khoshnevisan, Xiao and Zhong (2003a, b) have
extended several of Ehm’s results to additive Lévy processes and have also es-
tablished some useful connections between hitting probabilities and a class of
natural capacities. Mountford and Nualart (2004) and Mountford (2004) de-
termine the exact Hausdorff measure functions for the level sets of an additive
Brownian motion and additive stable processes, respectively. The property of
independent increments of Lévy processes and a certain type of Markov prop-
erty have played crucial roles in the work of these authors. We refer to the
survey papers of Khoshnevisan and Xiao (2004a) and Xiao (2004) for further
information along this line.

The class of symmetric a-stable (SaS) self-similar processes and random
fields is very large; see Samorodnitsky and Taqqu (1994) for a systematic ac-
count. Of special interest are the linear fractional stable motion and harmoniz-
able fractional stable motion introduced by Tagqu and Wolpert (1983), Maejima
(1983), Cambanis and Maejima (1989), respectively. They are natural stable
analogues of fractional Brownian motion.

Compared to Gaussian random fields, much less about the probabilistic,
analytic and statistical properties of such stable random fields has been known.
We believe that an appropriate notion of strong local nondeterminism for stable
random fields will be helpful to solve several open problems on local times
and self-intersection local times, as well as to investigate other sample path
properties.

10



The notion of local nondeterminism has been extended to SaS processes and
random fields by Nolan (1988, 1989), and has proven to be a useful tool in
studying the local times and self-intersection local times of certain self-similar
stable processes with stationary increments. See, for example, Kéno and Shieh
(1993), Shieh (1993) and Xiao (1995).

One of the difficulties of extending LND from Gaussian random fields to
a-stable random fields X = {X(t),t € R} is that, when 0 < a < 2, there
is no covariance to measure dependence of X (t!),..., X (¢"). Nolan (1989) has
relied on the L-representations of symmetric a-stable random fields [see Hardin
(1982) or Samorodnitsky and Taqqu (1994)] and the approximation properties
of normed or quasi-normed linear spaces.

We first consider the case N = 1. Let T C R be a closed interval. The
following definition is due to Nolan (1989, Definition 3.1) which reduces to (2.3)
when a = 2.

Definition 2.7 A real-valued SaS process X = {X(t),t € R} is called locally
nondeterministic on T if for every integer n > 1, there exists a constant ¢, > 1
depending on n only such that for all sufficiently close t; <ty < ... <t, inT,

’E(eic" ulX(tl)) H E<eicn uj(X(tj)*X(tj—l))) ’
j=2

< [Bexp (i X () + 3w (X(1) = X(t5-10) } (2.18)
j=2
< [B(eiert mxen)

J

E(eic;1 w(x@j)_xuj,l))) ’
=2

forallu; eR (j=1,...,n).

Hardin (1982) proved that for every real-valued, separable in probability,
SasS process X = {X(t),t € R}, there exist a measure space (F,B, u) and a
collection of real-valued functions {x(t,-),t € R} C L*(E, B, 1) such that for all
integers n > 1 the joint distribution of X (¢1),..., X (¢,) is determined by

E exp (iiqu(tj)) = exp ( - H i“j“(tj)

where || - ||o is the quasi-norm in L*(E,B,p) and k(t;)=k(t;,-). Based on
this fact, Nolan (1989) proves that (2.18) in Definition 2.7 is equivalent to the
following: for every integer n > 1, there exists a constant c,, = ¢, (n) > 1

:) (2.19)

11



depending on n only such that

o (] +Z||uj 1) = w(t-)],)
< [Jwantr) £y (nlty) —k(t;-0)| (2.20)
j=2

< o ([lustt)]], + D s elts) = wts-)l,,)
j=2

for all u; € R and all ¢; <ty < ... <t, in T such that ¢, — t; is sufficiently
small. Nolan (1989, Theorem 3.2) also gives some other equivalent definitions
of LND for real-valued SasS processes.

An (N,d)-random field X = {X(t),t € R¥} is called an (N,d,«)-stable
field if for all integers n > 1, t',...,t" € RY and u',...,u" € R?, the ran-
dom variables >-7_, (u/, X(#/)) are Sa$S random variables. For a given measure
space (E,B,u), let L*(E,B, u;R?) denote the collections of R%valued func-
tions k(-) such that x(-) = (k1(-),...,kq()) and k;(-) € L*(E, B, i) for every
j =1,...,d. Tt is possible to represent an (N,d,a)-stable field X in some
LO‘(E,B7 w;RY). That is, there is a family of functions {x(t,-),t € RY} in the
space L*(E, B, y1; RY) such that

Eexp(zzn: ul, X (7)) )_GXP(—HZ (W, k(7))

Jj=1

a). (2.21)

Nolan (1989, Definition 3.3) defines LND of an (N, d, «)-stable field X in terms
of the family {x(¢,-),t € RV}.

Definition 2.8 An (N, d, «)-stable field X is called locally nondeterministic on
an interval T € A if its representation {k(t,-),t € RN} satisfies the following
conditions:

(a) ||k;j(t)|la >0 forallteT and j=1,...,d.

(b) ||I€ (s) — Kj(t)|]la > 0 for all s,t € T with |s — t| sufficiently small and
=1,....d.

(c) For all integers n > 1, arbitrary t*,... ,t" € T and all j = 1,...,d, define

M3 to be the subspace of L*(E,B, ) spanned by {(tF):1<1<d,1<
k<n and (I,k) # (j,n)}. Then for allj=1,...,d,
ki (tY) = M|,
in Il () = My fla >0 (2.22)
ver  |lri(tY)]a

and
[k (") — M}'[|a

l[#5 (") = k5 ("o

lim inf

> 0, (2.23)
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where the liminf is taken over all t*,... t" € T satisfying (2.5) with [t" —
t' — 0, and ||k;(t") — M}|lo denotes the “L-distance” between r;(t")
and M.

Nolan (1989) shows that Condition (c¢) in Definition 2.8 is equivalent to the
assumption that X has, in certain sense, approximately independent compo-
nents and approximately independent increments. This is useful for establish-
ing the joint continuity of local times of several classes of stable processes or
stable random fields; see Nolan (1989), Kéno and Shieh (1993), Shieh (1993)
and Xiao (1995). However, as in the Gaussian case, this LND property is not
useful for obtaining sharp uniform and/or local growth properties of the local
times or self-intersection local times of SaS processes and (N, d, «)-stable fields;
see Dozzi and Soltani (1999, section 4) for related remarks. One needs to have
a notion of strong local nondeterminism.

When N = 1, we recall Remark 2.4 and may define conveniently that an SaS
process X is strongly locally nondeterministic on 7' if there exists a constant
¢,s > 0 such that the following hold: for all integers n > 2, we can find a
nonsingular n X n matrix A such that for all t; < t5 < ... < t, in T sufficiently
closeand allu; e R (j =1,...,n),

[Eexp {i(na X (t) + Y us(X (1) = X(t;-1))) J|
=2 . (2.24)
< ’E(eicz_ﬁ le(t1)> H E(gicu vj(x(tj)fx(tj,l))) "

Jj=2

where (v1,...,0,) = (u1,...,uy)A.

Dozzi and Soltani (1999) have studied a class of moving average (MA) SaS
processes X of the form X = X; + X5, where X; and X5 are two independent
MA-stable processes, X7 is strongly locally nondeterministic in the above sense
and Xy is arbitrary. They showed that the arguments of Berman (1973) and
Ehm (1981) can be modified to prove uniform and local Holder conditions for
the local times of X.

In light of the theory on Gaussian random fields, there should be several
different senses of strong local nondeterminism for (N, d, «)-stable fields. For
simplicity, we start by considering only isotropic (N, 1, a)-stable fields with sta-
tionary increments. It seems natural to define the strong local ¢-nondeterminism
for such SaS random fields as follows.

Definition 2.9 Let X = {X(t),t € RN} be an (N, 1,a)-stable field with sta-
tionary increments and X (0) = 0. Let ¢ : Ry — Ry be a given function such
that (0) = 0 and ¢(r) > 0 forr > 0 and let T € A. Then X is said to be
strongly locally ¢-nondeterministic (SLoND) on T if, in addition to (a) and
(b) in Definition 2.8, there exists a constant ¢, , > 0 such that for all integers
n>1,allt,s', ..., s" €T sufficiently close,

||I£(t) - ]\/[nHa > Cop ¢(OI§I§1271 |t — sj‘)7 (2.25)
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where M™ denotes the subspace of L*(E,B,u) spanned by {r(s'),...,x(s")}
and s° = 0.

It would be very interesting to determine which classes of self-similar stable
random fields are strongly locally nondeterministic in the above sense and to ex-
plore various applications of SLND in the studies of stable random fields. We be-
lieve that the linear fractional stable motions (or fields) and harmonizable frac-
tional stable motions (or fields) with Hurst index H € (0, 1) [cf. Samorodnitsky
and Taqqu (1994), Kokoszka and Taqqu (1994) and Nolan (1989)] are strongly
locally ¢-nondeterministic with ¢(r) = r#. So far, I have only been able to
prove this for harmonizable fractional (V, 1, a)-stable fields when « € [1,2] and
a one-sided SLND for (1,1, a)-linear fractional stable motion when « € (0, 2].

On the other hand, the (N, 1, a)-stable sheet Z, = {Z(t), t € RY} defined
in Ehm (1981), which contains the Brownian sheet as a special case, is not
strongly locally ¢-nondeterministic in the sense of Definition 2.9. Moreover,
similar to (2.15) and (2.16), we can define two classes of (real-valued) anisotropic
fractional stable sheets using stochastic integration with respect to an (N, 1, a)-
stable sheet Z,, or a complex-valued SaS random measure Za They are natural
extensions of fractional Brownian sheets to stable random fields.

e Moving average fractional stable sheets: for any given 0 < o < 2 and
H = (Hy,...,Hy) € (0,1)", we define a stable random field Z# = {ZH (t),t €
RY} with values in R by

t tn N
zZAn=[ . hy, (te, 50) Za(ds), (2.26)
s e s

where Z, = {Z,(s),s € RV} is a symmetric (N, 1,a)-stable sheet and for
H e (0,1) and s,t € R,

1) = af (¢ =51 "7 = ((=90) "7}
e{(=0) " ()",

where a,b € R are constants and ¢_ = max{—¢,0}. Using (2.26) and the self-
similarity of Z,, we can verify that the (NV,1,a)-stable field Z# is operator

(2.27)

self-similar in the sense of (2.14), and along each direction of RY, Z A hecomes

a real-valued linear fractional stable motion. We will call ZH = {Z At),t e RY}
an (N, 1, a)-moving average fractional stable sheet.

e Harmonizable fractional stable sheets: for any given 0 < a < 2 and

—

H = (Hy,...,Hy) € (0,1), we define the harmonizable fractional stable sheet
ZH = {ZH(t),t € RY} with values in R by

- N it 1 -
ZH () = Re/ 11 it ZaldN), (2.28)
RN oty ‘)‘Jl iTa
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where Z, is a complex-valued SaS random measure. We refer to Samorodnitsky
and Taqqu (1994, Chapter 6) for definition and basic properties of complex-
valued SaS random measure and the corresponding stochastic integrals. )

Similar to the moving average fractional stable sheet, we can verify that A If
is operator self-similar in the sense of (2.14). Along each direction of RY zH
becomes a real-valued harmonizable fractional stable motion.

Note that, unlike the Gaussian case where both (2.15) and (2.16) determine
(up to a constant) the same fractional Brownian sheet, the moving average and
harmonizable fractional stable sheets with the same « € (0,2) and Hurst index
H are different random fields. This is true even for N = 1; see Samorodnitsky
and Tagqu (1994, page 358).

Based on the studies of fractional Brownian sheets, we believe that an ap-
propriate definition of sectorial local nondeterminism should be introduced and
it will be useful for studying various sample path properties of such anisotropic
stable random fields. This problem will be studied elsewhere, and the rest of
the paper deals with Gaussian random fields only.

3 Spectral conditions for strong local nondeter-
minism of Gaussian random fields

As pointed out by Cuzick and DuPreez (1982, p. 811), it appears to be diffi-
cult to establish conditions under which general Gaussian processes possess the
various forms of strong local nondeterminism. In this section we provide suffi-
cient conditions for a real-valued Gaussian random field X = {X(¢), t € RV}
with stationary increments to be strongly locally ¢-nondeterministic. In par-
ticular, we show that a spectral condition similar to that of Berman (1988)
for ordinary LND of Gaussian processes actually implies that X is strongly lo-
cally ¢-nondeterministic and, importantly, ¢(r) is comparable to the variance
function o?(h) with |h| = r.

Similar methods, combined with the arguments in Wu and Xiao (2005), can
be modified to study the sectorial local nondeterminism of anisotropic Gaussian
random fields with stationary increments or Gaussian random fields of fractional
Brownian sheet type. By the latter, I mean their covariance functions are defined
as tensor products of covariance functions of Gaussian processes with stationary
increments. There are many interesting questions on such anisotropic Gaussian
random fields due to their various applications; see Bonami and Estrade (2003),
Cheridito (2004), Mannersalo and Norros (2002), Mueller and Tribe (2002) and
the references therein.

Let X = {X(t), t € RV} be a real-valued, centered Gaussian random field
with X (0) = 0. We assume that X has stationary increments and continuous
covariance function R(s,t) = E[X (s)X(t)]. According to Yaglom (1957), R(s, t)
can be represented as

R(s,t) = /R N (5N — 1) (e7H BN — DA(AN) + (s, Qt), (3.1)
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where @ is an N x N non-negative definite matrix and A(d\) is a nonnegative
symmetric measure on RV\{0} satisfying

A2
/RN T Ay <o (3.2)

The measure A is called the spectral measure of X.
It follows from (3.1) that X has the following stochastic integral representa-
tion:

X(t) = /]R (N 1w + (Y1), (3.3)

where Y is an N-dimensional Gaussian random vector with mean 0 and W (d\)
is a centered complex-valued Gaussian random measure which is independent
of Y and satisfies

EOVMWWBD:#MAOB)amlﬂdﬂ®:MN£

for all Borel sets A, B C RY. From now on, we will assume Y = 0. Conse-
quently, we have

a%m:EKXu+m—Xﬁ»ﬁ:2/ (1 —cos (h,\)) A(dN). (3.4)
RN
If the function o?(h) only depends on |h|, then X is called an isotropic random
field. It is important to note that o2?(h) is a negative definite function and
can be viewed as the characteristic exponent of a symmetric infinitely divisible
distribution; see Berg and Forst (1975) for more information on negative definite
functions.

The main results of this section are Theorems 3.1 and 3.4. They give verifi-
able conditions for a Gaussian random field to be strongly locally nondetermin-
istic in terms of its spectral measure.

Theorem 3.1 Let X = {X(t),t € RV} be a mean zero, real-valued Gaussian
random field with stationary increments and X (0) =0, and let f be the density
function of the absolutely continuous part of the spectral measure A of X. As-
sume that there exist two non-decreasing functions ¢(r) and q(r) : Ry — Ry
satisfying the following conditions:

fOgr) N
o) = g’

and there exists a positive and finite constant n such that

Vre (0,1 and A € RY (3.5)

q(r) <7 for all v > 0 large enough. (3.6)

Then for every interval T € A, there ewists a constant 0 < ¢, , < oo such that
for all t € T\{0} and all 0 < r < min{1, |t|},

Var(X(¢)|X(s): s€T, |s—t|>1) >c¢,, o(r). (3.7

In particular, X is strongly locally ¢-nondeterministic on T .
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To prove Theorem 3.1, we note that, in the Hilbert space setting, the con-
ditional variance in (3.7) is the square of the L?(P)-distance of X (t) from the
subspace generated by {X(s) : s € T, |s—t| > r}. Hence it is sufficient to show
that there exists a positive constant c, , such that for all integers n > 1, a, € R
and sy, € T satisfying |sp —t| > 7, (k=1,2,...,n),

E(X(t) -3 akX(sk))2 > c,, 6(r). (3.8)
k=1

It follows from (3.1) or (3.3) that

/.
/.

where a9 = —1 + >7_, a; and sp = 0. This part of the proof goes back
to Kahane (1985). The last integral can be estimated using the ideas in Pitt
(1975, 1978) and Kahane (1985); see Xiao (2005) for a complete proof.

In order to apply Theorem 3.1 to investigate the sample path properties of
the Gaussian random field X, we need to study the relationship between ¢(|h|)
and the function o2(h). In the following, we assume that the spectral measure
A is absolutely continuous and its density function f()\) satisfies the following
condition [when N = 1, this is due to Berman (1988)]:

1o BANAY) 1 BN IANYFN)
PR A= Y T 2 e Al = T
(3.10)
where 8 = 2 and for N > 2, By = u(SV~!) is the surface area [i.e., the
(N —1)-dimensional Lebesgue measure) of SN ~1. At the end of this section, we
will give some examples of Gaussian random fields satisfying (3.10).
In the rest of this section, we define ¢(r) = A{¢ : [¢] > r~1} and ¢(0) =
0. Then the function ¢ is non-decreasing and left continuous on [0,00). The
following lemma lists some useful properties of ¢.

E(X(t) - ];akX(sk)>2 it 1 I;ak (eifeeN) — 1) ]2 A(dN)

v

. n ; 2
N S g el<s’“’/\>’ fNd,  (3.9)
k=0

Lemma 3.2 Assume the condition (3.10) holds. Then for every 0 < ¢ <
2min{a, 1 —@}), there exists a constant rg > 0 such that for all0 < x <y < ry,

(g>25+s - Zgg - (g)QQ—s. (3.11)

Consequently, we have
(i). lim,_o¢(r)/r? = .

(ii). The function ¢ has the following doubling property: there exists a constant
Cy5 > 0 such that ¢(2r) < c,, ¢(r) for all 0 <1 < 710/2.
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Remark 3.3 Under the assumption that A is absolutely continuous with
density f(\), Condition (3.10) is more general than assuming ¢ is regularly
varying at 0. Using the terminology of Bingham et al. (1987, pp.65-67), (3.11)
implies that ¢ is extended regularly varying at 0 with upper and lower Karamata
indices 2& and 2q, respectively. A necessary and sufficient condition for ¢(r) to
be regularly varying at 0 of index 2« is that the limit

1 . rv fSN—l f(ra),u(do)

a= - lim
2r=c0 A{E: ¢l 21}
exists; see Xiao (2005) for details. O

The following theorem shows that the assumption (3.10) implies that X is
SLgND and ¢(r) is comparable with o%(h) with |h| = r near 0. In Section 4, we
will show that it is often more convenient to use the function ¢ to characterize
the properties of X.

Theorem 3.4 Let X = {X(t),t € RV} be a mean zero, real-valued Gaussian
random field with stationary increments and X (0) = 0. Assume that the spectral
measure A of X has a density function f that satisfies (3.10). Then

N
0<11¥Lni61f i) Shr;?_b,})lp i) < 0. (3.12)

Moreover, for every interval T € A, X is strongly locally ¢p-nondeterministic on

T.

The first part of Theorem 3.4 is proved using the ideas of Berman (1988,
1991) and the second part follows from (3.12) and Theorem 3.1; see Xiao (2005)
for details.

Applying Theorems 3.1 and 3.4 to stationary Gaussian random fields, we
have the following partial extension of the result of Cuzick and DuPreez (1982)
mentioned in section 2.2. It is not known to me whether (3.6) can be replaced
by the weaker condition (2.11).

Corollary 3.5 Let X = {X(t),t € RN} be a stationary Gaussian random field
with mean 0 and variance 1.

(i). If the spectral measure A of X has an absolutely continuous part with
density [ satisfying (3.5) and (3.6), then for every interval T € A, X s
strongly locally p-nondeterministic on T'.

(it). If the spectral density of X satisfies (3.10), then (3.12) holds and X is
SLoND on T.

We end this section with some more examples of Gaussian random fields
whose SLND can be determined.
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Example 3.6 Consider the mean zero Gaussian random field X = {X(¢), t €
RN} with stationary increments and spectral density

~_c(vB,N)
P = R e

where v and (3 are constants satisfying 5 + v > %, 0 <y <1+ % and
c(v, B, N) > 0 is a normalizing constant. Since the spectral density f, g involves
both the Fourier transforms of the Riesz kernel and the Bessel kernel, Anh et
al. (1999) call the corresponding Gaussian random field the fractional Riesz-
Bessel motion with indices § and ~; and they have shown that these Gaussian
random fields can be used for modelling simultaneously long range dependence
and intermittency.

It is easy to check that Condition (3.10) is satisfied witha =a =~v+ [ — %
Moreover, since the spectral density f, g(z) is regularly varying at infinity of
order 2(8+4~) > N, by a result of Pitman (1968) we know that, if v+ 03— % <1,
then o(h) is regularly varying at 0 of order v + 8 — N/2 and

o(h) ~ |n|yTA=N/2 as h— 0.

Theorem 3.4 implies that X is SLND with respect to o?(h). Hence, many
sample path properties of the d-dimensional fractional Riesz-Bessel motion X
with indices 8 and ~ can be derived from the results in Section 4.

Example 3.7 Let 0 < o < 1, 0 < ¢; < ¢g be constants such that (ace)/c1 < 1.
For any increasing sequence {b,, n > 0} of real numbers such that by = 0 and
b, — 00, define the function f on R by

_ [ e [A]T Gt if |\l € (bak, bart1],
F) = { ) i A € (b, bogsal. (3.13)
Some elementary calculation shows that, when lim,, o0 by 41 /b, = 00, Condition
(3.10) is satisfied with o = (ac1)/c2 < @ = (aea)/c1. Note that in this case,
c1 [h?* < o%(h) < co |h|** and ¢; 2 < ¢(r) < 2@ for all h € RY and r > 0,
but both functions are not regularly varying at the origin.

The following is a class of Gaussian random fields for which (3.10) does not
hold, but Theorem 3.1 is still applicable.

Example 3.8 For any given constants 0 < a; < as < 1 and any increasing
sequence {b,, n > 0} of real numbers such that by = 0 and b,, — oo, define the
function f on RN by

|A|~(2ea+N) if |\ € (bar, baps1],

f()‘) = { ‘/\|7(2a2+N) if |>\| c (bzk+1,b2k+2}- (3-14)

Using such functions f as spectral densities, we obtain a quite large class of
Gaussian random fields with stationary increments that are significantly differ-
ent from the fractional Brownian motion. If X is such a random field, then
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there exist positive and finite constants c, ,, ¢, , > 1 such that

3,49
e |hPe2 <a?(h) <e,, |hP*, VIR <1 (3.15)
and
Lt <o) Sc ™, VO<r<lL (3.16)

Xiao (2005) shows that we can choose the sequence {b,} appropriately so that
the following hold:

(i) o¢(r) < r?22 for r € (0,1).
(i) o2(h) = [h|22 for [B] < 1.

(iii) Condition (3.10) is not satisfied, but the corresponding Gaussian random
field X still has the property of SLGND.

So far, we have not considered Gaussian random fields with stationary incre-
ments and discrete spectral measures. A systematic treatment for such Gaussian
random fields will be done elsewhere. In the following, we only give an example
of stationary Gaussian processes with discrete spectrum that is strongly locally
nondeterministic.

Example 3.9 Let {X,,Y,,n > 0} be a sequence of independent standard
normal random variables. Then for each ¢ € R, the random Fourier series

Y(t) = ? Z 2n1— 1 {Xn cos ((2n — 1)t) + Yy, sin ((2n — 1)t)} (3.17)
n=0

converges almost surely [see, e.g., Kahane (1985)], and Y = {Y (), t € R} is a
centered, periodic and stationary Gaussian process with mean 0 and covariance
function

2
R(s,t)=1——=|s—t| for —m<s—t<m. (3.18)
T

It is easy to see that the spectrum measure A of Y is discrete with A({2n—1}) =
(2n — 1)72 for all n € N. Using a result in Berman (1978), it can be shown
that for any interval T' C [—, 7| with length |T'| < 7/2 there exists a constant
0 < ¢, < 0o such that for all t € T" and all 0 < r < min{|t|,7/2},

Var(Y(t)|Y(s):s €T, [s—t]|>1) >c, (3.19)

That is, Y is SL¢ND on T with ¢(r) = r and o2(h) < ¢(|h|); see Shieh and
Xiao (2004) for a proof.
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4 Applications of strong local nondeterminism

Many authors have applied LND or SL¢ND to study various properties of
Gaussian and stable random fields. We refer to Geman and Horowitz (1980),
Geman et al. (1984), Berman (1991), Dozzi (2002), and the references therein
for more information.

In the studies of Gaussian random fields with stationary increments, the
variance function o2(h) has played a significant role and it is typically assumed
to be regularly varying at 0 and/or monotone increasing. See Marcus (1968b),
Kéno (1970, 1996), Cuzick (1982b), Csorgé et al. (1995), Kasahara et al. (1999),
Monrad and Rootzén (1995), Talagrand (1995, 1998), Xiao (1996, 1997a, b,
2003), and so on. Using the results in Section 3, we can prove that, in almost all
cases, the regularly varying assumption on o2(h) can be significantly weakened
and the monotonicity assumption can be removed.

In the rest of this section, we show that SL¢ND can be applied to extend the
small ball probability estimates of Monrad and Rootzén (1995), Shao and Wang
(1995) and Stoltz (1996), the results on the exact Hausdorff measure functions
of Talagrand (1995) and Xiao (1996, 1997a, b), the Holder conditions and tail
probability of the local times of Xiao (1997a) and Kasahara et al. (1999), to
more general Gaussian random fields. For proofs of these results, see Xiao
(2005).

We will consider a Gaussian random field X = {X (t), t € RV} in R? defined
by

X(t) = (X1(t),.... Xa(t)), VteR", (4.1)

where Xi,..., X, are independent copies of a real-valued, centered Gaussian
random field Y = {Y'(¢),t € RV}, which satisfies the following Condition (C):

(C1) there exist positive constants do, ¢, ,, ¢,, and a non-decreasing, right
continuous function ¢ : [0,d9) — [0, 00) such that

o(21)
o) =

and for all t € RY and h € RY with |h| < dp,

Ve [0,80/2) (4.2)

cTlo(Ihl) SE[(Y(t+h) — Y(1)®] < e, o(lhl). (4.3)

(C2) Y is strongly locally ¢-nondeterministic on an interval T € A, say, T =
[0, 1]V.

4.1 Small ball probability and Chung’s law of the iterated
logarithm

In recent years, there has been much interest in studying the small ball proba-

bility of Gaussian processes. We refer to Li and Shao (2001) and Lifshits (1999)

for extensive surveys on small ball probabilities, their applications and open
problems.
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The next theorem gives estimates on the small ball probability of Gaussian
random fields satisfying the condition (C). In particular, the upper bound in
(4.4) confirms a conjecture of Shao and Wang (1995), under a much weaker
condition.

Theorem 4.1 Let X = {X(t),t € RN} be a Gaussian random field in R sat-
isfying the condition (C). Then there exist positive constants c, , and c, , such
that for all x € (0,1),

where ¢~ (x) = inf{y : ¢(y) > x} is the right-continuous inverse function of ¢.

The lower bound in (4.4) follows from a general result of Talagrand (1993)
and the upper bound is proved in a way similar to that of Monrad and Rootzén
(1995). This is where SL¢ND of X is applied.

The probability estimate in Theorem 4.1 has many applications. We mention
the following Chung’s law of the iterated logarithm. When o is assumed to be
regularly varying at 0, this is also obtained in Xiao (1997a).

Corollary 4.2 If, in addition to the conditions of Theorem 4.1, we assume
that X has stationary increments and the spectral measure A of X satisfies
liminfy oo AN T2A(B(A, 1)) > 0, where B(A,r) = {z € RN : [z — A < r}.
Then there exists a positive and finite constant c, , such that

su X(t
lim inf Dicpo,rp [X (1) =c a.s. (4.5)

h—0 pl/2 (h/(loglog(l/h))l/N) 45

The proof of Corollary 4.2 contains two steps: first we apply Theorem 4.1
and slightly modify the proof of Theorem 7.1 in Li and Shao (2001) to show the
above liminf is bounded from below and above by positive constants, then we
apply the zero-one law of Pitt and Tran (1979) to derive (4.5).

We can also consider the small ball probability of Gaussian random fields
under the Holder-type norm. Let x be a continuous and non-decreasing function
such that x(r) > 0 for all » > 0. For any function y € Cy([0,1]"), we consider
the functional

—y(t
o= sup I Z0O] (16)
s,t€[0,1]NV ,s#£t KJ(‘S - t|)
When #(r) = 1%, || - || is the a-Hélder norm on Cy([0,1]") and is denoted by

I lla-

The following theorem uses SL¢ND to improve the results of Stolz (1996).
We mention that the conditions of Theorem 2.1 of Kuelbs, Li and Shao (1995)
can be weakened in a similar way.
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Theorem 4.3 Let X = {X(t),t € RN} be a Gaussian random field in R satis-
fying the condition (C). If for some constant 3 > 0,

¢Z(2X) =% Vre(01). (4.7)

Then there exist positive constants ¢, ; and c, . such that for all € € (0,1),

exp ( —Cuq E_N/6> < IP{HXHK < E} < exp ( —Cyn E_N/B). (4.8)

4.2 Hausdorff dimension and Hausdorff measure of the
sample paths

In this section we consider the fractal properties of the range and graph of the
Gaussian random field in R? defined by (4.1) and fractional Brownian sheets.

When X = {X(t),t € RV} is a fractional Brownian motion in R?, the exact
Hausdorff measure functions for the image X ([0, 1]%) and graph GrX ([0, 1]")
= {(t,X(t)) : t € [0,1]V} were determined by Talagrand (1995) and Xiao
(1997c). Their results were extended by Xiao (1996, 1997a) to strongly locally
nondeterministic Gaussian random fields with stationary increments and reg-
ularly varying variance function o2(h). Using the results in Section 3 we can
prove the following more general result.

Theorem 4.4 Let X = {X(t),t € RV} be a Gaussian random field defined in
(4.1). We assume that Condition (C) is satisfied and, in addition, there exists
a constant c, ; > 0 such that

B\
/1 (¢(ax)) " dr <c,, forall ac(0,1), (4.9)

then
0< wl-m(X([O, 1]N)) < o0 a.s., (4_10)

where p1(r) = [¢*1(r2)]N loglog1/r.

Remark 4.5 Note that condition (4.9) suggests that X is transient and does
not hit points. When X hits points, the Hausdorff dimension of GrX ([0, 1]")
may be bigger. The results on the exact Hausdorff measure of the graph set
GrX([0,1]") in Xiao (1997a, c) can be extended to Gaussian random fields
satisfying Condition (C) in a similar way. O

Remark 4.6 More generally, Kahane (1985) has studied geometric and arith-
metic properties of the image X (E) for an arbitrary Borel set £ C RY when X
is an (N, d)-fractional Brownian motion. His results have recently be extended
and improved by Shieh and Xiao (2004). O
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Now we give a brief discussion of the relevance of sectorial LND to the study
of fractal properties of fractional Brownian sheets. Further information can be
found in Ayache, Wu and Xiao (2005), Khoshnevisan, Wu and Xiao (2005), Wu
and Xiao (2005).

Recently, Ayache and Xiao (2004) have obtained the Hausdorff and packing
dimensions of the range B ([0,1]"), graph GrB¥ ([0,1]"V) and the level set for
a general (N, d)-fractional Brownian sheet B¥. It would be interesting to find
the exact Hausdorff and packing measure functions for these random sets (if
they exist). The existing methods for the Brownian sheet [cf. Ehm (1981)] or
fractional Brownian motion [cf. Talagrand (1995), Xiao (1997c)] can not be
applied directly. I believe that the sectorial local nondeterminism of B will be
useful in solving these problems. .

Wu and Xiao (2005) have applied the sectorial local nondeterminism of B
to study geometric properties of the image set BY (E), where E C (0,00)" is
an arbitrary Borel set, of fractional Brownian sheets. In particular, they have
proved the following “uniform” Hausdorff and packing dimension result.

Theorem 4.7 Let H € (0,1) be a constant and let BA = {Bﬁ(t),t € RY}

be an (N,d)-fractional Brownian sheet with index H = (H). If N < Hd, then
almost surely

1
dim, B¥ (E) = T dim, E  for all Borel sets E C (0,00)". (4.11)
and
1
dim, Bf(E) = T dim,E  for all Borel sets E C (0,00)". (4.12)

Note that when H = (1), (4.11) of Theorem 4.7 recovers the result for the
(N, d)-Brownian sheet W = {W (t),t € RY} proved by Mountford (1989) and
Lin (1999); see also Khoshnevisan, Wu and Xiao (2005) for a different, relatively
more elementary proof. Both the proofs of Mountford (1989) and Lin (1999)
are quite involved and their arguments rely on the special properties of the
Brownian sheet such as the independence of the increments, which can not be
applied to fractional Brownian sheets. Our proof of Theorem 4.7 is, similar
to that in Khoshnevisan, Wu and Xiao (2005), based on the sectorial local
nondeterminism of fractional Brownian sheets.

Finally we mention that when H = (Hy,...,Hy) € (0,1)Y and Hy, ..., Hy
are different, the Haus@orﬂ and packirlg dimension of E alone is not engugh
for determining dim,, B¥ (E) or dim, B¥ (E). Explicit formulas for dim, B¥ (E)
and dim, B (E) are not known.

4.3 Local times and level sets of Gaussian random fields

Let X = {X(t),t € RV} be a Gaussian random field with stationary increments
in R? defined by (4.1). If the real-valued random field Y satisfies Condition (C)
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and for some ¢ > 0,

dh
—_— 4.1
Jou 775085 < (419)

then it follows from Theorem 26.1 in Geman and Horowitz (1980) [see also
Berman (1973) and Pitt (1978)] that X has a jointly continuous local time
L(z,t) for (x,t) € R? x T which satisfies certain Holder conditions in the time
and space variables, respectively.

When X is strongly locally nondeterministic and satisfies certain regularity
assumptions, Xiao (1997a) has established sharp local and uniform Hélder con-
ditions for the local time L(z,t) in the time variable ¢. Besides of their own
interest, these Holder conditions are also useful in studying the fractal prop-
erties of the sample paths of X. In the following, we show that the results in
Xiao (1997a) and Kasahara et al. (1999) still hold under Condition (C). For
simplicity, we will only consider the case N = 1.

Theorem 4.8 Let X = {X(t),t € R} be a centered Gaussian process in R?
defined by (4.1). We assume that the associated Gaussian process Y satisfies
Condition (C) and there exist constants 0 <y, <1 and c, , > 0 such that

1 a
/ ((Z}Sg) 0 ds<c,, forall aec(0,d). (4.14)
0

For any B € B(R) define L*(B) = sup,era L(z, B). Then there exists a positive
and finite constant c, ., such that for allt € R,

lim sup LB, r) (B(t,r))

<c a.s. 4.15
A o) (4.15)

and for all intervals T C R, there exists a positive and finite constant c, ., such

4,11
that
L*(B(t,r))

limsup su <ec,, a.s., 4.16
r~>0p teg Y3 7") - ( )
where B(t,r) = (t —r,t+71),
r r
= d = .
) = Sitoglog e ™ P = Gog

Remark 4.9 If X has stationary increments and its spectral measure satisfies
(3.10) and 1 > @d. Then Lemma 3.2 implies that (4.14) is satisfied for any
% € (0,(1 —ad)/(2)). 0

Similar to Xiao (1997a), the proof of Theorem 4.8 is based on the moment
estimates for L(z, B) and L(z + y, B) — L(x, B) and a chaining argument. The
following lemma provides the key estimates, whose proofs rely on SL¢ND of X.
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Lemma 4.10 Under the conditions of Theorem 4.8, there exist positive and
finite constants c,,, and c, ., such that for all integers n > 1, v > 0 small,
z €R? and 0 < v < 7, we have

E[L(z,r)"] < o T 4.17
S G e o

and |

n CTL y n ,r.'"/
E[L(z +y,r) — L(z,7)]" < 113

I:O'(?"/’I’L):I (d4+2v)n/2

Theorem 4.8 can be applied to determine the Hausdorff dimension and ex-
act Hausdorff measure of the level set X !(z) = {t € R : X(¢) = z}, where
r € R% For example, the Hausdorff dimension of X ~!(z) has been studied
by Berman (1970, 1972), Adler (1981), Monrad and Pitt (1987) for index a-
Gaussian processes; and the exact Hausdorff measure of X ~!(z) has been stud-
ied by Xiao (1997a) for a class of strongly locally nondeterministic Gaussian
random fields with stationary increments.

By applying (4.16) of Theorem 4.8, Xiao (2005) has proved the following
uniform Hausdorff dimension result for the level sets of the Gaussian process X,
extending the previous results of Berman (1972), Monrad and Pitt (1987).

Theorem 4.11 Let X = {X(t),t € R} be a Gaussian process in R? with sta-
tionary increments defined by (4.1). We further assume that Y satisfies the
assumptions of Theorem 8.4. Then with probability one,

). (4.18)

dim, X '(z)=1—-a*d forall x €O, (4.19)

where o™ is the upper index of o defined by

. _o(h)
- > N =
o = inf {fy >0 flblg%) e oo}

with the convention inf () = oo, and where O is the (random) open set defined
by
0= U {xE]Rd: L(z, [s,1]) >O}.

s,teQ; s<t

Remark 4.12 It is an interesting question to characterize the random open
set O. Monrad and Pitt (1987) have given a real-valued periodic stationary
Gaussian process X for which O is a proper subset of R [because the range of X
is a.s. bounded]. They have shown a sufficient condition in terms of the spectral
measure of a stationary (N, d)-Gaussian random field X so that O = R? holds.
Monrad and Pitt (1987) also point out that the self-similarity of an (NN, d)-
fractional Brownian motion B, implies that if N > ad then O = R¢ almost
surely. However, we do not know whether O = R% is true for the (N, d)-Gaussian
random fields satisfying the conditions of Theorem 3.4. O
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The local time L(0,1) [i.e., L(z,1) at = 0] of a Gaussian process X some-
times appears as limit in some limit theorems on the occupation measure of X;
see, for example, Kéno (1996) and Kasahara and Ogawa (1999). Since there is
little knowledge on the explicit distribution of L(0, 1), it is of interest in esti-
mating the tail probability P{L(0,1) > x} as © — oo. This problem has been
considered by Kasahara et al. (1999) under some quite restrictive conditions on
the Gaussian process X. The next theorem is an extension of the main result
in Kasahara et al. (1999).

Theorem 4.13 Let X = {X(t),t € R} be a centered Gaussian process in R?
defined by (4.1). We assume that the associated process Y satisfies Condition
(C) and the condition (4.14) with v, = 0. Then

b
¢t (1/x?)’

where ¢~ is the inverse function of ¢ as defined in Theorem 4.1.

—logP{L(0,1) >z} = (4.20)

Theorem 4.13 follows from the moment estimates for L(0,1) in Lemma 4.15
and the following lemma on the tail probability of nonnegative random variables.
When 9 is a power function or a regularly varying function, Lemma 4.14 is well
known.

Lemma 4.14 Let ¢ be a non-negative random variable and let ) : R, — R be
a non-decreasing function having the doubling property. If there exist positive
constants ¢, ,, and c, . such that

¢ b(n)" SE(E) < bin)"

for all n large enough, then there exist positive constants Cins > Cinsr Coqp aNA
€, Such that for all x > 0 large enough,

4,14 4,15

e Canr® < P{f > 04,16 w(x)} < e “a1s?, (421)

Lemma 4.15 Under the assumptions of Theorem 4.13, there exist positive and
finite constants c, ,, and c, ,, such that for all integers n > 1,

CZIQ n CZL,?O

S(1/mrar <E[L(0,1)"] < P (4.22)
One may also consider the existence and continuity of the local times L(z, E)
of an (N,d)-Gaussian random field on any Borel set E C R¥. These prob-
lems are closely related to the questions whether the image X (F) has positive
Lebesgue measure and/or interior points; see Pitt (1978), Kahane (1985), Shieh
and Xiao (2004), Khoshnevisan and Xiao (2004b). Strong local nondetermin-
ism and sectorial local nondeterminism have proven to be very useful for solving
these problems. On the other hand, similar to Theorem 4.13, the distribution

of L(0, E') can be studied for a large class of fractal sets, say d-sets.

We end this section with the following remarks and open questions.
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Remark 4.16 The problem of establishing sharp uniform and local Holder
conditions for the self-intersections local times of Gaussian random fields sat-
isfying Condition (C) remains to be open. For background and some related
results, see Berman (1991). O

Remark 4.17 Using sectorial local nondeterminism, Ayache, Wu and Xiao
(2005) have established joint continuity and sharp Hoélder conditions for the
local times of a fractional Brownian sheet BA. Their results suggest some
interesting questions for general anisotropic Gaussian random fields that may
be further investigated. O

Question 4.18 We know that (4.13) is sufficient for the existence of a jointly
continuous local time of locally nondeterministic Gaussian random field X.
However, this condition is not necessary. When X is an (N, d)-Gaussian ran-
dom field with stationary increments, is it possible to provide a necessary and
sufficient condition for the joint continuity of L(z,t) in terms of ¢?
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