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Abstract

Denote by H(t) = (H1(t), . . . ,HN (t)) a function in t ∈ RN
+ with values in (0, 1)N . Let

{BH(t)(t)} = {BH(t)(t), t ∈ RN
+} be an (N, d)-multifractional Brownian sheet (mfBs) with

Hurst functional H(t). Under some regularity conditions on the function H(t), we prove
the existence, joint continuity and the Hölder regularity of the local times of {BH(t)(t)}.
We also determine the Hausdorff dimensions of the level sets of {BH(t)(t)}. Our results ex-
tend the corresponding results for fractional Brownian sheets and multifractional Brownian
motion to multifractional Brownian sheets.
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1 Introduction

A 1-dimensional fractional Brownian motion (fBm) ξα = {ξα(t), t ∈ R+} with Hurst index
α ∈ (0, 1) is a real valued, centered Gaussian process with covariance function given by

E[ξα(s)ξα(t)] =
1
2
[
s2α + t2α − |t− s|2α

]
, ∀s, t ∈ R+. (1.1)

It was first introduced, as a moving average Gaussian process, by Mandelbrot and Van Ness [29].
Fractional Brownian motion has interesting properties such as self-similarity of order α ∈

(0, 1), stationary increments, and long range dependence which make it a good candidate in
modeling different phenomena in, for example, finance and telecommunication. However, this
model may be restrictive due to the fact that all of its regularity and fractal properties are gov-
erned by the single Hurst parameter α. To model phenomena whose regularity evolves in time,
e.g. Internet traffic or image processing, Lévy-Véhel and Peltier [26] and Benassi, Jaffard and
Roux [7] have independently introduced multifractional Brownian motion (mfBm) in terms of
moving average representation and harmonisable representation, respectively. Multifractional
Brownian motion is governed by a Hurst functional α(t) with certain regularity in place of the
constant Hurst parameter α in fBm.

Several authors have studied sample path and statistical properties of mfBm. For example,
Benassi, Jaffard and Roux [7] considered the sample path Hölder regularity of mfBm and
determined the Hausdorff dimension of its graph. Ayache, Cohen and Lévy-Véhel [2] and
Herbin [21] studied the covariance structure of mfBm from its harmonisable representation.
Recently, Boufoussi, Dozzi and Guerbaz [13] [14] studied the existence, joint continuity and
the Hölder regularity of the local time of mfBm and established Chung’s law of the iterated
logarithm for mfBm. The main tool they applied to derive their results is the property of
one-sided local nondeterminism of mfBm.

There are multiparameter extensions of fBm, among which two typical ones are multipa-
rameter Lévy fBm and fractional Brownian sheets, where the former is isotropic while the
latter ones are anisotropic in general. Since they were introduced by Kamont [23] [see also
Ayache, Léger and Pontier [4]], fractional Brownian sheets (fBs) have been studied extensively
as a representative of anisotropic Gaussian random fields in recent years. See, for example,
Dunker [17], Mason and Shi [30], Øksendal and Zhang [31], Xiao and Zhang [41], Ayache and
Xiao [6], Ayache, Wu and Xiao [5], Wu and Xiao [36] and the references therein for further
information. Still, the regularity of fBs doesn’t evolve in the N -dimensional “time” parameter
t ∈ RN

+ .
To model anisotropic Gaussian random fields whose regularity evolves in time, such as

images, Ayache and Léger [3], and Herbin [21] introduced so-called multifractional Brownian
sheets (mfBs) in terms of their moving average representations and harmonisable representa-
tions, where the constant Hurst vector of fBs is substituted by Hurst functionals. Furthermore,
they showed that mfBs has a continuous modification and determined the pointwise and local
Hölder exponent of mfBs. They also proved that mfBs is locally self-similar. We refer to
Ayache and Léger [3] and Herbin [21] for the definitions of the corresponding concepts and
results.

In studying anisotropic random fields, Xiao [40] suggested that it is more convenient to use
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the following metric ρK on RN :

ρK (s, t) =
N∑

`=1

|s` − t`|K` , ∀ s, t ∈ RN , (1.2)

where K = (K1, . . . ,KN ) ∈ (0, 1)N is a fixed vector. Denote by H(t) = (H1(t), . . . ,HN (t))
a function in t ∈ RN

+ with values in (0, 1)N . We say that H(t) satisfies Condition A if there
exist a positive number α ∈ (0, 1) and a vector (K1, . . . ,KN ) ∈ (0, 1)N such that

A.1. For every ` ∈ {1, . . . , N}, α ≤ H`(t) ≤ K` for all t ∈ RN
+ ;

A.2. H`(t) (` = 1, . . . , N) satisfies a ρK -Lipschitz condition on every compact set, that is, for
every compact subset I ⊂ RN

+ , there exist positive constants c
`
= c

`
(I) and δ such that

|H`(t)−H`(s)| ≤ c
`
ρK (s, t), ∀s, t ∈ I with |s− t| < δ.

Now, we are ready to define multifractional Brownian sheets via their moving average
representations.

Definition 1.1 Let H(t) = (H1(t), . . . ,HN (t)) be a function in t ∈ RN
+ with values in (0, 1)N

satisfying Condition A. A real–valued multifractional Brownian sheet {BH(t)
0 (t)} = {BH(t)

0 (t), t
∈ RN

+} with functional Hurst index H(t) is defined as the following moving average Wiener
integral:

B
H(t)
0 (t) =

∫
RN

N∏
`=1

[
(t` − u`)

H`(t)− 1
2

+ − (−u`)
H`(t)− 1

2
+

]
W (du), ∀ t ∈ RN

+ , (1.3)

where s+ = max{s, 0}, and where W = {W (s), s ∈ RN} is a standard real-valued Brownian
sheet.

Remark 1.2 Our Definition 1.1 generalizes the definition in Ayache and Léger [3] where
they define H`(·) as a function of t` ∈ R+ (` = 1, . . . , N). Herbin [21] defines multifractional
Brownian sheets by using the following moving average representation [cf. Definition 2 on p.
1261, Herbin [21]]

B′
0
H(t)(t) =

∫
RN

N∏
`=1

[
|t` − u`|H`(t)− 1

2 − |u`|H`(t)− 1
2

]
W (du), ∀ t ∈ RN

+ . (1.4)

Based on Dobrić and Ojeda [15], see also Stoev and Taqqu [33], we know that the multifrac-
tional Brownian sheet defined by (1.3) and the multifractional Brownian sheet defined by (1.4)
have different correlation structures in general even if N = 1. Our definition is more convenient
to use than that of Herbin’s when we derive the one-sided sectorial local nondeterminism for
multifractional Brownian sheets in Section 2. The form (1.3) is preferred in some applications
in the one dimensional case because it is easier to separate the future from the past.
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Define the Gaussian random field {BH(t)(t)} = {BH(t)(t) : t ∈ RN
+} with values in Rd by

BH(t)(t) =
(
B

H(t)
1 (t), . . . , BH(t)

d (t)
)
, ∀t ∈ RN

+ (1.5)

where {BH(t)
1 (t)}, . . . , {BH(t)

d (t)} are d independent copies of {BH(t)
0 (t)}. Then {BH(t)(t), t ∈

RN
+} is called an (N, d)-multifractional Brownian sheet with functional Hurst index H(t).

Note that if N = 1, then {BH(t)(t)} is a multifractional Brownian motion in Rd with
Hurst index H1(t) ∈ (0, 1); if N > 1 and H1(t) ≡ H1, . . . ,HN (t) ≡ HN , then {BH(t)(t)} is an
(N, d)-fractional Brownian sheet with Hurst index H = (H1, . . . ,HN ).

In this paper, we will study local times of multifractional Brownian sheets. Our main
technical tool is the concept of (one-sided) sectorial local nondeterminism, which was first
introduced by Khoshnevisan and Xiao [25] for the Brownian sheet and then extended by Wu
and Xiao [36] to fractional Brownian sheets, to derive the regularity results for the local times
of mfBs.

Our results show that multifractional Brownian sheets are similar to fractional Brownian
sheets in many ways. They admit jointly continuous local times, when the indices Hi(t) stay
in the range for which the fractional Brownian sheet has jointly continuous local times. We
also establish a Hausdorff dimension result, and essentially, the dimension of the level set is the
same as for the constant parameter case, except that we take the supremum of the constant
parameter formula. We also show that the supremum can be taken locally, to establish that
the fractal dimension of the random field varies in space. Hence, multifractional Brownian
sheets are useful in applications such as composite materials, or porous media flow, when the
material properties vary in space. They may also find useful applications in image processing.

The rest of this paper is organized as follows. In Section 2, we prove some basic results on
mfBs that will be useful to our arguments. In Section 3, we provide a sufficient condition for
the existence of L2–local times of the (N, d) mfBs, and prove that the condition also implies
the joint continuity of the local times. We prove the Hölder regularity of the local times in
Section 4. Finally, we derive the local Hausdorff dimensions of the level sets of {BH(t)(t)} in
Section 5. Our results extend the results of Ayache and Xiao [6] and Ayache, Wu and Xiao [5]
for fractional Brownian sheets and Boufoussi, Dozzi and Guerbaz [13] [14] for multifractional
Brownian motion to multifractional Brownian sheets.

We end the introduction with some notation. Throughout this paper, the underlying
parameter space is RN or RN

+ = [0,∞)N . A parameter t ∈ RN is written as t = (t1, . . . , tN ),
or as 〈c〉, if t1 = · · · = tN = c. For any s, t ∈ RN such that sj < tj (j = 1, . . . , N), denoted by
s ≺ t, we define the closed interval (or rectangle) [s, t] =

∏N
j=1 [sj , tj ]. We use A to represent

the collection of the closed intervals [s, t] with s, t ∈ [ε, T ]N for some fixed positive numbers ε
and T . For any integer m ≥ 1, we always write λm for the Lebesgue measure on Rm, and use
〈·, ·〉 and | · | to denote the ordinary scalar product and the Euclidean norm in Rm respectively.

Throughout this paper, an unspecified positive and finite constant will be denoted by c,
which may not be the same in each occurrence. More specific constants in Section i are
numbered as ci,1 , ci,2 , . . . .
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2 Preliminaries

In this section, we will provide some lemmas that are useful for proving our main results.
Lemma 2.1 is an extension of Lemma 3.1 in Boufoussi et al [13] from fractional Brownian
motion to fractional Brownian sheets.

Lemma 2.1 Let 0 < ε < T and 0 < α < γ < 1 be fixed constants. Let {Zκ
0 (t), (t, κ) ∈

RN
+ × [α, γ]N} be a real–valued Gaussian random field defined by Eq. (1.3) with H(t) ≡ κ.

Then there exists a constant c2,1 = c(α, γ, ε, T,N) > 0 such that

E
[
Zβ

0 (t)− Zβ′

0 (t)
]2
≤ c2,1 |β − β′|2 (2.1)

for all t ∈ [ε, T ]N and all β, β′ ∈ [α, γ]N .

Proof For any β, β′ ∈ [α, γ]N , we define κ0 = β, and κj = (β′1, . . . , β
′
j , βj+1, . . . , βN ) for

j = 1, . . . , N . Clearly κN = β′. Since

E
[
Zβ

0 (t)− Zβ′

0 (t)
]2
≤ N

N∑
j=1

E
[
Zκj−1

0 (t)− Zκj

0 (t)
]2

, (2.2)

it suffices for us to prove that for j ∈ {1, . . . , N} fixed,

E
[
Zκj−1

0 (t)− Zκj

0 (t)
]2
≤ c(α, γ, ε, T,N)|βj − β′j |2. (2.3)

By using the moving average representation of fBs [Eq. (1.3)], we have that

E
[
Zκj−1

0 (t)− Zκj

0 (t)
]2

=
∫

RN−1

j−1∏
`=1

[
(t` − u`)

β′`−
1
2

+ − (−u`)
β′`−

1
2

+

]2 N∏
`=j+1

[
(t` − u`)

β`− 1
2

+ − (−u`)
β`− 1

2
+

]2

dǔj

×
∫

R

[
(tj − uj)

βj− 1
2

+ − (−uj)
βj− 1

2
+ −

(
(tj − uj)

β′j−
1
2

+ − (−uj)
β′j−

1
2

+

)]2

duj

:= I1 × I2,

(2.4)

where ǔj = (u1, . . . , uj−1, uj+1, . . . , uN ).

A change of variables shows that

I1 = c

j−1∏
`=1

t2β`
` ·

N∏
`=j+1

t
2β′`
` , (2.5)

which is bounded for all t ∈ [ε, T ]N and β, β′ ∈ [α, γ]N .
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Next we estimate I2. Without loss of generality, we may assume βj > β′j . Rewrite I2 as
the following summation

I2 =
∫ tj

0

[
(tj − uj)βj− 1

2 − (tj − uj)β′j−
1
2

]2
duj

+
∫ 0

−∞

[(
(tj − uj)βj− 1

2 − (−uj)βj− 1
2
)
−
(
(tj − uj)β′j−

1
2 − (−uj)β′j−

1
2
)]2

duj

:= II1 + II2.

(2.6)

By the Mean Value Theorem, we have that for some β′j ≤ ηj1 ≤ βj (ηj1 may depend on tj)
such that

II1 =
∫ tj

0

[
(tj − uj)ηj1− 1

2 ln(tj − uj)
]2
|βj − β′j |2 duj

≤ c2,2 |βj − β′j |2
(2.7)

for all t ∈ [ε, T ]N and β, β′ ∈ [α, γ]N . In the above, the last inequality follows from a change
of variables.

Similarly, we have that for some β′j ≤ ηj2 ≤ βj such that

II2 =
∫ 0

−∞

[
(tj − uj)ηj2− 1

2 ln(tj − uj)− (−uj)ηj2− 1
2 ln(−uj)

]2
|βj − β′j |2duj

≤ c2,3 |βj − β′j |2
(2.8)

for all t ∈ [ε, T ]N and β, β′ ∈ [α, γ]N . Equation (2.3) is proved by combining (2.4)–(2.8). This
proves Lemma 2.1. �

Combining Lemma 2.1 and Lemma 8 of Ayache and Xiao [6], we have the following result.

Lemma 2.2 Let {BH(t)
0 (t)} be a multifractional Brownian sheet in R. There exist positive

constants δ > 0, c2,4 and c2,5 such that for all s, t ∈ [ε, T ]N with |s − t| < δ, for any u ∈∏N
`=1[s` ∧ t`, s` ∨ t`], we have

c2,4

N∑
`=1

|t` − s`|2H`(u) ≤ E
[
B

H(t)
0 (t)−B

H(s)
0 (s)

]2
≤ c2,5

N∑
`=1

|t` − s`|2H`(u). (2.9)

Proof By the elementary inequalities

3(a2 + b2 + c2) ≥ (a + b + c)2 ≥ 1
2
a2 − 4b2 − 4c2,

we have that

3
(

E
[
B

H(u)
0 (t)−B

H(u)
0 (s)

]2
+ E

[
B

H(t)
0 (t)−B

H(u)
0 (t)

]2
+ E

[
B

H(s)
0 (s)−B

H(u)
0 (s)

]2)
≥ E

[
B

H(t)
0 (t)−B

H(s)
0 (s)

]2
≥ 1

2
E
[
B

H(u)
0 (t)−B

H(u)
0 (s)

]2
− 4E

[
B

H(t)
0 (t)−B

H(u)
0 (t)

]2
− 4E

[
B

H(u)
0 (s)−B

H(s)
0 (s)

]2
.

(2.10)
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The first term on the right hand side of (2.10) is the variance of the increment of a fractional
Brownian sheet with Hurst index H(u). By Lemma 8 of Ayache and Xiao [6], there exist
positive constants c2,6 and c2,7 , depending only on α, γ = max{K1, . . . ,KN}, ε and N , such
that

c2,6

N∑
`=1

|t` − s`|2H`(u) ≤ E
[
B

H(u)
0 (t)−B

H(u)
0 (s)

]2
≤ c2,7

N∑
`=1

|t` − s`|2H`(u). (2.11)

Meanwhile, by Condition A and Lemma 2.1, there exists δ > 0 small such that for all s, t ∈
[ε, T ]N with |s− t| < δ we have |u− s| < δ, which implies

E
[
B

H(u)
0 (s)−B

H(s)
0 (s)

]2
≤ c2,1 |H(u)−H(s)|2

= c2,1

N∑
`=1

|H`(u)−H`(s)|2 ≤ c2,8

N∑
`=1

|t` − s`|2K` ,
(2.12)

and similarly

E
[
B

H(u)
0 (t)−B

H(t)
0 (t)

]2
≤ c2,9

N∑
`=1

|t` − s`|2K` . (2.13)

Combining (2.10) with (2.11), (2.12) and (2.13), and noting that supt`
H`(t`) ≤ K` (still

by Definition 1.1), we can see that there exists δ > 0, which depends on α, γ, ε, T and N only,
such that for |s− t| < δ, (2.9) holds. This finishes the proof of Lemma 2.2. �

Remark 2.3 It would be interesting to compute the bounds on the correlation function and
spectral density of the mfBs, based on Lemma 2.2, since those are the properties of the random
field that are usually used to model natural phenomena.

In the following, we will work on multifractional Liouville sheets (mfLs) at first and
prove that it has the property of sectorial local nondeterminism. For a function H(t) =
(H1(t), . . . ,HN (t)) satisfying Condition A, the real-valued, centered Gaussian random field
{XH(t)

0 (t)} = {XH(t)
0 (t), t ∈ RN

+} defined by

X
H(t)
0 (t) =

∫
[0, t]

N∏
`=1

(t` − s`)H`(t)− 1
2 W (ds), t ∈ RN

+ (2.14)

is called a multifractional Liouville sheet with functional Hurst index H(t). One parameter
mfLs was first introduced by Lim and Muniandy [28] as an extension of fBm, see Lim [27] for
more properties on one parameter mfLs.

It follows from (1.3) that for every t ∈ RN
+ ,

B
H(t)
0 (t) = X

H(t)
0 (t) +

∫
(−∞,t]\[0, t]

N∏
`=1

g`(t`, s`)W (ds), (2.15)

where
g`(t`, s`) =

(
(t` − s`)+

)H`(t)− 1
2 −

(
(−s`)+

)H`(t)− 1
2 ,
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and the two fields on the right-hand side of (2.15) are independent. We will show that in study-
ing the regularity properties of the local times of {BH(t)

0 (t)}, the Liouville sheet {XH(t)
0 (t)}

plays a crucial role and the second field in (2.15) can be neglected. More precisely, we will
make use of the following property: For all integers n ≥ 2, t1, . . . , tn ∈ [a, b] and u1, . . . , un ∈ R,
we have

Var

 n∑
j=1

ujB
H(tj)
0 (tj)

 ≥ Var

 n∑
j=1

uj X
H(tj)
0 (tj)

 . (2.16)

Next we use an argument in Ayache and Xiao [6] to provide a useful decomposition for
{XH(t)

0 (t)}. For every t ∈ [ε, T ]N , we decompose the rectangle [0, t] into the following dis-
joint union of sub-rectangles:

[0, t] = [0, ε]N ∪
N⋃

`=1

R`(t) ∪∆(ε, t), (2.17)

where R`(t) = {r ∈ [0, T ]N : 0 ≤ ri ≤ ε if i 6= `, ε < r` ≤ t`} and ∆(ε, t) can be written as
a union of 2N − N − 1 sub-rectangles of [0, t]. Denote the integrand in (2.14) by g(t, r). It
follows from (2.17) that for every t ∈ [ε,∞)N ,

X
H(t)
0 (t) =

∫
[0,ε]N

g(t, r) W (dr) +
N∑

`=1

∫
R`(t)

g(t, r) W (dr) +
∫

∆(ε,t)
g(t, r) W (dr)

:= X(ε, t) +
N∑

`=1

Y`(t) + Z(ε, t). (2.18)

Since the processes X(ε, t), Y`(t) (1 ≤ ` ≤ N) and Z(ε, t) are defined by the stochastic integrals
w.r.t. W over disjoint sets, they are independent Gaussian fields.

The following lemma shows that every process Y`(t) has the property of strong local non-
determinism along the `th direction. It will be essential to our proofs.

Lemma 2.4 Let I ∈ A and let ` ∈ {1, 2, . . . , N} be fixed. For all integers n ≥ 2 and
t1, . . . , tn ∈ I such that

t1` ≤ t2` ≤ · · · ≤ tn` ,

we have
Var

(
Y`(tn)

∣∣Y`(tj) : 0 ≤ j ≤ n− 1
)
≥ c2,10 |tn` − tn−1

` |2H`(t
n), (2.19)

where t0` = 0 and c2,10 > 0 is a constant depending on ε and I only.

Proof The proof follows the same spirit as the proof of Lemma 2.1 of Ayache, Wu and
Xiao [5]. Working in the Hilbert space setting, the conditional variance in (2.19) is the square
of the L2(P)-distance of Y`(tn) from the subspace generated by Y`(tj) (0 ≤ j ≤ n− 1). Hence
it is sufficient to show that there exists a constant c2,10 such that

E
(

Y`(tn)−
n−1∑
j=1

ajY`(tj)
)2

≥ c2,10 |tn` − tn−1
` |2H`(t

n) (2.20)

8



for all aj ∈ R (j = 1, . . . , n−1). However, by splitting R`(tn) into two disjoint parts and using
the independence, we derive that

E
(

Y`(tn)−
n−1∑
j=0

ajY`(tj)
)2

≥ E

(∫
R`(tn)\R`(tn−1)

g(tn, r)W (dr)

)2

≥
∫ ε

0
· · ·
∫ tn`

tn−1
`

· · ·
∫ ε

0

N∏
k=1

(tnk − rk)2Hk(tn)−1 dr

≥ c2,10 |tn` − tn−1
` |2H`(t

n).

(2.21)

This proves (2.20) and hence Lemma 2.4. �

Combining Lemma 2.2 and Lemma 2.4 with the proofs of Lemma 2.1 and Lemma 8.1 in
Berman [11] [see also Theorem 3.3 in Boufoussi, Dozzi and Guerbaz [13]], we have the following

Proposition 2.5 For every integer n ≥ 2, there exist positive constants Cn and δ (both of
them may depend on n) such that for every ` = 1, . . . , N ,

Var

 n∑
j=1

uj

[
Y`(tj)− Y`(tj−1)

] ≥ Cn

n∑
j=1

u2
j Var

[
Y`(tj)− Y`(tj−1)

]
, (2.22)

for all (u1, . . . , un) ∈ Rn and all points t1, . . . , tn ∈ I satisfying t1` < . . . < tn` with tn` − t1` < δ.

The following lemma relates the multifractional Brownian sheet {BH(t)
0 (t)} to the indepen-

dent Gaussian random fields Y` (` = 1, . . . , N), which is a direct extension of Lemma 2.2 of
Ayache, Wu and Xiao [5].

Lemma 2.6 Let I ∈ A. For all integers n ≥ 2, t1, . . . , tn ∈ I and u1, . . . , un ∈ R, we have

Var
( n∑

j=1

ujB
H(tj)
0 (tj)

)
≥

N∑
`=1

Var
( n∑

j=1

ujY`(tj)
)

. (2.23)

Consequently, for all k ∈ {1, . . . , N} and positive numbers p1, . . . , pk ≥ 1 satisfying
∑k

`=1 p−1
`

= 1, we have

1[
detCov(BH(t1)

0 (t1), . . . , BH(tn)
0 (tn))

]1/2
≤

k∏
`=1

cn
2,11

[detCov(Y`(t1), . . . , Y`(tn))]1/(2p`)
, (2.24)

where detCov(Z1, · · · , Zn) denotes the determinant of the covariance matrix of the Gaussian
random vector (Z1, . . . , Zn).

We will also make use of the following technical lemmas, among which Lemma 2.7 is from
Xiao and Zhang [41], Lemma 2.8 is proved in Ayache and Xiao [6], and Lemma 2.9 and Lemma
2.10 are from Ayache, Wu and Xiao [5].
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Lemma 2.7 Let 0 < h < 1 be a constant, then for any δ > 2h, M > 0 and β > 0, there
exists a positive and finite constant c2,12, depending on δ, ε, β and M only, such that for all
0 < a ≤ M ∫ 1

ε
dr

∫ 1

ε

[
a + |s− r|2h

]−β
ds ≤ c2,12

(
a−(β− 1

δ
) + 1

)
. (2.25)

Lemma 2.8 Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A,B) =
∫ 1

0

dt

(A + tα)β(B + t)η
. (2.26)

Then there exist finite constants c2,13 and c2,14, depending on α, β and η only, such that the
following hold for all reals A, B > 0 satisfying A1/α ≤ c2,13 B:

(i) if αβ > 1, then

J ≤ c2,14

1
Aβ−α−1Bη

; (2.27)

(ii) if αβ = 1, then

J ≤ c2,14

1
Bη

log
(
1 + BA−1/α

)
; (2.28)

(iii) if 0 < αβ < 1 and αβ + η 6= 1, then

J ≤ c2,14

( 1
Bαβ+η−1

+ 1
)
. (2.29)

Lemma 2.9 For any q ∈ [0,
∑N

`=1 β−1
` ), let τ ∈ {1, . . . , N} be the integer such that

τ−1∑
`=1

1
β`

≤ q <
τ∑

`=1

1
β`

(2.30)

with the convention that
∑0

`=1
1
β`

:= 0. Then there exists a positive constant ∆τ ≤ 1 depending
on (β1, . . . , βN ) only such that for every ∆ ∈ (0, ∆τ ), we can find τ real numbers p` ≥ 1
(1 ≤ ` ≤ τ) satisfying the following properties:

τ∑
`=1

1
p`

= 1,
β` q

p`
< 1, ∀ ` = 1, . . . , τ (2.31)

and

(1−∆)
τ∑

`=1

β` q

p`
≤ βτ q + τ −

τ∑
`=1

βτ

β`
. (2.32)

Furthermore, if we denote ατ :=
∑τ

`=1
1
β`
− q > 0, then for any positive number ρ ∈

(
0, ατ

2τ

)
,

there exists an `0 ∈ {1, . . . , τ} such that

β`0q

p`0

+ 2β`0ρ < 1. (2.33)
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Lemma 2.10 For all integers n ≥ 1, positive numbers a, r, 0 < bj < 1 and an arbitrary
s0 ∈ [0, a/2],∫

a≤s1≤···≤sn≤a+r

n∏
j=1

(sj − sj−1)−bj ds1 · · · dsn ≤ cn
2,15

(n!)
1
n

Pn
j=1 bj−1rn−

Pn
j=2 bj , (2.34)

where c2,15 > 0 is a constant depending on a and bj’s only. In particular, if bj = α for all
j = 1, . . . , n, then∫

a≤s1≤···≤sn≤a+r

n∏
j=1

(sj − sj−1)−α ds1 · · · dsn ≤ cn
2,15

(n!)α−1 rn(1−(1− 1
n

)α). (2.35)

Finally, we conclude this section by briefly recalling some aspects of the theory of local
times. For excellent surveys on local times of random and deterministic vector fields, we refer
to Geman and Horowitz [19] and Dozzi [16].

Let X(t) be a Borel vector field on RN with values in Rd. For any Borel set I ⊆ RN , the
occupation measure of X on I is defined as the following measure on Rd:

µI (•) = λN

{
t ∈ I : X(t) ∈ •

}
.

If µI is absolutely continuous with respect to λd, we say that X(t) has local times on I,
and define its local times, L(•, I), as the Radon–Nikodým derivative of µI with respect to λd,
i.e.,

L(x, I) =
dµI

dλd
(x), ∀x ∈ Rd.

In the above, x is the so-called space variable, and I is the time variable. Sometimes, we write
L(x, t) in place of L(x, [0, t]). Note that if X has local times on I then for every Borel set
J ⊆ I, L(x, J) also exists.

By standard martingale and monotone class arguments, one can deduce that the local
times have a measurable modification that satisfies the following occupation density formula
[see Geman and Horowitz ( [19], Theorem 6.4)]: For every Borel set I ⊆ RN , and for every
measurable function f : Rd → R+,∫

I
f(X(t)) dt =

∫
Rd

f(x)L(x, I) dx. (2.36)

Suppose we fix a rectangle I =
∏N

i=1[ai, ai + hi]. Then, whenever we can choose a version
of the local time, still denoted by L(x,

∏N
i=1[ai, ai + ti]), such that it is a continuous function

of (x, t1, · · · , tN ) ∈ Rd ×
∏N

i=1[0, hi], X is said to have a jointly continuous local time on I.
When a local time is jointly continuous, L(x, •) can be extended to be a finite Borel measure
supported on the level set

X−1
I (x) = {t ∈ I : X(t) = x}; (2.37)

see Adler [1] for details. In other words, local times often act as a natural measure on the level
sets of X. Hence they are useful in studying the various fractal properties of level sets and
inverse images of the vector field X. In this regard, we refer to Berman [10], Ehm [18], and
Xiao [38].
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It follows from (25.5) and (25.7) in Geman and Horowitz [19] [see Pitt [32]] that for all
x, y ∈ Rd, I ∈ A and all integers n ≥ 1,

E
[
L(x, I)n

]
= (2π)−nd

∫
In

∫
Rnd

exp
(
− i

n∑
j=1

〈uj , x〉
)

×E exp
(

i
n∑

j=1

〈uj , X(tj)〉
)

du dt (2.38)

and for all even integers n ≥ 2,

E
[(

L(x, I)− L(y, I)
)n] =(2π)−nd

∫
In

∫
Rnd

n∏
j=1

[
e−i〈uj ,x〉 − e−i〈uj ,y〉

]
× E exp

(
i

n∑
j=1

〈uj , X(tj)〉
)

du dt,

(2.39)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ I ⊆ (0,∞)N . In the coordinate
notation we then write uj = (uj

1, . . . , u
j
d).

3 Local times: existence and joint continuity

In this section, we consider the existence and regularity of the local times of mfBs. We will
provide sufficient conditions for the existence of the local times. Then in Theorem 3.4 we
prove that, under the same condition as in Theorem 3.1, the local times of mfBs have a jointly
continuous version.

For I ∈ A, let H = (H1, . . . ,HN ) be the vector defined by

H` = max
t∈I

H`(t), for ` = 1, . . . , N. (3.1)

The index H depends on I, but for simplicity we have deleted I from the notation.

Theorem 3.1 Let I ∈ A and H be the vector defined in (3.1). If d <
∑N

`=1
1

H`
, then mfBs

{BH(t)(t)} admits an L2-integrable local time L(·, I) almost surely.

Proof Without loss of generality, we may and will assume that δ=diam(I) is sufficiently
small so that (2.9) holds for all s, t ∈ I. In particular, we assume δ ≤ 1.

To prove the existence of local time on I, by Theorem 21.9 of Geman and Horowitz [19], it
suffices to prove that ∫

I

∫
I

(
E
[
B

H(t)
0 (t)−B

H(s)
0 (s)

]2)−d/2

dsdt < ∞. (3.2)
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It follows from (2.9) and a change of variables that∫
I

∫
I

(
E
[
B

H(t)
0 (t)−B

H(s)
0 (s)

]2)−d/2

dsdt ≤ c

∫
I

∫
I

( N∑
`=1

|t` − s`|2H`(s)

)−d/2

dsdt

≤ c3,1

∫
I

∫
I

( N∑
`=1

|t` − s`|2H`

)−d/2

dsdt.

(3.3)

Since d <
∑N

`=1
1

H`
, we can estimate the last integral in a way similar to the proof of Theorem

3.6 of Xiao and Zhang [41]. Namely, by applying Lemma 2.7 repeatedly, we derive that the
last integral is finite. This proves (3.2) and hence Theorem 3.1. �

The following is a consequence of Theorem 3.1, which gives a more natural condition for
the existence of local times of mfBs.

Corollary 3.2 Let I ∈ A be fixed. If
∑N

`=1
1

H`(t)
> d for all t ∈ I, then mfBs {BH(t)(t)}

admits an L2-integrable local time L(·, I) almost surely.

Proof Since the functions H1(t), . . . ,HN (t) are uniformly continuous on I, we can divide
I into subintervals {Ip} such that for each Ip, we have

∑N
`=1

1
H`(p)

> d, where H`(p) =

maxt∈Ip H`(t). It follows from Theorem 3.1 that, on every Ip, mfBs {BH(t)(t)} has an L2-
integrable local time L(·, Ip) almost surely. This implies that {BH(t)(t)} has an L2-integrable
local time on I, which concludes the proof of Corollary 3.2. �

Remark 3.3 The condition in Corollary 3.2 is almost the best possible in the sense that,
if d >

∑N
`=1

1
H`(t)

for some t ∈ I, then it can be proved using Theorem 21.9 of Geman and

Horowitz [19] that {BH(t)(t)} has no L2(Rd×Ω)-integrable local times on I. In the case when
d ≤

∑N
`=1

1
H`(t)

for all t ∈ I, but the equality only holds for t in a set of Lebesgue measure
0, the existence of local times is rather subtle, and requires imposing further assumption on
(H1(t), . . . ,HN (t)). Hence it will not be discussed here.

Now we consider the joint continuity of the local times of {BH(t)(t)}. For convenience, we
first prove that under the same condition as in Theorem 3.1, the local time of {BH(t)(t)} has
a version that is jointly continuous in both space and time variables. Then we apply the same
argument as in the proof of Corollary 3.2 to show that the same conclusion holds provided∑N

`=1
1

H`(t)
> d for all t ∈ I. Our results extend those of Ehm [18] for the Brownian sheet and

of Ayache, Wu and Xiao [5] for fractional Brownian sheets.

Theorem 3.4 Let {BH(t)(t)} = {BH(t)(t), t ∈ RN
+} be a multifractional Brownian sheet with

values in Rd. Let I ∈ A and let H be the vector defined in (3.1). If d <
∑N

`=1
1

H`
, then

{BH(t)(t)} has a jointly continuous local time on I.

The main idea of proving Theorem 3.4 is similar to those in Ehm [18], Xiao [38] and Ayache,
Wu and Xiao [5]. That is, we first apply the Fourier analytic arguments to derive estimates
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on the moments of the local times and then apply a multiparameter version of Kolmogorov
continuity theorem [cf. Khoshnevisan [24]]. As in Ayache, Wu and Xiao [5], the “one-sided”
sectorial local nondeterministic properties of multifractional Liouville sheets proved in Section
2 [see Lemma 2.4 and Proposition 2.5] will play important rôles in deriving moment estimates
in Lemmas 3.5 and 3.7 below. However, due to the nonstationarity and the lack of two-sided
local nondeterminism of multifractional Brownian sheets we have to make several modifications
in our proofs.

For convenience, we further assume

0 < H1 ≤ . . . ≤ HN < 1. (3.4)

Lemma 3.5 Assume the conditions of Theorem 3.4 hold. Let τ be the unique integer in
{1, . . . , N} satisfying

τ−1∑
`=1

1
H`

≤ d <

τ∑
`=1

1
H`

. (3.5)

Then there exists a positive constant c3,2, depending on N , d, H and I only, such that for all
x ∈ Rd, all subintervals T = [a, a + 〈h〉] ⊆ I with h > 0 small, and for all integers n ≥ 1,

E[L(x, T )n] ≤ cn
3,2

(n!)N−βτ hnβτ , (3.6)

where βτ = N − τ −Hτd +
∑τ

`=1 Hτ/H`.

Proof For later use, we will start with an arbitrary closed interval T =
∏N

`=1[a`, a`+h`] ⊆ I.
It follows from (2.38) and the fact that {BH(t)

1 (t)}, . . . , {BH(t)
d (t)} are independent copies of

{BH(t)
0 (t)} that for all integers n ≥ 1,

E
[
L(x, T )n

]
≤ (2π)−nd

∫
T n

d∏
k=1

{∫
Rn

exp
[
− 1

2
Var
( n∑

j=1

uj
kB

H(tj)
0 (tj)

)]
dUk

}
dt, (3.7)

where Uk = (u1
k, . . . , u

n
k) ∈ Rn. Fix k = 1, . . . , d and denote the inner integral in (3.7) by Nk.

Then by Lemma 2.6, we have

Nk ≤
∫

Rn

exp
[
− 1

2

N∑
`=1

Var
( n∑

j=1

uj
kY`(tj)

)]
dUk

≤
∫

Rn

exp
[
− 1

2

τ∑
`=1

Var
( n∑

j=1

uj
kY`(tj)

)]
dUk.

(3.8)

Since (3.5) holds, we apply Lemma 2.9 with ∆ = n−1 and q = d to obtain τ positive numbers
p1, . . . , pτ ≥ 1 satisfying (2.31) and (2.32).

Applying the generalized Hölder inequality [Hardy [20], p.140] we derive that

Nk ≤
τ∏

`=1

{∫
Rn

exp
[
− p`

2
Var
( n∑

j=1

uj
kY`(tj)

)]
dUk

} 1
p`

= cn
3,3

τ∏
`=1

[
detCov

(
Y`(t1), . . . , Y`(tn)

) ]− 1
2p` , (3.9)
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where the last equality follows from the fact that
(
Y`(t1), . . . , Y`(tn)

)
is a Gaussian vector with

mean 0. Hence it follows from (3.7) and (3.9) that

E
[
L(x, T )n

]
≤ cn

3,3

∫
T n

τ∏
`=1

[
detCov(Y`(t1), . . . , Y`(tn))

]− d
2p` dt. (3.10)

To evaluate the integral in (3.10), we will first integrate [dt1` . . . dtn` ] for ` = 1, . . . , τ . To
this end, we use the following fact about multivariate normal distributions: For any Gaussian
random vector (Z1, . . . , Zn),

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

j=2

Var(Zj |Z1, . . . , Zj−1). (3.11)

By the above fact and Lemma 2.4, we can derive that for every ` ∈ {1, . . . , τ} and for all
t1, . . . , tn ∈ T =

∏N
`=1[a`, a` + h`] satisfying

a` ≤ t
π`(1)
` ≤ t

π`(2)
` ≤ · · · ≤ t

π`(n)
` ≤ a` + h` (3.12)

for some permutation π` of {1, . . . , N}, we have

detCov
(
Y`(t1), . . . , Y`(tn)

)
≥ cn

2,7

n∏
j=1

(
t
π`(j)
` − t

π`(j−1)
`

)2H`(t
π`(j))

≥ cn
3,4

n∏
j=1

(
t
π`(j)
` − t

π`(j−1)
`

)2H` ,

(3.13)

where t
π`(0)
` := ε [Recall the decomposition (2.18)].

We choose ε < 1
2 min{a`, 1 ≤ ` ≤ N} so that Lemma 2.10 is applicable. It follows from

(3.12) and (3.13) that∫
[a`, a`+h`]n

[
detCov(Y`(t1), . . . , Y`(tn))

]− d
2p` dt1` · · · dtn`

≤
∑
π`

cn

∫
a`≤t

π`(1)

` ≤···≤t
π`(n)

` ≤a`+h`

n∏
j=1

1(
t
π`(j)
` − t

π`(j−1)
`

)H`d/p`
dt1` · · · dtn`

≤ cn
3,5

(n!)H`d/p` h
n
(
1−(1− 1

n
)H`d/p`

)
` .

(3.14)

In the above, the last inequality follows from (2.35).
Combining (3.10) and (3.14), we have

E
[
L(x, T )n

]
≤ cn

3,6
(n!)

Pτ
`=1 H`d/p`

τ∏
`=1

h
n(1−(1− 1

n
)H`d/p`)

` ·
N∏

`=τ+1

hn
` . (3.15)

Now we consider the special case when T = [a, a + 〈h〉], i.e. h1 = · · · = hN = h with h < δ,
(3.15) and (2.32) with ∆ = n−1 and q = d together yield

E
[
L(x, T )n

]
≤ cn

3,7
(n!)

Pτ
`=1 H`d/p` hn

(
N−(1−n−1)

Pτ
`=1 H`d/p`

)
≤ cn

3,8
(n!)N−βτ hnβτ .

(3.16)
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This proves (3.6). �

Remark 3.6 In the proof of Lemma 3.5, if we apply the generalized Hölder inequality to the
first integral in (3.8) with N positive numbers p1, . . . , pN defined by

p` =
N∑

i=1

H`

H i

, (` = 1, . . . , N),

then the above proof shows that, if T ⊆ I ∈ A, then similar to (3.15), we derive the following
inequality holds

E
[
L(x, T )n

]
≤ cn

3,9
(n!)N ν λN (T )n(1−ν), (3.17)

where ν = d/(
∑N

`=1
1

H`
) ∈ (0, 1). We will apply this inequality in the proof of Theorem 3.4

below.

Lemma 3.7 Assume the conditions of Theorem 3.4 hold. Let τ be the unique integer in
{1, . . . , N} satisfying (3.5). Then there exists a positive and finite constant cn, depending on
N, d, H, I and n, such that for all subintervals T = [a, a+〈h〉] ⊆ I, x, y ∈ Rd with |x−y| ≤ 1,
all even integers n ≥ 1 and all γ ∈ (0, 1 ∧ ατ

2τ ),

E
[(

L(x, T )− L(y, T )
)n] ≤ cn |x− y|nγ hn(βτ−Hτ γ), (3.18)

where ατ =
∑τ

`=1
1

H`
− d.

Proof Let γ ∈ (0, 1 ∧ ατ
2τ ) be a constant. Note that by the elementary inequalities

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R (3.19)

and |u + v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,

n∏
j=1

∣∣∣e−i〈uj , x〉 − e−i〈uj , y〉
∣∣∣ ≤ 2(1−γ)n |x− y|nγ

∑′ n∏
j=1

|uj
kj
|γ , (3.20)

where the summation
∑

´ is taken over all the sequences (k1, · · · , kn) ∈ {1, · · · , d}n.
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It follows from (2.39), (3.20) and Lemma 2.6 that for every even integer n ≥ 2,

E
[
(L(x, T )− L(y, T ))n

]
≤ |x− y|nγ

∑′ ∫
T n

dt

∫
Rnd

n∏
m=1

|um
km
|γ exp

[
− 1

2
Var
( n∑

j=1

〈uj , BH(tj)(tj)〉
)]

du

= |x− y|nγ
∑′ ∫

T n

dt

∫
Rnd

n∏
m=1

|um
km
|γ

d∏
k=1

exp
[
− 1

2
Var
( n∑

j=1

uj
k B

H(tj)
k (tj)

)]
du

≤ |x− y|nγ
∑′ ∫

T n

dt

∫
Rnd

n∏
m=1

|um
km
|γ

d∏
k=1

exp
[
− 1

2

N∑
`=1

Var
( n∑

j=1

uj
k Y`(tj)

)]
du

≤ |x− y|nγ
∑′ ∫

T n

dt

∫
Rnd

n∏
m=1

|um
km
|γ

d∏
k=1

exp
[
− 1

2

τ∑
`=1

Var
( n∑

j=1

uj
k Y`(tj)

)]
du

= |x− y|nγ
∑′ ∫

T n

dt

d∏
k=1

∫
Rn

n∏
j=1

|uj
k|

γηj
k exp

[
− 1

2

τ∑
`=1

Var
( n∑

j=1

uj
k Y`(tj)

)]
dUk,

(3.21)

where ηj
k = 1 if k = kj and ηj

k = 0 otherwise. Note that for every j ∈ {1, . . . , n}, we have∑d
k=1 ηj

k = 1.
We take β` = H` (1 ≤ ` ≤ N), ∆ = 1/n and q = d in Lemma 2.9, let p` (` = 1, . . . , τ)

be the constants satisfying (2.31) and (2.32). Observe that, since γ ∈
(
0, ατ

2τ

)
, there exists an

`0 ∈ {1, . . . , τ} such that
H`0d

p`0

+ 2H`0γ < 1. (3.22)

Combining (3.21) with the generalized Hölder inequality, we have that

E
[
(L(x, T )− L(y, T ))n

]
≤ |x− y|nγ

∑′ ∫
T n

dt

×
d∏

k=1

{(∫
Rn

n∏
j=1

|uj
k|

γηj
kp`0 exp

[
− 1

2
Var
( n∑

j=1

uj
k Y`0(t

j)
)]

dUk

) 1
p`0

×
τ∏

` 6=`0

(∫
Rn

exp
[
− 1

2
Var
( n∑

j=1

uj
k Y`(tj)

)]
dUk

) 1
p`

}
.

(3.23)

For any n points t1, . . . , tn ∈ T , let π1, . . . , πN be N permutations of {1, 2, . . . , n} such that
for every 1 ≤ ` ≤ N ,

t
π`(1)
` ≤ t

π`(2)
` ≤ · · · ≤ t

π`(n)
` . (3.24)

Let

M`0 =
∫

Rn

n∏
j=1

|uj
k|

γηj
kp`0 exp

[
− 1

2
Var
( n∑

j=1

uj
k Y`0(t

j)
)]

dUk. (3.25)

By changing the variables of the above integral by means of the following transformation

u
π`0

(j)

k = vj
k − vj+1

k , j = 1, . . . , n; u
π`0

(n)

k = vn
k ,
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we have that
n∑

j=1

uj
k Y`0(t

j) =
n∑

j=1

vj
k

(
Y`0(t

π`0
(j))− Y`0(t

π`0
(j−1))

)
,

where tπ`0
(0) = 0.

Furthermore, by the elementary inequality that for ξ > 0, |a− b|ξ ≤ cξ

(
|a|ξ + |b|ξ

)
, where

cξ = 2ξ−1 if ξ > 1 and 1 if ξ ≤ 1, we have that

n∏
j=1

|uπ`0
(j)

k |γηj
kp`0 =

n−1∏
j=1

|vj
k − vj+1

k |γηj
kp`0 |vn

k |γηn
k p`0

≤ cn
n−1∏
j=1

(
|vj

k|
γηj

kp`0 + |vj+1
k |γηj

kp`0

)
|vn

k |γηn
k p`0 .

(3.26)

Moreover, the last product is equal to a finite sum of terms each of the form∏n
j=1 |v

j
k|

γηj
kp`0

εj , where εj = 0, 1, or 2 and
∑n

j=1

∑d
k=1 ηj

kεj = n.

Denote σ2
`0,j = E

[(
Y`0(t

π`0
(j)) − Y`0(t

π`0
(j−1))

)2]. By Proposition 2.5, we know that M`0

is dominated by the sum over all possible choices of (ε1, . . . , εn) ∈ {0, 1, 2}n of the following
terms ∫

Rn

n∏
j=1

|vj
k|

γηj
kp`0

εj exp
(
− Cn

2

n∑
j=1

(vj
k)

2σ2
`0,j

)
dVk, (3.27)

where Vk = (v1
k, . . . , v

n
k ) ∈ Rn. By another change of variable wj

k = σ`0,jv
j
k, the integral in

(3.27) can be represented by

n∏
j=1

σ
−1−γηj

kp`0
εj

`0,j

∫
Rn

n∏
j=1

|wj
k|

γηj
kp`0

εj exp
(
− Cn

2

n∑
j=1

(wj
k)

2

)
dWk

:= Cn,1

n∏
j=1

σ
−1−γηj

kp`0
εj

`0,j ,

(3.28)

where

Cn,1 =
∫

Rn

n∏
j=1

|wj
k|

γηj
kp`0

εj exp
(
− Cn

2

n∑
j=1

(wj
k)

2

)
dWk

is a constant depending on n. Thus we have obtained that

M`0 ≤ cn

n∏
j=1

σ
−1−γηj

kp`0
εj

`0,j . (3.29)

The other integrals for ` 6= `0 in (3.23) are easier and can be estimated similarly.
Combining (3.23) with Lemma 2.4 [which gives lower bounds for σ2

`,j ], (3.28), (3.29) and
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the definition of I, we have

E
[(

L(x, T )− L(y, T )
)n]

≤ cn |x− y|nγ
∑′

{∫
Π`0

n∏
j=1

(
t
π`0

(j)

`0
− t

π`0
(j−1)

`0

)−H`0
d

p`0
−γH`0

εj
dt1`0 · · · dtn`0

×
τ∏

` 6=`0

∫
Π`

n∏
j=1

1(
t
π`(j)
` − t

π`(j−1)
`

)H`d/p`
dt1` · · · dtn` ×

N∏
`=τ+1

hn
`

}
.

(3.30)

In the above, Π` =
{
a` ≤ t

π`(1)
` ≤ · · · ≤ t

π`(n)
` ≤ a` + h`

}
for every 1 ≤ ` ≤ τ .

Now we take h1 = · · · = hN = h < δ in (3.30). Then by Lemma 2.10 and noting that
(3.22), we have

E
[
(L(x, T )− L(y, T ))n

]
≤ cn|x− y|nγ hn

(
N−(1− 1

n
)
Pτ

`=1 H`d/p`−H`0
γ
)

≤ cn|x− y|nγ hn
(
βτ−Hτ γ

)
,

(3.31)

where the last inequality follows from the fact that H`0 ≤ Hτ and Lemma 2.9. �

The proof of Theorem 3.4 is similar to the proofs of Theorem 4.1 in Xiao and Zhang [41]
and Theorem 3.1 in Ayache, Wu and Xiao [5], and we include it here for completeness.

Proof of Theorem 3.4 Let I = [a, b] ∈ A be fixed and assume that (3.5) holds. It
follows from Lemma 3.7 and the multiparameter version of Kolmogorov’s continuity theorem
[cf. Khoshnevisan [24]] that, for every T ⊆ I, the mfBs {BH(t)} has almost surely a local time
L(x, T ) that is continuous for all x ∈ Rd.

To prove the joint continuity, observe that for all x, y ∈ Rd and s, t ∈ I, we have

E
[(

L(x, [a, s])− L(y, [a, t])
)n] ≤ 2n−1

{
E
[(

L(x, [a, s])− L(x, [a, t])
)n]

+ E
[(

L(x, [a, t])− L(y, [a, t])
)n]}

.

(3.32)

Since the difference L(x, [a, s]) − L(x, [a, t]) can be written as a sum of finite number (only
depends on N) of terms of the form L(x, Tj), where each Tj ∈ A is a closed subinterval of I
with at least one edge length ≤ |s− t|, we can use Lemma 3.5 and Remark 3.6, to bound the
first term in (3.32). On the other hand, the second term in (3.32) can be dealt with using
Lemma 3.7 as above. Consequently, for some γ ∈ (0, 1) small, the right hand side of (3.32)
is bounded by cn

3,10
(|x − y| + |s − t|)nγ , where n ≥ 2 is an arbitrary even integer. Therefore

the joint continuity of the local times on I follows again from the multiparameter version of
Kolmogorov’s continuity theorem. This finishes the proof of Theorem 3.4. �

Similar to the proof of Corollary 3.2, we derive from Theorem 3.4 the following more general
result.

Corollary 3.8 Let I ∈ A be fixed. If
∑N

`=1
1

H`(t)
> d for all t ∈ I, then mfBs {BH(t)(t)} has

a jointly continuous local time on I almost surely.
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The next corollary is a direct consequence of Corollary 3.8 and the continuity of the Hurst
functionals. We state it to emphasize that the joint continuity of the local time is a local
property depending on H(t).

Corollary 3.9 Let t0 ∈ [ε, T ]N be fixed. If
∑N

`=1
1

H`(t0)
> d, then mfBs {BH(t)(t)} has a

jointly continuous local time on U(t0, r0) for some r0 > 0 almost surely, where U(t0, r0) is the
open ball centered at t0 with radius r0.

4 Hölder Conditions for L(x, •)
In this section we investigate the local and global asymptotic behavior of the local time L(x, ·)
at x, as a measure. Results in this section carry information about fractal properties of the
sample functions of mfBs; see Section 5.

By applying Lemma 3.5, we can prove the following technical lemmas, which will be useful
in this section.

Lemma 4.1 Under the conditions of Lemma 3.5, there exists a positive and finite constant c4,1,
depending on N, d, H and I only, such that for all a ∈ I and hypercubes T = [a, a + 〈r〉] ⊆ I
with r < δ, x ∈ Rd and all integers n ≥ 1,

E
[
L(x + BH(a)(a), T )n

]
≤ cn

4,1
(n!)N−βτ rn βτ . (4.1)

Proof The proof is similar to the proof of Lemma 3.11 in Ayache, Wu and Xiao [5] and we
include it here for completeness. For each fixed a ∈ I, we define the Gaussian random field
Y = {Y (t), t ∈ RN

+} with values in Rd by Y (t) = BH(t)(t) − BH(a)(a). It follows from (2.36)
that if {BH(t)(t)} has a local time L(x, S) on any Borel set S, then Y also has a local time
L̃(x, S) on S and, moreover, L(x + BH(a)(a), S) = L̃(x, S). With little modification, the proof
of Lemma 3.5 goes through for the Gaussian field Y . Hence we derive that (4.1) holds. �

The following lemma is a consequence of Lemma 4.1 and Chebyshev’s inequality.

Lemma 4.2 Under the conditions of Lemma 3.5, there exist positive constants c4,2, b (depend-
ing on N , d, I and H only), such that for all a ∈ I, T = [a, a + 〈r〉] with r ∈ (0, δ), x ∈ Rd

and u > 1 large enough, we have

P
{

L
(
x + BH(a)(a), T

)
≥ c4,2 rβτ uN−βτ

}
≤ exp

(
−b u

)
. (4.2)

Let U(t, r) be the open ball centered at t with radius r, let HU be the vector defined
by (3.1) with I = U(t, r), and let τ(U) be the positive integer satisfying the corresponding
condition (3.5). By applying Lemma 3.5 and the Borel-Cantelli lemma, one can easily derive
the following law of the iterated logarithm for the local time L(x, ·): There exists a positive
constant c4,3 such that for every x ∈ Rd and t ∈ (0,∞)N ,

lim sup
r→0

L(x,U(t, r))
ϕU (r)

≤ c4,3 , (4.3)
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where ϕU (r) = rβτ(U)
(
log log(1/r)

)N−βτ(U) with

βτ(U) = N − τ(U)−HU
τ(U)d +

τ(U)∑
`=1

HU
τ(U)

HU
`

.

Because of the continuity of H`(t) (1 ≤ ` ≤ N), it can be verified that

τ(U) → τ(t) and βτ(U) → βτ(t) as r → 0, (4.4)

where τ(t) is the unique integer satisfying

τ(t)−1∑
`=1

1
H`(t)

≤ d <

τ(t)∑
`=1

1
H`(t)

(4.5)

and

βτ(t) = N − τ(t)−Hτ(t)(t)d +
τ(t)∑
`=1

Hτ(t)(t)
H`(t)

. (4.6)

It follows from Fubini’s theorem that, with probability one, (4.3) holds for almost all
t ∈ (0,∞)N . Now we prove a stronger version of this result, which is useful in determining the
Hausdorff dimension of the level set.

Theorem 4.3 Let I ∈ A be a fixed interval and assume that d <
∑N

`=1
1

H`
. For any fixed

x ∈ Rd, let L(x, ·) be the local time of {BH(t)(t)} at x which is a random measure supported
on the level set. Then there exists a positive and finite constant c4,4 independent of x such that
with probability 1, the following holds for L(x, ·)-almost all t ∈ I,

lim sup
r→0

L(x,U(t, r))
ϕt(r)

≤ c4,4 , (4.7)

where ϕt(r) = rβτ(t)
(
log log(1/r)

)N−βτ(t), and where βτ(t) is defined by (4.6).

Proof For every integer k > 0, we consider the random measure Lk(x, •) on the Borel subsets
C of I defined by

Lk(x,C) =
∫

C
(2πk)d/2 exp

(
− k |BH(t)(t)− x|2

2

)
dt

=
∫

C

∫
Rd

exp
(
− |ξ|2

2k
+ i〈ξ, BH(t)(t)− x〉

)
dξ dt.

(4.8)

Then, by the occupation density formula (2.36) and the continuity of the function y 7→ L(y, C),
one can verify that almost surely Lk(x,C) → L(x,C) as k →∞ for every Borel set C ⊆ I.

For every integer m ≥ 1, denote fm(t) = L
(
x, U(t, 2−m)

)
. From the proof of Theorem 3.4

we can see that almost surely the functions fm(t) are continuous and bounded. Hence we have
almost surely, for all integers m, n ≥ 1,∫

I
[fm(t)]n L(x, dt) = lim

k→∞

∫
I
[fm(t)]n Lk(x, dt). (4.9)
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It follows from (4.9), (4.8) and the proof of Proposition 3.1 of Pitt [32] that for every positive
integer n ≥ 1,

E
∫

I
[fm(t)]n L(x, dt) =

(
1
2π

)(n+1)d ∫
I

∫
U(t,2−m)n

∫
R(n+1)d

exp
(
− i

n+1∑
j=1

〈x, uj〉
)

× E exp
(

i

n+1∑
j=1

〈uj , BH(sj)(sj)〉
)

duds,

(4.10)

where u = (u1, . . . , un+1) ∈ R(n+1)d and s = (t, s1, . . . , sn). Similar to the proof of (3.6), for
sufficiently large m, we have that the right hand side of Eq. (4.10) is at most

cn
4,3

∫
I

∫
U(t,2−m)n

ds[
detCov

(
B

H(t)
0 (t), BH(s1)

0 (s1), . . . , BH(sn)
0 (sn)

)]d/2

≤ cn
4,4

(n!)N−βτ(U)2−mnβτ(U) ,

(4.11)

where c4,4 is a positive finite constant depending on N, d, H, and I only.
Let γ > 0 be a constant which value will be determined later. We consider the random set

Im(ω) =
{
t ∈ I : fm(t) ≥ γϕU (2−m)

}
.

Denote by µω the restriction of the random measure L(x, ·) on I, that is, µω(E) = L(x, E ∩ I)
for all Borel sets E ∈ RN

+ . Now we take n = blog mc, where byc denotes the integer part of y.
Then by applying (4.11) and by Stirling’s formula, we have

Eµω(Im) ≤
E
∫
I [fm(t)]n L(x, dt)[

γϕU (2−m)
]n

≤
cn
4,4

(n!)N−βτ(U) 2−mn βτ(U)

γn2−mn βτ(U)(log m)n(N−βτ(U))
≤ m−2,

(4.12)

provided γ > 0 is chosen large enough, say, γ ≥ c4,2 . This implies that

E

( ∞∑
m=1

µω(Im)

)
< ∞.

Therefore, with probability 1 for µω almost all t ∈ I, we have

lim sup
m→∞

L(x,U(t, 2−m))
ϕU (2−m)

≤ c4,2 . (4.13)

By (4.4) we can see that for m sufficiently large, there exists a constant c4,5 > 0 such that
ϕU (2−m) ≤ c4,5ϕt(2−m). Therefore, we have

lim sup
m→∞

L(x,U(t, 2−m))
ϕt(2−m)

≤ c4,6 . (4.14)

Finally, for any r > 0 small enough, there exists an integer m such that 2−m ≤ r < 2−m+1 and
(4.13) is applicable. Since ϕt is increasing near 0, (4.7) follows from (4.13) and a monotonicity
argument. �
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Recall that the pointwise Hölder exponent of a random field {X(t), t ∈ RN} at a point
t0 ∈ RN is defined by

αX(t) = sup
{

α, lim
|h|→0

X(t0 + h)−X(t0)
|h|α

= 0
}

. (4.15)

By Theorem 4.3, and noting that the fact that L(t, ·) vanishes outside some compact set U
(depending on ω), we have the following corollary.

Corollary 4.4 For every x ∈ Rd, the pointwise Hölder exponent αL of L(x, t) at t satisfies

αL(t) ≥ βτ(t) a.s. (4.16)

5 Hausdorff dimensions of the level sets

For x ∈ Rd, let Γx = {t ∈ (0,∞)N : BH(t)(t) = x} be the level set of the multifractional
Brownian sheet {BH(t)(t)}. In this section, we determine the Hausdorff dimension of Γx. We
remark that the corresponding problem for finding the Hausdorff dimensions of the level sets
of multifractional Brownian motion has been investigated by Boufoussi et al. [13], and the
Hausdorff dimensions of the level sets of fractional Brownian sheets was studied in Ayache and
Xiao [6]. As shown by the following theorem, the fractal structure of Γx is much richer than
the level sets of multifractional Brownian motion, and is reminiscent locally to the level sets
of a fractional Brownian sheet.

Theorem 5.1 Let {BH(t)(t)} = {BH(t)(t), t ∈ RN
+} be an (N, d)-multifractional Brownian

sheet with Hurst functionals H`(t) (` = 1, . . . , N). For any interval I ∈ A, let t∗ ∈ I be a point
satisfying

N∑
`=1

1
H`(t∗)

= max
t∈I

{
N∑

`=1

1
H`(t)

}
and

0 < H1(t∗) ≤ · · · ≤ HN (t∗) < 1.

If
∑N

`=1
1

H`(t∗)
< d, then for every x ∈ Rd, we have Γx ∩ I = ∅ a.s. If

∑N
`=1

1
H`(t∗)

> d, then
for any x ∈ Rd, with positive probability

dimH

(
Γx ∩ I

)
= βτ(t∗), (5.1)

where

βτ(t∗) = min

{
k∑

`=1

Hk(t∗)
H`(t∗)

+ N − k −Hk(t∗)d, 1 ≤ k ≤ N

}
.
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Remark 5.2

• It can be verified that, if (4.5) holds for t = t∗, then βτ(t∗) is the same as in (4.6) with t
replaced by t∗. In the special case where H(t) = H is a constant, βτ(t∗) reduces to the
form derived in Ayache and Xiao [6] for the Hausdorff dimension of the level sets of a
fractional Brownian sheet. Hence Theorem 5.1 may be considered as an extension of [6,
Theorem 3.8].

• When
∑N

`=1
1

H`(t∗)
= d, we believe that for every x ∈ Rd, Γx ∩ I = ∅ a.s. However the

method of this paper is not enough for proving this statement.

Proof We will follow the proof of Theorem 5 of Ayache and Xiao [6].
First we prove

dimH

(
Γx ∩ I

)
≤ min

{
k∑

`=1

Hk(t∗)
H`(t∗)

+ N − k −Hk(t∗)d, 1 ≤ k ≤ N

}
a.s. (5.2)

and Γx ∩ I = ∅ a.s. when the right hand side of (5.2) is negative.
Without loss of any generality, we may assume I = [a, a + 〈h〉] and h is small so that

Lemma 2.2 is applicable. For an integer n ≥ 1, divide the interval I into mn ≥ n
PN

`=1(H`(t
∗))−1

sub-rectangles Rn,j of side lengths n−1/H`(t
∗)h (` = 1, · · · , N). Let 0 < % < 1 be fixed and let

κn,j be the lower-left vertex of Rn,j . Define ρ(s, t) =
(

E
[
BH(t)(t)−BH(s)(s)

]2)1/2

, denote by

Nρ(Rn,j , ε) the smallest number of ρ-balls of radius ε needed to cover Rn,j , and denote by D
the diameter of Rn,j , that is

D := sup {ρ(s, t) : s, t ∈ Rn,j} .

By Lemma 2.2, we have ∫ D

0

√
log Nρ(Rn,j , ε) dε ≤ cn−1.

Combining the above inequality with Lemma 2.1 in Talagrand [34] gives us

P
{

max
s,t∈Rn,j

|BH(s)(s)−BH(t)(t)| > n−(1−%)

}
≤ e−c n2%

. (5.3)

Then for n sufficiently large, we have, for any fixed x ∈ I, that

P
{

x ∈ {BH(u)(u), u ∈ Rn,j}
}

≤ P
{

max
s,t∈Rn,j

|BH(s)(s)−BH(t)(t)| ≤ n−(1−%); x ∈ {BH(u)(u), u ∈ Rn,j}
}

+ P
{

max
s,t∈Rn,j

|BH(s)(s)−BH(t)(t)| > n−(1−%)

}
≤ P

{
|BH(κn,j)(κn,j)− x| ≤ n−(1−%)

}
+ e−c n2%

≤ c5,1 n−(1−%)d,

(5.4)
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In the above we have applied the fact that Var
(
B

H(t)
0 (t)

)
≥ c for all t ∈ I to derive the last

inequality.
If
∑N

`=1
1

H`(t∗)
< d, we choose % > 0 such that (1 − %)d >

∑N
`=1

1
H`(t∗)

. Let Nn be the

number of rectangles Rn,j such that x ∈ {BH(u)(u), u ∈ Rn,j}. It follows from (5.4) that

E(Nn) ≤ c5,1 n
PN

`=1(H`(t
∗))−1

n−(1−%)d → 0 as n →∞. (5.5)

Since the random variables Nn are integer-valued, (5.5) and Fatou’s lemma imply that a.s.
Nn = 0 for infinitely many n. Therefore Γx ∩ I = ∅ a.s.

Now we assume
∑N

`=1
1

H`(t∗)
> d. For every k ∈ {1, 2, . . . , N}, define

η
k

=
k∑

`=1

Hk(t∗)
H`(t∗)

+ N − k −Hk(t∗)d.

By Lemma 7 in Ayache and Xiao [6], we have η
k

> 0. Define a covering {R′
n,j} of Γx ∩ I

by R′
n,j = Rn,j if x ∈ {BH(u)(u), u ∈ Rn,j} and R′

n,j = ∅ otherwise. R′
n,j can be covered by

n
PN

`=k+1

(
Hk(t∗)−1−H`(t

∗)−1
)

cubes of side length n−Hk(t∗)−1
h. Thus we can cover the level set

Γx ∩ I by a sequence of cubes of side length n−Hk(t∗)−1
h. Let % ∈ (0, 1) be small and let

η
k
(%) =

k∑
`=1

Hk(t∗)
H`(t∗)

+ N − k −Hk(t∗)(1− %)d.

Clearly, η
k
(%) > η

k
> 0. In the following, we prove that the Hausdorff dimension of Γx ∩ I is

bounded above by η
k
(%) almost surely. To this end, by (5.4), we have

E
[ mn∑

j=1

n
PN

`=k+1(Hk(t∗)−1−H`(t
∗)−1)

(
n−Hk(t∗)−1)η

k
(%)1l{x∈{BH(u)(u), u∈Rn,j}}

]
≤ c5,2 n

PN
`=1 H`(t

∗)−1+
PN

`=k+1(Hk(t∗)−1−H`(t
∗)−1)−η

k
(%)Hk(t∗)−1−(1−%)d = c5,2 .

(5.6)

Fatou’s lemma implies that the η
k
(%)-dimensional Hausdorff measure of Γx ∩ I is finite a.s.

and thus dimH(Γx ∩ I) ≤ η
k
(%) almost surely. Letting % ↓ 0 along rational numbers, we obtain

dimH(Γx ∩ I) ≤ η
k
, and therefore (5.2).

To prove the lower bound in (5.1), we assume τ(t∗) = k, that is,

k−1∑
`=1

1
H`(t∗)

≤ d <
k∑

`=1

1
H`(t∗)

.

By Condition A, there exists a positive number ς such that for all t ∈ Iς := [t∗−〈ς〉, t∗+〈ς〉]∩I,
we have

k−1∑
`=1

1
H`

≤ d <

k∑
`=1

1
H`

, (5.7)

where H` (1 ≤ ` ≤ N) are defined as in (3.1) with Iς in place of I. Note that (5.7) and Lemma
3.3 in Ayache and Xiao [6] imply that

k∑
`=1

Hk

H`

+ N − k −Hk d ∈ (N − k, N − k + 1].
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Thus we can choose % > 0 such that

γ :=
k∑

`=1

Hk

H`

+ N − k −Hk(1 + %)d > N − k. (5.8)

It is sufficient to prove that there is a constant c5,3 > 0 such that

P
{
dimH

(
Γx ∩ Iς

)
≥ γ

}
≥ c5,3 . (5.9)

Our proof of (5.9) is based on the capacity argument due to Kahane [see Kahane [22]]. Similar
methods have been used by Adler [1], Testard [35], Xiao [37].

Let M+
γ be the space of all non-negative measures on RN with finite γ-energy. It is known

[cf. Adler [1]] that M+
γ is a complete metric space under the metric

‖µ‖γ =
∫

RN

∫
RN

µ(dt)µ(ds)
|t− s|γ

. (5.10)

We define a sequence of random positive measures µn on the Borel sets C ⊆ Iς by

µn(C) =
∫

C
(2πn)d/2 exp

(
− n |BH(t)(t)− x|2

2

)
dt

=
∫

C

∫
Rd

exp
(
− |ξ|2

2n
+ i〈ξ, BH(t)(t)− x〉

)
dξ dt.

(5.11)

It follows from Kahane [22] or Testard [35] that if there are positive and finite constants
c5,4 and c5,5 , which are independent of %, such that

E(‖µn‖) ≥ c5,4 , E
(
‖µn‖2

)
≤ c5,5 , (5.12)

E(‖µn‖γ) < +∞, (5.13)

where ‖µn‖ = µn(Iς), then there is a subsequence of {µn}, say {µnk
}, such that µnk

→ µ in
M+

γ and µ is strictly positive with probability ≥ c2
5,4

/(2c5,5). It follows from (4.8) that µ has
its support in Γx ∩ Iς almost surely. Hence Frostman’s theorem yields (5.9).

It remains to verify (5.12) and (5.13). Denote σ2(t) = Var
(
BH(t)(t)

)
. By Fubini’s theorem

we have

E(‖µn‖) =
∫

Iς

∫
Rd

e−i〈ξ,x〉 exp
(
− |ξ|2

2n

)
E exp

(
i〈ξ, BH(t)(t)〉

)
dξ dt

=
∫

Iς

∫
Rd

e−i〈ξ,x〉 exp
(
− 1

2
(n−1 + σ2(t))|ξ|2

)
dξ dt

=
∫

Iς

(
2π

n−1 + σ2(t)

)d/2

exp
(
− |x|2

2(n−1 + σ2(t))

)
dt

≥
∫

Iς

(
2π

1 + σ2(t)

)d/2

exp
(
− |x|2

2σ2(t)

)
dt := c5,4 .

(5.14)
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Denote by I2d the identity matrix of order 2d, Cov
(
BH(s)(s), BH(t)(t)

)
the covariance matrix

of
(
BH(s)(s), BH(t)(t)

)
, Σ = n−1I2d + Cov

(
BH(s)(s), BH(t)(t)

)
and (ξ, η)′ the transpose of the

row vector (ξ, η). Then

E
(
‖µn‖2

)
=
∫

Iς

∫
Iς

∫
Rd

∫
Rd

e−i〈ξ+η,x〉 exp
(
− 1

2
(ξ, η) Σ (ξ, η)′

)
dξdη dsdt

=
∫

Iς

∫
Iς

(2π)d

√
detΣ

exp
(
− 1

2
(x, x) Σ−1 (x, x)′

)
ds dt

≤
∫

Iς

∫
Iς

(2π)d[
detCov

(
B

H(s)
0 (s), BH(t)

0 (t)
)]d/2

ds dt.

(5.15)

By applying Lemma 2.4 and the regularity of the H(·), it can be proved that for s, t ∈ Iς ,

detCov
(
B

H(s)
0 (s), BH(t)

0 (t)
)
≥ c5,6

N∑
`=1

|s` − t`|2H`(t) ≥ c5,6

N∑
`=1

|s` − t`|2H` . (5.16)

Combining (5.7), (5.15), (5.16) and applying Lemma 2.7 repeatedly, we obtain

E
(
‖µn‖2

)
≤ c5,7

∫
Iς

∫
Iς

1[∑N
`=1 |s` − t`|2H`

]d/2
ds dt := c5,5 < ∞. (5.17)

Thus we have shown (5.12) holds.
Similar to (5.15), we have

E
(
‖µn‖γ

)
=
∫

Iς

∫
Iς

ds dt

|s− t|γ

∫
Rd

∫
Rd

e−i〈ξ+η, x〉 exp
(
− 1

2
(ξ, η) Σ (ξ, η)′

)
dξdη

≤ c5,8

∫
Iς

∫
Iς

1(∑N
`=1 |s` − t`|

)γ(∑N
`=1 |s` − t`|2H`

)d/2
ds dt

≤ c5,9

∫ ς

0
dtN · · ·

∫ ς

0

1(∑N
`=1 tH`

`

)d (∑N
`=1 t`

)γ dt1,

(5.18)

where the two inequalities follow from (5.16) and a change of variables. By using Lemma 2.8
in the same way we see that E(‖µn‖γ) < +∞ for any γ defined in (5.8). This proves (5.13).

Finally, by letting % ↓ 0, the lower bound for the Hausdorff dimension in (5.1) follows, and
therefore we have proved Theorem 5.1. �

The proof of Theorem 5.1 suggests that we can consider the Hausdorff dimension of the
level set in any neighborhood of a point t ∈ (0,∞) provided

∑N
`=1

1
H`(t)

> d. However, in order

to obtain an almost sure result, we have to consider Γx at a random level x = BH(t)(t). The
following corollary can be considered as a local Hausdorff dimension result for the level sets of
mfBs.

Corollary 5.3 Let {BH(t)(t)} = {BH(t)(t), t ∈ RN
+} be an (N, d)-multifractional Brownian

sheet with Hurst functionals H`(t) (` = 1, . . . , N). If t0 ∈ (0,∞)N satisfies
∑N

`=1
1

H`(t0)
> d,
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then there exists r0 > 0 such that

P
{

lim
r→0

dimH

(
ΓBH(t)(t) ∩ U(t0, r)

)
= βτ(t0) for a.e. t ∈ U(t0, r0)

}
= 1, (5.19)

where βτ(t0) is defined by (4.6) with t0 in place of t.

Proof For any t0 ∈ (0,∞)N such that
∑N

`=1
1

H`(t0)
> d, there exists a positive number r0,

such that for all s ∈ U(t0, r0), we have
∑N

`=1
1

H`(s)
> d. By Corollary 3.9, mfBs {BH(t)(t)} has

a jointly continuous local time on U(t0, r0).
By (5.2), we have that for every 0 < r < r0 and x ∈ Rd,

dimH

(
Γx ∩ U(t0, r)

)
≤ max

s∈U(t0,r)
βτ(s), a.s. (5.20)

By (5.20) and Fubini’s theorem, we see that

P
{

dimH

(
Γx ∩ U(t0, r)

)
≤ max

s∈U(t0,r)
βτ(s), a.e. x ∈ Rd

}
= 1. (5.21)

Since {BH(t)(t)} has a local time on U(t0, r0), the occupation density formula (2.36) and (5.21)
together imply that

P
{

dimH

(
ΓBH(t)(t) ∩ U(t0, r)

)
≤ max

s∈U(t0,r)
βτ(s) a.e. t ∈ U(t0, r0)

}
= 1 (5.22)

On the other hand, by using an argument similar to the proof of Theorem 2.1 of Berman [9]
[see also the proof of Theorem 1.1 in Xiao [39]], we can show that for every ε > 0 and r ∈ (0, r0)
small enough,

P
{

dimH

(
ΓBH(t)(t) ∩ U(t0, r)

)
≥ max

s∈U(t0,r)
βτ(s) − ε a.e. t ∈ U(t0, r0)

}
= 1 (5.23)

By letting r ↓ 0 and ε ↓ 0 along rational numbers, we see that (5.19) follows from (5.22) and
(5.23). �

Remark 5.4 Corollary 5.3 shows the explicit way in which the fractal properties of the
multifractional Brownian sheet vary in space. In short, the local Hausdorff dimension derives
from the constant parameter formula. Fractional Brownian sheets are essentially fractional
integrals of Brownian sheets, compare [8, 12]. The term “multifractional” indicates that the
order of fractional integration varies in space. It would be interesting to explore the connection
between multifractional Brownian sheets and multifractals. For example, are the level sets of
the mfBs multifractals, and if so, how do their structure functions depend on the Hurst index
function H(t)?
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