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Abstract

Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd with exponent B, where B is

an invertible linear operator on Rd : We determine the Hausdorff dimension and the packing

dimension of the range X ð½0; 1	Þ in terms of the real parts of the eigenvalues of B.
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1. Introduction

Let X ¼ fX ðtÞ; t 2 Rþg be a Lévy process in Rd ; that is, X has stationary and
independent increments, X ð0Þ ¼ 0 a.s. and such that t 7!X ðtÞ is continuous in
probability. The finite-dimensional distributions of a Lévy process X are completely
determined by the distribution of X ð1Þ: It is well-known that the class of possible
distributions for X ð1Þ is precisely the class of infinitely divisible laws. This implies
see front matter r 2004 Elsevier B.V. All rights reserved.
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that for every t4 0 the characteristic function of X ðtÞ is given by

E½eihx;X ðtÞi	 ¼ e�tcðxÞ;

where, by the Lévy–Khintchine formula,

cðxÞ ¼ iha; xi þ
1

2
hx;Sx

0

i þ

Z
Rd

1� eihx;xi þ
ihx; xi

1þ kxk2

� �
LðdxÞ; 8x 2 Rd ;

(1.1)

and a 2 Rd is fixed, S is a non-negative definite, symmetric, ðd � dÞmatrix, and L is a
Borel measure on Rdnf0g that satisfiesZ

Rd

kxk2

1þ kxk2
LðdxÞo1:

The function c is called the Lévy exponent of X, and L is the corresponding Lévy

measure. We refer to the recent books of Bertoin [2] and Sato [23] for the general
theory of Lévy processes.

There has been considerable interest in studying the sample path properties of
Lévy processes. Many authors have investigated the Hausdorff dimension,
Hausdorff measure, packing dimension and packing measure of various random
sets generated by Lévy processes. See the survey papers of Taylor [28] and Xiao [33]
and the references therein for more information. For a stable Lévy process X in Rd

with index a 2 ð0; 2	; many of the results on the sample paths of X can be formulated
nicely in terms of a and d. However, when X is a general Lévy process in Rd ; it is
often difficult to determine explicitly the Hausdorff dimension of the range X ðEÞ;
where E � Rþ is a Borel set. For E ¼ ½0; 1	; Pruitt [21] proved that dim

H
X ð½0; 1	Þ ¼ g

a.s., where the index g is defined by

g ¼ sup aX 0 : lim sup
r!0

r�a
Z 1

0

PfkX ðtÞkp rgdto1

� �
: (1.2)

However, Pruitt’s definition of g is usually hard to calculate. The natural question of
expressing g in terms of the Lévy exponent c was raised by Pruitt [21] and he
obtained some partial results. This problem has recently been solved by
Khoshnevisan et al. [14] who have shown that

g ¼ sup ao d :

Z
x2Rd : kxk4 1

Re
1

1þ cðxÞ

� �
dx

kxkd�a o þ1

� �
: (1.3)

The proof of this result relies on the potential theory for multiparameter Lévy
processes and the co-dimension argument. For more historical accounts and the
latest developments about the Hausdorff dimension and capacity of the range X ðEÞ;
we refer to Khoshnevisan and Xiao [13] and Xiao [33].

The packing dimension of the range of a Lévy process X in Rd was studied by
Taylor [29], who proved that dim

P
X ð½0; 1	Þ ¼ g0 a.s., where the parameter g0 is defined

by Hendricks [10] as

g0 ¼ sup aX 0 : lim inf
r!0

r�a
Z 1

0

PfkX ðtÞkp rgdto1

� �
: (1.4)
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Similar to (1.2), this definition of g0 is also hard to use. It would be interesting to
express g0 in terms of the Lévy exponent c: Except for subordinators, this remains to
be an open problem.

The objective of this paper is to investigate the Hausdorff and packing dimensions
of the range of a large class of Lévy processes, i.e., the operator stable Lévy processes
in Rd ; see Section 2 for the definition and related properties of the latter. For the
special case of a Lévy process X with stable components in Rd ; the Hausdorff
dimension of the range X ð½0; 1	Þ was studied by Pruitt and Taylor [22] and then
extended by Hendricks [8,9] who determined the Hausdorff dimension of X ðEÞ;
where E � Rþ is a fixed Borel set. Recently, Becker-Kern et al. [1] have obtained
dim

H
X ð½0; 1	Þ for more general operator stable Lévy processes. Their arguments are

based on the results of Pruitt [21] on dim
H

X ð½0; 1	Þ [cf. (1.2)] and involve several
technical probability estimates of operator stable Lévy processes. In addition, they
require some restrictions on the transition densities of the processes.

In this paper, by using different methods, we show that the restrictions on the
transition densities of the processes in Becker-Kern et al. [1] can be removed and thus
verify their conjectures on the Hausdorff and packing dimensions of X ð½0; 1	Þ: More
specifically, we apply two methods to calculate the Hausdorff dimension of the range
of an operator stable Lévy process in Rd : The first method is based on the covering
argument for determining the Hausdorff dimension and is closely related to the
arguments of Pruitt and Taylor [22] and Hendricks [9]. The second method is more
analytic and is based on (1.3) and a result of Khoshnevisan and Xiao [13]. Compared
to the arguments in Becker-Kern et al. [1], our methods in this paper make use of
other characteristics of an operator stable Lévy process than its transition densities
and hence they are more general. In particular, the covering method allows us to
obtain a formula for dim

H
X ðEÞ for every Borel set E � Rþ:

The rest of the paper is organized as follows. In Section 2, we recall the definitions
and some useful properties about operator stable laws, operator self-similar
processes, operator stable Lévy processes, Hausdorff dimension and packing
dimension. Our main results are stated and proved in Section 3. The key for the
proofs is Lemma 3.4, which establishes the estimates on the expected sojourn times
of X in the ball Bð0; aÞ: In Section 4, we give an analytic proof of the result on
dim

H
X ð½0; 1	Þ by using (1.3) and list some open problems.

Throughout this paper, we will use K to denote unspecified positive finite
constants which may not necessarily be the same in each occurrence. More specific
constants will be denoted by K1;K2; . . . :
2. Preliminaries

A Lévy process X ¼ fX ðtÞ; t 2 Rþg in Rd (d 4 1) is called operator stable if the
distribution n of X ð1Þ is full [i.e., not supported on any ðd � 1Þ-dimensional hyperplane]
and n is strictly operator stable, i.e., there exists a linear operator B on Rd such that

nt ¼ tBn for all t4 0; (2.1)
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where nt denotes the t-fold convolution power of the infinitely divisible law n and
tBnðdxÞ ¼ nðt�B dxÞ is the image measure of n under the linear operator tB; which is
defined by

tB ¼
X1
n¼0

ðlog tÞn

n!
Bn:

The linear operator B is called a stability exponent of X. The set of all possible
exponents of an operator stable law is characterized in Theorem 7.2.11 of Meerschaert
and Scheffler [18].

On the other hand, a stochastic process X ¼ fX ðtÞ; t 2 Rþg with values in Rd is
said to be operator self-similar if there exists a linear operator B on Rd such that for
every c4 0;

fX ðctÞ; tX 0g¼
d

cBX ðtÞ; tX 0
	 


;

where X ¼
d

Y denotes that the two processes X and Y have the same finite-
dimensional distributions. Here the linear operator B is called a self-similarity

exponent of X.
Hudson and Mason [11] proved that if X is a Lévy process in Rd such that the

distribution of X ð1Þ is full, then X is operator self-similar if and only if X ð1Þ is strictly
operator stable. In this case, every stability exponent B of X is also a self-similarity
exponent of X. Hence, from now on, we will simply refer to B as an exponent of X.

Operator stable Lévy processes are scaling limits of random walks on Rd ;
normalized by linear operators; see Meerschaert and Scheffler [18, Chapter 11].
Clearly, all strictly stable Lévy processes in Rd of index a are operator stable with
exponent B ¼ a�1I ; where I is the identity operator in Rd : More generally, let
X 1; . . . ;X d be independent stable Lévy processes in R with indices a1; . . . ; ad 2 ð0; 2	;
respectively, and define the Lévy process X ¼ fX ðtÞ; tX 0g by

X ðtÞ ¼ ðX 1ðtÞ; . . . ;X dðtÞÞ:

Then it is easy to verify that X is an operator stable Lévy process with exponent B

which has a�1
1 ; a�1

2 ; . . . ; a�1
d on the diagonal and 0 elsewhere. This class of Lévy

processes was first studied by Pruitt and Taylor [22]. Following their terminology, we
still call X a Lévy process with stable components. This type of Lévy processes is
sometimes useful in constructing counterexamples (see [18]) and has been studied by
several authors. Examples of operator stable Lévy process with dependent
components can be found in Shieh [25] and Becker-Kern et al. [1]. For systematic
information about operator stable laws and operator stable Lévy processes, we refer
to Meerschaert and Scheffler [18].

Let X ¼ fX ðtÞ; tX 0g be an operator stable Lévy process in Rd with exponent B.
Factor the minimal polynomial of B into q1ðxÞ � � � qpðxÞ; where all roots of qiðxÞ have
real part ai and ai o aj for i o j: Let ai ¼ a�1

i so that a1 4 � � � 4 ap; and note that
0o ai p 2 in view of Meerschaert and Scheffler [18, Theorem 7.2.1]. Define Vi ¼

KerðqiðBÞÞ and dimðV iÞ ¼ di: Then d1 þ � � � þ dp ¼ d and V 1 � � � � � Vp is a direct
sum decomposition of Rd into B-invariant subspaces. We may write B ¼ B1 � � � � �
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Bp; where Bi : V i ! V i and every eigenvalue of Bi has real part equal to ai: The
matrix for B in an appropriate basis is then block-diagonal with p blocks, the ith
block corresponding to the matrix for Bi: Write X ðtÞ ¼ X ð1ÞðtÞ þ � � � þ X ðpÞðtÞ with
respect to this direct sum decomposition, and note that by Corollary 7.2.12 of
Meerschaert and Scheffler [18] we get the same decomposition for any exponent B.
Since Vi is a B-invariant subspace it follows easily that fX ðiÞðtÞ; t 2 Rþg is an operator
stable Lévy process on the di-dimensional vector space V i with exponent Bi: It
follows from (2.1) that X ðtÞ ¼

d
tBX ð1Þ and X ðiÞðtÞ ¼

d
tBi X ðiÞð1Þ for all 1p i p p: Choose

an inner product h�; �i on Rd such that Vi ? V j for i a j; and let kxk2 ¼ hx;xi be the
associated Euclidean norm. Then

tBX ð1Þ
�� ��2 ¼ tB1X ð1Þð1Þ

�� ��2 þ � � � þ tBp X ðpÞð1Þ
�� ��2: (2.2)

The following lemma is a slight variant of Lemmas 3.3 and 3.4 in Becker-Kern et al. [1]
which can also be proven directly using Corollary 2.2.5 in Meerschaert and Scheffler [18].

Lemma 2.1. For every i ¼ 1; . . . ; p and every �4 0; there exists a finite constant K X 1
such that

K�1 taiþ� p tBi
�� ��p K tai�� for all 0o tp 1 (2.3)

and

K�1 t�ðai��Þ p t�Bi
�� ��p K t�ðaiþ�Þ for all 0o tp 1: (2.4)

Now we recall briefly the definitions of Hausdorff and packing dimensions and
refer to Falconer [4,6] Mattila [16] for more information.

Let F be the class of functions j : ð0; dÞ ! ð0;1Þ which are right continuous,
monotone increasing with jð0þÞ ¼ 0 and such that there exists a finite constant
K 4 0 such that

jð2sÞ

jðsÞ
p K ; for 0o so

1

2
d: (2.5)

The inequality (2.5) is usually called a doubling property. A function j in F is often
called a measure function.

For j 2 F; the j-Hausdorff measure of E � Rd is defined by

j-mðEÞ ¼ lim
e!0

inf
X

i

jð2riÞ :E �
[1
i¼1

Bðxi; riÞ; ri o e

( )
; (2.6)

where Bðx; rÞ denotes the open ball of radius r centered at x: The sequence of balls
satisfying the two conditions on the right-hand side of (2.6) is called an e-covering of
E. It is well-known that j-m is a metric outer measure and every Borel set in Rd is j-
m measurable. A function j 2 F is called an exact Hausdorff measure function for E

if 0oj-mðEÞo1:
The Hausdorff dimension of E is defined by

dim
H

E ¼ inffa4 0 : sa-mðEÞ ¼ 0g ¼ supfa4 0 : sa-mðEÞ ¼ 1g:
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Packing dimension and packing measure were introduced by Tricot [31], Taylor
and Tricot [30] as a dual concept to Hausdorff dimension and Hausdorff measure.
For j 2 F; define the set function j-PðEÞ on Rd by

j-PðEÞ ¼ lim
e!0

sup
X

i

jð2riÞ : Bðxi; riÞ are disjoint; xi 2 E; ri o e

( )
; (2.7)

where B denotes the closure of B. A sequence of closed balls satisfying the conditions
on the right-hand side of (2.7) is called an e-packing of E. Unlike j-m, the set
function j-P is not an outer measure because it fails to be countably subadditive.
However, j-P is a premeasure, so one can obtain an outer measure j-p on Rd by
defining

j-pðEÞ ¼ inf
X

n

j-PðEnÞ :E �
[1
n¼1

En

( )
: (2.8)

j-pðEÞ is called the j-packing measure of E: Taylor and Tricot [30] proved that j-
pðEÞ is a metric outer measure; hence every Borel set in Rd is j-p measurable. If
jðsÞ ¼ sa; sa-pðEÞ is called the a-dimensional packing measure of E: The packing

dimension of E is defined by

dim
P

E ¼ inffa4 0 : sa-pðEÞ ¼ 0g ¼ supfa4 0 : sa-pðEÞ ¼ 1g: (2.9)

There is an equivalent definition for dim
P
E which is sometimes more convenient to

use. For any e4 0 and any bounded set E � Rd ; let

NðE; eÞ ¼ smallest number of balls of radius e needed to cover E:

Then the upper and lower box-counting dimension of E are defined as

dim
B

E ¼ lim sup
e!0

logNðE; eÞ
� log e

and

dim
B

E ¼ lim inf
e!0

logNðE; eÞ
� log e

;

respectively. If dim
B
ðEÞ ¼ dim

B
ðEÞ; the common value is called the box-counting

dimension of E. From the definitions, it is easy to verify that

0p dim
H

E p dim
B
E p dim

B
E p d and 0p dim

P
E p dim

B
E p d (2.10)

for all bounded sets E � Rd : Hence dim
B
E and dim

B
E can be used to determine

upper bounds for dim
H

E and dim
P
E:

The disadvantage of dim
B
and dim

B
as dimensions is that they are not s-stable [cf.

31; 4, P. 45]. One can obtain s-stable indices dim
MB

and dim
MB

by letting

dim
MB

E ¼ inf sup
n

dim
B
En :E �

[1
n¼1

En

( )
; (2.11)
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dim
MB

E ¼ inf sup
n

dim
B
En :E �

[1
n¼1

En

( )
:

Tricot [31] has proved that dim
P
E ¼ dim

MB
ðEÞ: Hence, for all sets E � Rd ;

0p dim
H

E p dim
MB

E p dim
MB

E ¼ dim
P
E p d: (2.12)

Thus, if dim
H

E ¼ dim
P
E; then all the dimensions in (2.12) coincide.
3. Main results

Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd with exponent B.
Recall from Section 2 the direct sum decomposition Rd ¼ V 1 � � � � � V p and the
associated block-diagonal representation B ¼ B1 � � � � � Bp; where di ¼ dimV i; Bi :
V i ! Vi and every eigenvalue of Bi has real part equal to ai 4 0: We assume that
a1 o a2 o � � � o ap; and we let ai ¼ a�1

i so that 2X a1 4 � � � 4 ap 4 0:
The following are our main results. Theorem 3.1 removes the condition

on the density of X ðtÞ in Theorem 2.2 of Becker-Kern et al. [1] and extends their
results to X ðEÞ: This solves the problems in Remarks 3.8 and 3.9 of their paper.
Theorem 3.1. For any Borel set E � Rþ; almost surely

dim
H

X ðEÞ ¼
a1dimH

E if dim
H

E p d1=a1;

1þ a2ðdimH
E � 1=a1Þ otherwise:

�
(3.1)

The next result shows that the range X ð½0; 1	Þ has the same Hausdorff and packing
dimensions, which confirms a conjecture of Becker-Kern et al. ([1, Remark 3.10]).
Theorem 3.2. Let X be an operator stable Lévy process in Rd : Then

dim
H

X ð½0; 1	Þ ¼ dim
P
X ð½0; 1	Þ ¼

a1 if a1 p d1;

1þ a2ð1� 1=a1Þ otherwise:

�
(3.2)

We break the proofs of Theorems 3.1 and 3.2 into several parts. The upper bounds
in Theorems 3.1 and 3.2 are proved by using Lemmas 3.3 and 3.4 and a covering
argument which goes back to Pruitt and Taylor [22] and Hendricks [8,9]; while the
lower bounds are proved by using Lemma 3.7 and (2.12).

Let K1 4 0 be a fixed constant. A collection LðaÞ of cubes of side a in Rd is called
K1-nested if no ball of radius a in Rd can intersect more than K1 cubes of LðaÞ: In
this paper, we will let LðaÞ be the collection of all cubes of the form

Qd
j¼1½kja; ðkj þ

1Þa	; where ðk1; . . . ; kdÞ 2 Zd : Clearly, LðaÞ is K1-nested with K1 ¼ 3d : In particular,
for each integer nX 1 and a ¼ 2�n; LðaÞ is just the collection of dyadic cubes of order
n in Rd : Another example of 3d-nested collections of cubes is the set of all semi-
dyadic cubes of order n in Rd :
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Let

Tða; sÞ ¼

Z s

0

1Bð0;aÞðX ðtÞÞdt

be the sojourn time of X in Bð0; aÞ up to time s, where 1B is the indicator function of
the set B. The following useful covering lemma is due to Pruitt and Taylor [22].

Lemma 3.3. Let X ¼ fX ðtÞ; t 2 Rþg be a Lévy process in Rd and let LðaÞ be a fixed

K1-nested collection of cubes of side a ð0o ap 1Þ in Rd : For any uX 0; we denote by

Muða; sÞ the number of cubes in LðaÞ hit by X ðtÞ at some time t 2 ½u; u þ s	: Then

E½Muða; sÞ	p 2K1s½EðTða=3; sÞÞ	�1:

The following lemma gives estimates on the expected sojourn time Tða; sÞ: Even
though we only need to use the lower bounds for E½Tða; sÞ	 in this paper, we also
include the upper bounds which may be useful elsewhere. For example, sharp upper
bounds for E½Tða; sÞ	 will be useful for studying the exact Hausdorff measure
functions for the range X ð½0; 1	Þ:

Lemma 3.4. Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd : For any

0o a02 o a2 o a002 o a01 o a1 o a001 ; there exist positive and finite constants K2; . . . ;K5

such that the following hold:
(i)
 If a1 p d1; then for all 0o ap 1 and aa1 p sp 1;

K2 aa00
1 p E½Tða; sÞ	p K3 aa0

1 : (3.3)
(ii)
 If a1 4 d1; then for all a4 0 small enough, say, 0o ap a0; and all aa2 p sp 1;

K4 ar00 p E½Tða; sÞ	p K5 ar0 ; (3.4)

where r0 ¼ 1þ a02ð1� 1=a1Þ and r00 ¼ 1þ a002ð1� 1=a1Þ:
Proof. We assume first a1 p d1 and let a01 o a1 be fixed. By the operator self-
similarity of X and (2.2), we have kX ðtÞk¼

d
ktBX ð1ÞkX ktB1X ð1Þð1Þk: Since

kAxkX kxk=kA�1k for any vector x 2 Rd1 and any invertible linear operator A on
Rd1 ; we use (2.4) in Lemma 2.1 to derive that

tB1X ð1Þð1Þ
�� ��X K t1=a

0
1 X ð1Þð1Þ
�� �� for all 0o tp 1:

Since X ð1Þð1Þ has a continuous and bounded density, it follows that

E½Tða; sÞ	p
Z s

0

P X ð1ÞðtÞ
�� ��o a
� �

dt

p
Z s

0

P X ð1Þð1Þ
�� ��oK at�1=a0

1

� �
dt

p
Z a

a0
1

0

dt þ

Z 1

a
a0
1

Kðat�1=a0
1 Þ

d1 dt

p K3 aa0
1 ; ð3:5Þ
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which gives the upper bound in (3.3). To prove the lower bound in (3.3), we fix a00i
(1p i p p) such that a00i 4 ai 4 a00iþ1: It follows from (2.2) and (2.3) in Lemma 2.1
that

E½Tða; sÞ	X

Z s

0

P kX ðiÞðtÞko
affiffiffi
p

p ; 1p i p p

� �
dt

X

Z s

0

P kX ðiÞð1ÞkoK
affiffiffi
p

p t�1=a00i ; 1p i p p

� �
dt

X

Z ðdaÞ
a00
1

0

P kX ðiÞð1ÞkoK
affiffiffi
p

p t�1=a00
i ; 1p i p p

� �
dt

X K3 aa00
1 ; ð3:6Þ

where 0o do 1 is a constant such that P kX ð1Þkp K
d
ffiffi
p

p

� �
4 0: Such d4 0 exists

because X ð1Þ is full. So the probability in the last integral is bounded below by a
positive constant. Hence (3.3) follows from (3.5) and (3.6).

Now we consider the case when a1 4 d1 ¼ 1: Note that ðX ð1Þð1Þ;X ð2Þð1ÞÞ has a
continuous bounded density. Similar to (3.5), we have for any a02 o a2;

E½Tða; sÞ	p
Z s

0

PðjX ð1ÞðtÞjo a; kX ð2ÞðtÞko aÞdt

p
Z s

0

PðjX ð1Þð1Þjo a t�1=a1 ; kX ð2Þð1ÞkoKa t�1=a0
2 Þdt

p
Z a

a0
2

0

a t�1=a1 dt þ

Z 1

a
a0
2

K a1þd2 t�1=a0
1
�d2=a02 dt

p K5 ar0 :

On the other hand, similar to (3.6) we have

E½Tða; sÞ	X

Z s

0

P jX ð1Þð1Þjo
affiffiffi
p

p t�1=a1 ; kX ðiÞð1ÞkoK6
affiffiffi
p

p t�1=a00i ; 2p i p p

� �
dt

(3.7)

for some constant K6 4 0:Denote by gðx1; . . . ;xpÞ the density function of X ð1Þ: Then
the density function of X ð1Þð1Þ is given by

g1ðx1Þ ¼

Z
Rd�1

gðx1; x2; � � � ;xpÞdx2 � � �dxp:

Since X ð1Þð1Þ is a strictly stable random variable with index a1 4 1; by Theorem 1 of
Taylor [27] its distribution is of type A, i.e., g1ð0Þ4 0: Combining this with the
continuity of g, we see that there exist a super-rectangle I ¼ ½�m;m	 � J in Rd ; where
m4 0 is a constant and J is a cube in Rd�1; and a constant ‘4 0 such that
gðx1; . . . ;xpÞX ‘ for all ðx1; . . . ;xpÞ 2 I :Now we choose a constant d 2 ð0; 1Þ such that

J � ðx2; . . . ;xpÞ 2 Rd�1 : kxikp
K6

d
ffiffiffi
p

p ; 2p i p p

� �
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and let Z ¼ 1=ðm
ffiffiffi
p

p
Þ: Note that tX ðZaÞa1 implies affiffi

p
p t�1=a1 p m: Furthermore, since

a1 4 a002; there exists a constant 0o a0 p 1 such that for all 0o ap a0; we have

ðZaÞa1 o ðdaÞa
00
2 : Hence, it follows from (3.7) that

E½Tða; sÞ	

X

Z ðdaÞ
a00
2

ðZaÞa1
P jX ð1Þð1Þjo

affiffiffi
p

p t�1=a1 ; kX ðiÞð1ÞkoK6
affiffiffi
p

p t�1=a00i ; 2p i p p

� �
dt

X

Z ðdaÞ
a00
2

ðZaÞa1

Z
½�a=

ffiffi
p

p
t�1=a1 ; affiffi

p
p t�1=a1 	�J

gðx1;x2; . . . ;xpÞdx1 � � � dxp dt

X K ‘

Z ðdaÞ
a00
2

ðZaÞa1

affiffiffi
p

p t�1=a1 dt

X K4ar00

for some constant K4 4 0 that may depend on the constants m, d; p and the cube J.

This finishes the proof of (3.4). &

Now we can prove the upper bounds in Theorems 3.1 and 3.2.

Lemma 3.5. For any Borel set E � Rþ; almost surely

dim
H

X ðEÞp
a1dimH

E if dim
H

E p d1=a1;

1þ a2ðdimH
E � 1=a1Þ otherwise

�
(3.8)

and

dim
P
X ðEÞp

a1dimP
E if dim

P
E p d1=a1;

1þ a2ðdimP
E � 1=a1Þ otherwise:

�
(3.9)

Remark 3.6. It should be pointed out that, unlike (3.8), the upper bounds for
dim

P
X ðEÞ in (3.9) may not be sharp even when X is a Brownian motion, cf.

Talagrand and Xiao [26]. The problem for determining dim
P
X ðEÞ for operator stable

Lévy processes is still open (cf. Problem 4.3).

Proof. We only prove (3.8). A similar argument also yields that for every bounded
set E � Rþ; almost surely

dim
B
X ðEÞp

a1dimB
E if dim

B
E p d1=a1;

1þ a2ðdimB
E � 1=a1Þ otherwise:

(
(3.10)

Then (3.9) follows from (2.11) and (3.10).
Assume first that dim

H
E p d1=a1: For any g4 dim

H
E; we choose a001 4 a1 such

that g0¼̂1�
a00
1

a1
þ g4 dim

H
E: Then for every �4 0; there exists a sequence fI ig of

intervals in Rþ with length jI ijo � such that

E �
[1
i¼1

I i and
X1
i¼1

jI ij
g0 o 1: (3.11)
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For each interval I i; let si ¼ jI ij and bi ¼ jI ij
1=a1 : It follows from Lemmas 3.3 and 3.4

that X ðI iÞ can be covered by Mi cubes Ci;j 2 LðbiÞ of sides bi in Rd and

EðMiÞp K jI ij � jI ij
�a00

1
=a1 : (3.12)

Note that

X ðEÞ �
[

i

[Mi

j¼1

Ci;j

and the diameter of Ci;j is
ffiffiffi
d

p
bi: That is, fCi;jg is a ð

ffiffiffi
d

p
�1=a1Þ-covering of X ðEÞ: It

follows from (3.11) and (3.12) that

E
X1
i¼1

Mi b
a1 g
i

 !
p K

X1
i¼1

jI ij
1�a00

1
=a1 � jI ij

g

¼ K
X1
i¼1

jI ij
g0 oK :

Letting � ! 0 and using Fatou’s lemma, we have Eðsa1g-mðX ðEÞÞÞp K : Thus sa1g-
mðX ðEÞÞo1 a.s. which implies that dim

H
X ðEÞ p a1 g a.s. Since g4 dim

H
E is

arbitrary, we obtain (3.8) in the case when dim
H

E p d1=a1:
Now we consider the case when dim

H
E 4 d1=a1: This implies that a1 4 1 and

d1 ¼ 1: For any g4 dim
H

E; we choose a002 4 a2 such that

g0¼̂1�
a002
a2

þ
a002
a2

g4 dim
H

E: (3.13)

So there exists a sequence fI ig of intervals in Rþ such that (3.11) holds. Let si ¼ jI ij

and bi ¼ jI ij
1=a2 : Denote by Mi the number of cubes C0

i;j 2 LðbiÞ of side bi in Rd that
meet X ðI iÞ: Then by Lemmas 3.3 and 3.4,

EðMiÞp K jI ij � jI ij
�r00=a2 ; (3.14)

where we recall that r00 ¼ 1þ a002ð1�
1
a1
Þ: It follows from (3.14) and (3.11) that

E
X1
i¼1

Mi b
1þa00

2
ðg�a�1

1
Þ

i

 !
p K

X1
i¼1

jI ij
1�r00=a2 � jI ij

a00
2
g=a2þð1�a00

2
a�1
1
Þ=a2

¼ K
X1
i¼1

jI ij
1�a00

2
=a2þa00

2
g=a2

¼ K
X1
i¼1

jI ij
g0 oK :

The same argument as in the first part yields dim
H

X ðEÞp 1þ a2ðdimH
E � 1=a1Þ a.s.

Thus we have proven (3.8). &

Lemma 3.7 below proves the lower bounds of dim
H

X ðEÞ in Theorem 3.1. Similar
results under more restrictive conditions [such as either d ¼ 1 or independence
among the components of X] can be found in Falconer [5] and Lin and Xiao [15]. By
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taking E ¼ ½0; 1	 and using (2.12), we obtain the desired lower bound for
dim

P
X ð½0; 1	Þ in Theorem 3.2.

Lemma 3.7. Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd : Then for

any Borel set E � Rþ; almost surely

dim
H

X ðEÞX
a1dimH

E if dim
H

E p d1=a1;

1þ a2ðdimH
E � 1=a1Þ otherwise:

�
(3.15)

Proof. For the proof of (3.15), we use a standard capacity argument; see e.g.,
Kahane [12, Chapter 10], Falconer [4, Chapter 4], Mattila [16, Chapter 8], Taylor
[28] or Xiao [33]. Note that Frostman’s lemma and theorem are only proved for
compact sets in Kahane [12]. Both of them are still valid for all Borel sets as shown in
Falconer [4, Chapter 4] and Mattila [16, Chapter 8].

First consider the case when dim
H

E p d1=a1: If dimH
E ¼ 0; there is nothing to

prove. So we assume dim
H

E 4 0: For any 0o go a1dimH
E; we choose 0o a01 o a1

such that go a01dimH
E: Then, it follows from Frostman’s lemma [cf. 12,16] that there

exists a probability measure s on E such thatZ
E

Z
E

sðdsÞsðdtÞ

js � tjg=a
0
1

o1: (3.16)

By Frostman’s theorem [cf. 12,16], we know that, in order to prove dim
H

X ðEÞX g
almost surely, is suffices to showZ

E

Z
E

EðkX ðsÞ � X ðtÞk�gÞsðdsÞsðdtÞo1: (3.17)

It follows from (2.2) that for all s; t 2 Rþ such that js � tjp 1;

EðkX ðsÞ � X ðtÞk�gÞ ¼ Eðkjs � tjBX ð1Þk�gÞ

p Eðkjs � tjB1X ð1Þð1Þk�gÞ

p K js � tj�g=a0
1 ; ð3:18Þ

where in deriving the last inequality, we have used Lemma 2.1 and the elementary
fact that if a random variable X in Rd1 has a bounded density, then for any
0o go d1; EðkXk�gÞo1: Also, a simple argument using Lemma 2.1 shows that

sup
js�tjX 1

EðkX ðsÞ � X ðtÞk�gÞo1:

Now it is clear that (3.17) follows from (3.18) and (3.16).
Now we consider the case when dim

H
E 4 1=a1 and d1 ¼ 1: Let 1o go 1þ

a2ðdimH
E � 1=a1Þ be fixed. Note that since r ¼ g=a2 � ð1=a2 � 1=a1Þo dim

H
E; we

can choose 0o a02 o a2 such that r0 ¼ g=a02 � ð1=a02 � 1=a1Þo dim
H

E: Then there
exists a probability measure s on E such thatZ

E

Z
E

sðdsÞsðdtÞ

js � tjr
0 o1: (3.19)
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Similar to (3.18), we use (2.2) to deduce that for all s; t 2 Rþ such that js � tjp 1;

EðkX ðsÞ � X ðtÞk�gÞ

¼ Eðkjt � sjBX ð1Þk�gÞ

p Eð½jt � sj2=a1 jX ð1Þð1Þj2 þ kjt � sjB2X ð2Þð1Þk2	�g=2Þ

p K

Z
R1þd2

1

js � tjg=a1 jx1j
g þ kjs � tjB2x2k

g
gðx1;x2Þdx1 dx2

p K

Z
R1þd2

1

js � tjg=a1 jx1j
g þ js � tjg=a

0
2kx2k

g
gðx1;x2Þdx1 dx2

¼ K js � tj�g=a1

Z
R1þd2

1

jx1j
g þ js � tjg=a

0
2
�g=a1kx2k

g
gðx1;x2Þdx1 dx2; ð3:20Þ

where gðx1; x2Þ is the density function of ðX ð1Þð1Þ;X ð2Þð1ÞÞ which is bounded and
continuous. We will use integration by parts to derive an upper bound for the
integral J in (3.20). To this end, let

F ðr1; r2Þ ¼ PðjX ð1Þð1Þjp r1; kX ð2Þð1Þkp r2Þ:

Then by using spherical coordinates, we can write

F ðr1; r2Þ ¼

Z
jx1jp r1

Z
kx2kp r2

gðx1; x2Þdx2 dx1

¼

Z r1

�r1

Z r2

0

Z
Sd2�1

~gðr1;r2yÞr
d2�1
2 mðdyÞdr2 dr1; ð3:21Þ

where ~gðy1; y2yÞ is bounded and continuous in ðy1; y2; yÞ 2 R� Rþ � Sd2�1 and m is
the surface measure on the unit sphere Sd2�1 in Rd2 : Note that there also exists a
finite constant K7 4 0 such that

F ðr1; r2Þp ð1 ^ K7 r1Þð1 ^ K7 r2Þ for all r1; r2 X 0: (3.22)

For simplicity of notation, we denote c ¼ js � tj1=a
0
2
�1=a1 : By using Fubini’s theorem

and integration by parts when integrating dr1; we deduce

J ¼

Z 1

0

Z 1

0

1

r
g
1 þ cgr

g
2

F ðdr1;dr2Þ

¼

Z 1

0

dr2

Z 1

0

gr
g�1
1

ðr
g
1 þ cgr

g
2Þ

2

Z r1

0

Z
Sd2�1

~gðr1; r2yÞr
d2�1
2 mðdyÞdr1

" #
dr1

¼

Z 1

0

dr2

Z 1

0

½� � �	dr1 þ

Z 1

1

dr2

Z 1

0

½� � �	dr1

¼̂ J1 þ J2: ð3:23Þ
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Now we estimate J1 and J2 separately. Since ~g is bounded, we have

J1 p K

Z 1

0

rd2�1
2 dr2

Z 1

0

gr
g�1
1

ðr
g
1 þ cgr

g
2Þ

2
r1 dr1

p K

Z 1

0

rd2�1
2

1

ðcr2Þ
g�1

dr2

Z 1

0

gs
g
1

ðs
g
1 þ 1Þ2

ds1

¼
K8

cg�1
¼ K8 js � tj�ðg�1Þð1=a0

2
�1=a1Þ; ð3:24Þ

In getting the second inequality above, we have used the change of variable r1 ¼

cr2 s1: Also note that since 1o go a1 p 2p d2 þ 1; the last two integrals are
convergent and K8 is a positive and finite constant.

On the other hand, it follows from Fubini’s theorem and integration by parts for
dr2 that

J2 ¼ �

Z
Sd2�1

mðdyÞ
Z 1

0

dr1
gr

g�1
1

ðr
g
1 þ cgÞ2

Z 1

0

Z r1

0

~gðr1; r2yÞr
d2�1
2 dr1 dr2

� �

þ

Z
Sd2�1

mðdyÞ
Z 1

0

dr1

Z 1

1

2g2cgrg�1
1 r

g�1
2

ðr
g
1 þ cgr

g
2Þ

3

�

Z r2

0

Z r1

0

~gðr1; r2yÞr
d2�1
2 dr1 dr2

� �
dr2

p
Z 1

0

dr1

Z 1

1

2g2cgr
g�1
1 r

g�1
2

ðr
g
1 þ cgr

g
2Þ

3

�

Z r2

0

Z r1

0

Z
Sd2�1

~gðr1;r2yÞr
d2�1
2 mðdyÞdr1 dr2

" #
dr2:

Note that the triple integral in the brackets is F ðr1; r2Þ; thus (3.22) together with a
change of variables r1 ¼ cr2 s1 implies that

J2 p K

Z 1

1

dr2

Z 1

0

cgr
g�1
1 r

g�1
2

ðr
g
1 þ cgr

g
2Þ

3
r1 dr1

p
K

cg�1

Z 1

1

1

r
g
2

dr2

Z 1

0

s
g
1

ðs
g
1 þ 1Þ3

ds1

¼ K9 js � tj�ðg�1Þð1=a0
2
�1=a1Þ: ð3:25Þ

Here we have used again the fact that g4 1:
Combining (3.20), (3.23), (3.24) and (3.25), we have proven that for js � tjp 1

EðkX ðsÞ � X ðtÞk�gÞp K js � tjð1=a
0
2
�1=a1Þ�g=a0

2 ¼ K js � tj�r0 : (3.26)

Again a simple argument using (2.2) and Lemma 2.1 shows that

sup
js�tjX 1

EðkX ðsÞ � X ðtÞk�gÞp E ðjX ð1Þð1Þj2 þ kX ð2Þð1Þk2Þ�g=2
h i

o1:
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Therefore, it follows from (3.19) and (3.26) that (3.17) holds. Using Frostman’s
theorem again, we have dim

H
X ðEÞX g a.s. This finishes the proof of Lemma 3.7.
4. Further remarks and open questions

Let X ¼ fX ðtÞ; t 2 Rþg be a Lévy process in Rd with Lévy exponent c: Recently,
Khoshnevisan et al. [14] have proved the following formula for dim

H
X ð½0; 1	Þ in

terms of c: almost surely

dim
H

X ð½0; 1	Þ ¼ sup ao d :

Z
x2Rd : kxk4 1

Re
1

1þ cðxÞ

� �
dx

kxkd�a o þ1

� �
:

(4.1)

This gives a different, analytic way to study the Hausdorff dimension of X ð½0; 1	Þ for
Lévy processes. We refer to Khoshnevisan and Xiao [13] for further developments on
Hausdorff dimension and capacity. The following result is an extension of
Proposition 7.7 (see also Remark 7.8) of Khoshnevisan and Xiao [13], as well as
the result of Pruitt and Taylor [22] for Lévy processes with stable components.

Proposition 4.1. Let X ¼ fX ðtÞ; t 2 Rþg be a Lévy process in Rd with Lévy exponent

c: If c satisfies the following condition: there are constants 2X
b1 X b2 X � � � X bd 4 0 such that for every e4 0; there exists a constant t4 1 such

that

K�1

kxke
Pd

j¼1jxjj
bj

pRe
1

1þ cðxÞ

� �
p

KkxkePd
j¼1jxjj

bj

; 8x 2 Rd with kxkX t; (4.2)

where K X 1 is a constant which may depend on � and t: Denote n1 ¼ maxfj : bj ¼ b1g:
Then almost surely,

dim
H

X ð½0; 1	Þ ¼
b1 if b1 p n1;

1þ b2ð1� 1=b1Þ otherwise:

�
(4.3)

Proof. The proof, based on (4.1), is a slight modification of that of Proposition 7.7
of Khoshnevisan and Xiao [13]. Hence it is omitted. &

Proposition 4.1 leads to a completely different proof of the Hausdorff dimension
of X ð½0; 1	Þ for operator stable Lévy processes.

Theorem 4.2. Let X be an operator stable Lévy process in Rd as in Theorem 3.2. Then

(3.2) holds almost surely.

Proof. In the notations of Section 3, we will show that for every �4 0; there exists a
constant K X 1 such that (4.2) holds for b1 X � � � X bd defined by bj ¼ a‘ ifP‘�1

i¼0 di o j p
P‘

i¼‘�1di; where d0 ¼ 0: Once this is proved, the theorem will follow
from Proposition 4.1 with n1 ¼ d1:
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The proof is based on asymptotic inverses, a method first used in Meerschaert [17]
to get sharp bounds on the probability tails of operator stable random vectors. Use
the Jordan decomposition (see, e.g., [18, Theorem 2.1.16]) to obtain a basis b1; . . . ; bd

for Rd in which B is block-diagonal where every block is of the form

a 0 0 � � � 0

1 a 0 � � � 0

0 1 a ..
.

..

. . .
. . .

.

0 � � � 1 a

0
BBBBBBB@

1
CCCCCCCA

or

C 0 0 � � � 0

I C 0 � � � 0

0 I C ..
.

..

. . .
. . .

.

0 � � � I C

0
BBBBBBB@

1
CCCCCCCA

;

(4.4)

where a is a real eigenvalue of B in the first case, and in the second case

C ¼
a �b

b a

� �
and I ¼

1 0

0 1

� �
; (4.5)

where a � ib is a complex conjugate pair of eigenvalues of B. Define jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffi
hx;xi

p

using the inner product associated with this basis (see, e.g., [18, Proposition 1.1.20
(b)]), so that hbi; bji ¼ I ði ¼ jÞ: In these coordinates, the matrix power tB can be
explicitly computed (see [18, Lemma 2.2.3]) as well as the norm ktBxk for every
x 2 Rd (see [18, Proof of Theorem 2.2.4]). This follows easily from the (unique)
decomposition B ¼ S þ N where S is semi-simple (diagonalizable over the complex
numbers) and N is nilpotent (Nm ¼ 0 for some positive integer m). In the first case
[i.e., B is a ðk þ 1Þ � ðk þ 1Þ block as the first matrix in (4.4)], if x ¼ ðx1; . . . ;xkþ1Þ are
the coordinates for one block and zðtÞ ¼ tBx ¼ ðz1ðtÞ; . . . ; zkþ1ðtÞÞ; then

zjðtÞ ¼
Xj�1

n¼0

taðlog tÞn

n!
xj�n (4.6)

for all j ¼ 1; . . . ; k þ 1: In the second case, if u ¼ ðx1; y1; . . . ;xkþ1; ykþ1Þ are
coordinates for one block and tBu ¼ ðz1ðtÞ;w1ðtÞ; . . . ; zkþ1ðtÞ;wkþ1ðtÞÞ; then

zjðtÞ ¼
Xj�1

n¼0

taðlog tÞn

n!
ðcosðb log tÞxj�n � sinðb log tÞ yn�jÞ;

wjðtÞ ¼
Xj�1

n¼0

taðlog tÞn

n!
ðsinðb log tÞxj�n þ cosðb log tÞ yn�jÞ ð4:7Þ

for all j ¼ 1; . . . ; k þ 1: Recall from Section 2 the direct sum decomposition Rd ¼

V 1 � � � � � Vp and the associated block-diagonal representation B ¼ B1 � � � � � Bp;
where Bi : V i ! V i and every eigenvalue of Bi has real part equal to ai: Now apply
Theorem 3.1 in Meerschaert and Veeh [19] to obtain a further direct sum
decomposition Vi ¼ Ui1 � � � � � UiqðiÞ where Uij is a B-invariant subspace and
every non-zero vector x 2 Uij is of order j, so that Njx ¼ 0 and Nj�1xa 0: Note that
every basis element b1; . . . ; bd lies in one of these subspaces. Write x ¼

P
i

P
jxij with
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respect to this direct sum decomposition, so that xij 2 Uij : Then it follows from (4.6)
and (4.7) that

kt�B�

xk2 ¼
Xp

i¼1

XqðiÞ
j¼1

t�2ai ðlog tÞ2ðj�1Þ

ððj � 1Þ!Þ2
kxijk

2 þ oijðt;xÞ; (4.8)

where B� is the transpose of B, oijðt;xÞ is a linear combination of terms of the form
t�2ai ðlog tÞk �jxijrj jxijsj with k o 2ðj � 1Þ; xijr is one of the coordinates of xij in the
basis b1; . . . ; bd ; and the coefficients of this linear combination are independent of
both x and t. Then clearly, RðtÞ ¼ 1=kt�B�

xk is a regularly varying function of t4 0
at infinity with index a ¼ minfai : xi a 0g where x ¼

P
ixi with respect to the direct

sum decomposition Rd ¼ V 1 � � � � � Vp: Of course the function RðtÞ ¼ 1=kt�B�

xk

(as well as tðrÞ below) also depends on x. We have suppressed x so that the notation
will not get too heavy.

Since a4 0; the function RðtÞ has an asymptotic inverse tðrÞ; regularly varying at
infinity with index a ¼ 1=a; such that RðtðrÞÞ � r as r ! 1 (see, e.g., [3, p. 28] or [24,
p. 21]). In fact, we can take

tðrÞ ¼
Xp

i¼1

XqðiÞ
j¼1

Kijr
ai ðlog rÞaiðj�1Þ

kxijk
ai ; (4.9)

where Kij ¼ ðaj�1
i =ðj � 1Þ!Þai ; and the convergence of RðtðrÞÞ=r ! 1 as r ! 1 is

uniform in x on compact sets of Rdnf0g: To see this, let i be the index such that
ai ¼ a; and let j ¼ k þ 1 be the order of xi: Then by (4.8) we can write

kt�B�

xk2 ¼
t�2aðlog tÞ2k

ðk!Þ2
kxijk

2 þ oðt�2aðlog tÞ2k
Þ as t ! 1; (4.10)

and the convergence is uniform in x on compact sets of Rdnf0g: Similarly, it follows
from (4.9) that as r ! 1

tðrÞ ¼ Kij raðlog rÞak
kxijk

a þ oðraðlog rÞak
Þ (4.11)

uniformly for x on compact sets of Rdnf0g:
Now it suffices to show that RðtðrÞÞ�2

¼ ktðrÞ�B�

xk2 � r�2 as r ! 1 uniformly for
x on compact sets of Rdnf0g: This follows from (4.10), (4.11) and an elementary
computation:

RðtðrÞÞ�2
¼

a2k

ðk!Þ2
Kij raðlog rÞak

kxijk
a" #�2a

ðlog rÞ2k
kxijk

2 þ � � �

¼ r�2 þ oðr�2Þ as r ! 1; ð4:12Þ

where the convergence is uniform in x on compact sets of Rdnf0g: This establishes
our claim.

Since X ðtÞ and tBX ð1Þ are identically distributed we have

tcðxÞ ¼ cðtB�

xÞ (4.13)
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for all x 2 Rd and all t4 0: Let F ðxÞ ¼ Re ðcðxÞÞ so that tF ðxÞ ¼ F ðtB�

xÞ for all t4 0
and x 2 Rd : Moreover, F ðxÞ is bounded away from zero and infinity on compact
subsets of Rdnf0g since X ðtÞ is full (see, e.g., [18, Corollary 7.1.12]).

Given x 2 Rdnf0g and r4 0; we define yr ¼ tðrÞ�B�

ðrxÞ: Then it follows from the
above that as r ! 1; kyrk ¼ rktðrÞ�B�

xk ¼ r=RðtðrÞÞ ! 1 uniformly for x on
compact sets in Rd : Consequently for every 0o Zo 1; there exists some r0 4 0 such
that 1� Zo kyrko 1þ Z for all rX r0 and all x 2 Sd : Here Sd ¼ fx : kxk ¼ 1g is the
unit sphere in Rd :

For any x 2 Rdnf0g; let r ¼ kxk and x ¼ x=r 2 Sd so that x ¼ rx: It follows that

F ðrxÞ ¼ F ðtðrÞB
�

yrÞ ¼ tðrÞF ðyrÞ (4.14)

and F ðyrÞ is bounded away from zero and infinity for all rX r0 and x 2 Sd : On the
other hand, for any �4 0; there is a constant tX maxfr0; eg such that for all rX t;
ðlog rÞaiðqðiÞ�1Þ p re=2 for every 1p i p p: Therefore, it follows from (4.14) and (4.9)
that

F ðxÞp K
Xp

i¼1

XqðiÞ
j¼1

rai ðlog rÞaiðj�1Þ
kxijk

ai

p K re=2
Xp

i¼1

ðr kxikÞ
ai ¼ K kxke=2

Xp

i¼1

kxik
ai ð4:15Þ

for all kxkX t: Similarly, we derive from (4.14) and (4.9) that for all kxkX t;

F ðxÞX K 0
Xp

i¼1

XqðiÞ
j¼1

rai ðlog rÞaiðj�1Þ
kxijk

ai

X K 0
Xp

i¼1

kxik
ai : ð4:16Þ

Now we consider GðxÞ ¼ Im ðcðxÞÞ: Note that (4.13) implies tGðxÞ ¼ GðtB�

xÞ for all
t4 0 and x 2 Rd : By the continuity of cðxÞ; GðxÞ is bounded on compact subsets of
Rd : Hence, similar to (4.15), we have that for all kxkX t;

jGðxÞjp K
Xp

i¼1

XqðiÞ
j¼1

rai ðlog rÞaiðj�1Þ
kxijk

ai p K kxke=2
Xp

i¼1

kxik
ai : (4.17)

Combining (4.15), (4.16) and (4.17) with the following identity:

Re
1

1þ cðxÞ

� �
¼

1þRecðxÞ

ð1þRecðxÞÞ2 þ ðImcðxÞÞ2
; (4.18)

we obtain

K10

kxke
Pp

i¼1kxik
ai
pRe

1

1þ cðxÞ

� �
p

K11Pp
i¼1kxik

ai
; 8x 2 Rd with kxkX t:

(4.19)

Thus (4.2) holds. This completes our proof. &
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We end this section with some open questions. Since dim
H

X ð½0; 1	Þ ¼ dim
P
X ð½0; 1	Þ

is given by Theorem 3.2, it would be interesting to further investigate the following
natural question.

Problem 4.3. Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd : Find
exact Hausdorff and packing measure functions for the range X ð½0; 1	Þ:

We also mention that, if X is a Lévy process with stable components in Rd or an
operator stable Lévy process in Rd ; no general formula for the packing dimension of
X ðEÞ has yet been established. When X is a one-dimensional Brownian motion, the
packing dimension of X ðEÞ was studied by Talagrand and Xiao [26] who showed
that the inequality dim

P
X ðEÞo 2 dim

P
E holds for some Cantor-type set E � ½0; 1	:

Hence the formula analogous to that for dim
H

X ðEÞ does not hold for the packing
dimension dim

P
X ðEÞ: Xiao [32] proved a formula for dim

P
X ðEÞ in terms of the

packing dimension profile of E introduced by Falconer and Howroyd [7]. We believe
a result analogous to that in Xiao [32] for Brownian motion still holds for all stable
Lévy processes in R with stability index a4 1 [This is the only remaining problem
for dim

P
X ðEÞ; where X is a stable Lévy process X in Rd with index a; since Perkins

and Taylor [20] have shown that if ap d; then a.s. dim
P
X ðEÞ ¼ adim

P
E for all Borel

sets E � Rþ]. However, for Lévy processes with stable components in Rd or operator
stable Lévy processes, the packing dimension profile introduced by Falconer and
Howroyd [7] does not seem to be appropriate for characterizing dim

P
X ðEÞ: One may

need to introduce a corresponding concept of packing dimension profile that can
capture different growths in different directions.

Shieh [25] has investigated the Hausdorff dimension of the multiple points of a
class of operator stable processes including Lévy processes with stable components.
Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd with exponent B

which has a1 p � � � p ad on its diagonal and 0 elsewhere. Let

Lk ¼ x 2 Rd : 9 distinct t1; . . . ; tk such that X ðt1Þ ¼ � � � ¼ X ðtkÞ ¼ x
	 


:

be the set of k-multiple points of X. Under certain conditions, Shieh [25] proved that
for k X 2 almost surely,

dim
H

Lk ¼ min a1 k � ðk � 1Þ
Xd

i¼1

a�1
i

 !
; d � kad

Xd

i¼1

a�1
i � 1

 !( )
; (4.20)

where ai ¼ a�1
i (i ¼ 1; . . . ; d) and negative dimension means that the set Lk is empty.

We believe his result may still be true for all operator stable Lévy processes, where
now ai are the real parts of the eigenvalues of B as described at the beginning of
Section 3 and each ai ¼ a�1

i is repeated di ¼ dimVi times. It would be interesting to
solve the following problem:

Problem 4.4. Let X ¼ fX ðtÞ; t 2 Rþg be an operator stable Lévy process in Rd : Let
Lk be the set of k-multiple points. Show that (4.20) holds.
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processes, Ann. Probab. 11 (1983) 589–592.

[11] W.N. Hudson, J.D. Mason, Operator-self-similar processes in a finite-dimensional space, Trans.

Amer. Math. Soc. 273 (1982) 281–297.

[12] J.-P. Kahane, Some Random Series of Functions, second ed., Cambridge University Press,

Cambridge, 1985.
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