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Abstract

Let X = {X(¢), 7 € R,} be an operator stable Lévy process in R? with exponent B, where B is
an invertible linear operator on R?. We determine the Hausdorff dimension and the packing
dimension of the range X([0, 1]) in terms of the real parts of the eigenvalues of B.
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1. Introduction

Let X = {X(?), t € Ry} be a Lévy process in R?, that is, X has stationary and
independent increments, X(0) =0 a.s. and such that ¢+ X(¢) is continuous in
probability. The finite-dimensional distributions of a Lévy process X are completely
determined by the distribution of X(1). It is well-known that the class of possible
distributions for X (1) is precisely the class of infinitely divisible laws. This implies
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that for every ¢ > 0 the characteristic function of X (z) is given by

[E[ei(i,/\’(t»] — e~ W©)
where, by the Lévy—Khintchine formula,

!//(é)=i(a,é>+%(5,zf’)+/d {1_ei<x,¢>+

R

i{x, &) d
T3 L(dx), V¢eRY,

(1.1)
and a € RY is fixed, 2 is a non-negative definite, symmetric, (d x d) matrix, and L is a
Borel measure on R?\{0} that satisfies

2
/ LU L(dx) < o0.
re 1+ x|

The function  is called the Lévy exponent of X, and L is the corresponding Lévy
measure. We refer to the recent books of Bertoin [2] and Sato [23] for the general
theory of Lévy processes.

There has been considerable interest in studying the sample path properties of
Lévy processes. Many authors have investigated the Hausdorff dimension,
Hausdorff measure, packing dimension and packing measure of various random
sets generated by Lévy processes. See the survey papers of Taylor [28] and Xiao [33]
and the references therein for more information. For a stable Lévy process X in R?
with index o € (0, 2], many of the results on the sample paths of X can be formulated
nicely in terms of « and d. However, when X is a general Lévy process in R?, it is
often difficult to determine explicitly the Hausdorff dimension of the range X (E),
where £ C Ry is a Borel set. For E = [0, 1], Pruitt [21] proved that dim, X ([0, 1]) =y
a.s., where the index 7 is defined by

1

y = sup{a =0 : lim sup r’“/ P{IX(| < ridf < oo}. (1.2)
r—0 0

However, Pruitt’s definition of y is usually hard to calculate. The natural question of

expressing y in terms of the Lévy exponent iy was raised by Pruitt [21] and he

obtained some partial results. This problem has recently been solved by

Khoshnevisan et al. [14] who have shown that

1 dé
vy = d: R . 1.3
! sup{oc = /cfeR": len > 1 © (1 + lﬁ(f)) 19K = +OO} (1.3)

The proof of this result relies on the potential theory for multiparameter Lévy
processes and the co-dimension argument. For more historical accounts and the
latest developments about the Hausdorff dimension and capacity of the range X(E),
we refer to Khoshnevisan and Xiao [13] and Xiao [33].

The packing dimension of the range of a Lévy process X in R? was studied by
Taylor [29], who proved that dim, X ([0, 1]) =y’ a.s., where the parameter )’ is defined
by Hendricks [10] as

1
y = sup{oc =0: lim ionf r_“/ P{XOI < r}dt < oo}. (1.4)
r— 0
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Similar to (1.2), this definition of y’ is also hard to use. It would be interesting to
express 7’ in terms of the Lévy exponent s. Except for subordinators, this remains to
be an open problem.

The objective of this paper is to investigate the Hausdorff and packing dimensions
of the range of a large class of Lévy processes, i.e., the operator stable Lévy processes
in R?; see Section 2 for the definition and related properties of the latter. For the
special case of a Lévy process X with stable components in R, the Hausdorff
dimension of the range X([0, 1]) was studied by Pruitt and Taylor [22] and then
extended by Hendricks [8,9] who determined the Hausdorff dimension of X(E),
where E C R, is a fixed Borel set. Recently, Becker-Kern et al. [1] have obtained
dim, X ([0, 1]) for more general operator stable Lévy processes. Their arguments are
based on the results of Pruitt [21] on dim, X ([0, 1]) [cf. (1.2)] and involve several
technical probability estimates of operator stable Lévy processes. In addition, they
require some restrictions on the transition densities of the processes.

In this paper, by using different methods, we show that the restrictions on the
transition densities of the processes in Becker-Kern et al. [1] can be removed and thus
verify their conjectures on the Hausdorff and packing dimensions of X([0, 1]). More
specifically, we apply two methods to calculate the Hausdorff dimension of the range
of an operator stable Lévy process in RY. The first method is based on the covering
argument for determining the Hausdorff dimension and is closely related to the
arguments of Pruitt and Taylor [22] and Hendricks [9]. The second method is more
analytic and is based on (1.3) and a result of Khoshnevisan and Xiao [13]. Compared
to the arguments in Becker-Kern et al. [1], our methods in this paper make use of
other characteristics of an operator stable Lévy process than its transition densities
and hence they are more general. In particular, the covering method allows us to
obtain a formula for dim, X (E) for every Borel set £ C Ry.

The rest of the paper is organized as follows. In Section 2, we recall the definitions
and some useful properties about operator stable laws, operator self-similar
processes, operator stable Lévy processes, Hausdorff dimension and packing
dimension. Our main results are stated and proved in Section 3. The key for the
proofs is Lemma 3.4, which establishes the estimates on the expected sojourn times
of X in the ball B(0,a). In Section 4, we give an analytic proof of the result on
dim, X ([0, 1]) by using (1.3) and list some open problems.

Throughout this paper, we will use K to denote unspecified positive finite
constants which may not necessarily be the same in each occurrence. More specific
constants will be denoted by K, K>, ....

2. Preliminaries

A Lévy process X = {X (1), 1 € Ry} in RY (d > 1) is called operator stable if the
distribution v of X(1) is fu/l [i.e., not supported on any (d — 1)-dimensional hyperplane]
and v is strictly operator stable, i.e., there exists a linear operator B on R? such that

vi=1By forall t>0, 2.1
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where v denotes the z-fold convolution power of the infinitely divisible law v and
tBy(dx) = v(r B dx) is the image measure of v under the linear operator ¢Z, which is
defined by

o0 n
B __ (lOgl) 7
! _ZOTB'
n=

The linear operator B is called a stability exponent of X. The set of all possible
exponents of an operator stable law is characterized in Theorem 7.2.11 of Meerschaert
and Scheffler [18].

On the other hand, a stochastic process X = {X(7),r € R,} with values in R? is
said to be operator self-similar if there exists a linear operator B on R? such that for
every ¢ > 0,

(X(et), 1= 0y £{cBx (0,1 > 0},

where X2 Y denotes that the two processes X and Y have the same finite-
dimensional distributions. Here the linear operator B is called a self-similarity
exponent of X.

Hudson and Mason [11] proved that if X is a Lévy process in R such that the
distribution of X(1) is full, then X is operator self-similar if and only if X(1) is strictly
operator stable. In this case, every stability exponent B of X is also a self-similarity
exponent of X. Hence, from now on, we will simply refer to B as an exponent of X.

Operator stable Lévy processes are scaling limits of random walks on RY,
normalized by linear operators; see Meerschaert and Scheffler [18, Chapter 11].
Clearly, all strictly stable Lévy processes in R? of index o are operator stable with
exponent B =o', where I is the identity operator in R?. More generally, let
X1,..., X4 be independent stable Lévy processes in R with indices a;,...,as € (0,2],
respectively, and define the Lévy process X = {X(¢),7 > 0} by

X)) = X1, ..., Xa(0)).

Then it is easy to verify that X is an operator stable Lévy process with exponent B
which has o', 05!, ...,0;! on the diagonal and 0 elsewhere. This class of Lévy
processes was first studied by Pruitt and Taylor [22]. Following their terminology, we
still call X a Lévy process with stable components. This type of Lévy processes is
sometimes useful in constructing counterexamples (see [18]) and has been studied by
several authors. Examples of operator stable Lévy process with dependent
components can be found in Shieh [25] and Becker-Kern et al. [1]. For systematic
information about operator stable laws and operator stable Lévy processes, we refer
to Meerschaert and Scheffler [18].

Let X = {X(2),1 = 0} be an operator stable Lévy process in R? with exponent B.
Factor the minimal polynomial of B into ¢;(x) - - - g,(x), where all roots of ¢,(x) have
real part ¢; and @; < a; for i <j. Let o; = a;'!' so that &y > --- > a,, and note that
0 < o; <2 in view of Meerschaert and Scheffler [18, Theorem 7.2.1]. Define V; =
Ker(¢;(B)) and dim(V;) =d;. Thend, +---+d,=dand V& --- @ V, is a direct
sum decomposition of R? into B-invariant subspaces. We may write B= B, @ - - - &
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B,, where B;: V; — V; and every eigenvalue of B; has real part equal to a;. The
matrix for B in an appropriate basis is then block-diagonal with p blocks, the ith
block corresponding to the matrix for B;. Write X(¢) = XV(t) + - - - + XP(r) with
respect to this direct sum decomposition, and note that by Corollary 7.2.12 of
Meerschaert and Scheffler [18] we get the same decomposition for any exponent B.
Since V; is a B-invariant subspace it follows easily that {X?(¢), r € R, } is an operator
stable Lévy process on the d;-dimensional vector space V; with exponent B;. It
follows from (2.1) that X (£) < X (1) and XP() < 8 XO(1) for all 1 < i < p. Choose
an inner product (-,-) on R such that V; L V; fori# j, and let IxlI> = (x, x) be the
associated Euclidean norm. Then

X = | XD + - + | B xO0)|. 2.2)

The following lemma is a slight variant of Lemmas 3.3 and 3.4 in Becker-Kern et al. [1]
which can also be proven directly using Corollary 2.2.5 in Meerschaert and Scheffler [18].

Lemma 2.1. For everyi=1,...,p and every ¢ > 0, there exists a finite constant K > 1
such that

Kt ere B < Kt forall 0 <1< 1 (2.3)
and

K '@ < e8] < K@t forall 0<t< 1. (2.4)

Now we recall briefly the definitions of Hausdorff and packing dimensions and
refer to Falconer [4,6] Mattila [16] for more information.

Let @ be the class of functions ¢ : (0,0) — (0,00) which are right continuous,
monotone increasing with @(0+) = 0 and such that there exists a finite constant
K > 0 such that

2 1
P9 < k. for0<s< s, 2.5)
@(5) 2
The inequality (2.5) is usually called a doubling property. A function ¢ in @ is often
called a measure function.
For ¢ € @, the @-Hausdorff measure of E C R is defined by

o-m(E) = }gno inf{zi: @(2r;): E C DB(xi,ri), r< 8}, (2.6)

i=1
where B(x,r) denotes the open ball of radius r centered at x. The sequence of balls
satisfying the two conditions on the right-hand side of (2.6) is called an ¢-covering of
E. It is well-known that @-m is a metric outer measure and every Borel set in R? is ¢-
m measurable. A function ¢ € @ is called an exact Hausdorff measure function for E
if 0 < @-m(E) < oo.

The Hausdorff dimension of E is defined by

dim, E = inf{o > 0:5*-m(E) = 0} = sup{a > 0:s*-m(E) = oo}.
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Packing dimension and packing measure were introduced by Tricot [31], Taylor
and Tricot [30] as a dual concept to Hausdorff dimension and Hausdorff measure.
For ¢ € @, define the set function ¢-P(E) on R? by

@-P(E) = liné sup{z o(2r)): B(x;,r;) are disjoint, x; € E, r; < a}, 2.7

where B denotes the closure of B. A sequence of closed balls satisfying the conditions
on the right-hand side of (2.7) is called an ¢-packing of E. Unlike ¢-m, the set
function ¢@-P is not an outer measure because it fails to be countably subadditive.
However, ¢-P is a premeasure, so one can obtain an outer measure ¢-p on R? by
defining

o-p(E) = inf{z o-P(E,):E C G E} (2.8)

n n=1

@-p(E) is called the ¢-packing measure of E. Taylor and Tricot [30] proved that ¢-
p(E) is a metric outer measure; hence every Borel set in R? is ¢-p measurable. If
@(s) = 5%, s*-p(E) is called the a-dimensional packing measure of E. The packing
dimension of E is defined by

dim, £ = inf{o > 0: s*-p(E) = 0} = sup{o > 0: s*-p(E) = oo}. (2.9)

There is an equivalent definition for dim, £ which is sometimes more convenient to
use. For any ¢ > 0 and any bounded set E € R?, let

N(E,¢) = smallest number of balls of radius ¢ needed to cover E.
Then the upper and lower box-counting dimension of E are defined as
—— . log N(E,
dim, £ = lim supL(S)
50 —loge
and
1 E,¢
dim E = lim inf M
B e—0 — log &

respectively. If dim,(E) = dim (E), the common value is called the box-counting
dimension of E. From the definitions, it is easy to verify that

0 <dim,E < dim E <dim,E<d and 0<dimE<dmE<d (2.10)

for all bounded sets E € R?. Hence EBE and di_mBE can be used to determine
upper bounds for dim, £ and dim, E.

The disadvantage of dim, and dim  as dimensions is that they are not g-stable [cf.
31; 4, P. 45]. One can obtain g-stable indices dim,, and dim by letting

dim, E = inf{supdi—mBE,,:E c

P2

E} @2.11)
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Tricot [31] has proved that dim, E = dim,,,(E). Hence, for all sets E C R,

0 < dim,E < dim E < dim,E = dim,E < d. (2.12)
Thus, if dim, £ = dim, E, then all the dimensions in (2.12) coincide.

dim F = 1nf{supd1m E,:EC

EC8

3. Main results

Let X = {X(r),7 € R,} be an operator stable Lévy process in R with exponent B.
Recall from Section 2 the direct sum decomposition RY = V; @ --- @ V,, and the
associated block-diagonal representation B =B, & --- @ B,, where d; = dim V;, B; :
Vi — V; and every eigenvalue of B; has real part equal to a; > 0. We assume that
ay<ay < --- <a, and we let o; = a; ' so that 2> o > --- >0, > 0.

The following are our main results. Theorem 3.1 removes the condition
on the density of X(¢) in Theorem 2.2 of Becker-Kern et al. [1] and extends their
results to X (E). This solves the problems in Remarks 3.8 and 3.9 of their paper.

Theorem 3.1. For any Borel set E C R, almost surely

. OC]dimHE lf dll’IlHE < dl/ocl,
dim, X(E) = : ! 3.1)
1 4+ oo(dim, E — 1/o1)  otherwise.

The next result shows that the range X ([0, 1]) has the same Hausdorff and packing
dimensions, which confirms a conjecture of Becker-Kern et al. ([1, Remark 3.10]).

Theorem 3.2. Let X be an operator stable Lévy process in RY. Then

dim,, X ([0, 11) = dim, X0, 1) =  ** o= 32
im,, X ([0, 1]) = dim, X ([0, ])—{1_{_0(2(1_1/&1) otherwise. 6.2

We break the proofs of Theorems 3.1 and 3.2 into several parts. The upper bounds
in Theorems 3.1 and 3.2 are proved by using Lemmas 3.3 and 3.4 and a covering
argument which goes back to Pruitt and Taylor [22] and Hendricks [8,9]; while the
lower bounds are proved by using Lemma 3.7 and (2.12).

Let K; > 0 be a fixed constant. A collection A(a) of cubes of side a in R’ is called
K, -nested if no ball of radius ¢ in R? can intersect more than K cubes of A(a). In
this paper, we will let A(a) be the collection of all cubes of the form H [kja, (k; +
1)a], where (ki, ..., kg) € Z°. Clearly, A(a) is K,-nested with K; = 3%. In partlcular
for each integer n = 1 and a = 27", A(a) is just the collection of dyadic cubes of order
n in R?. Another example of 3?-nested collections of cubes is the set of all semi-
dyadic cubes of order n in RY.
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Let P
T(a,s) = /0 10,0 (X (1)) dt

be the sojourn time of X in B(0, @) up to time s, where 1 is the indicator function of
the set B. The following useful covering lemma is due to Pruitt and Taylor [22].

Lemma 3.3. Let X = {X(1),t € Ry} be a Lévy process in R? and let A(a) be a fixed
K \-nested collection of cubes of side a (0 < a < 1) in R?. For any u > 0, we denote by
M (a,s) the number of cubes in A(a) hit by X () at some time t € [u,u + s]. Then

E[M (a,s)] < 2K s[E(T(a/3,s))]"

The following lemma gives estimates on the expected sojourn time 7'(a,s). Even
though we only need to use the lower bounds for E[7'(a,s)] in this paper, we also
include the upper bounds which may be useful elsewhere. For example, sharp upper
bounds for E[7T(a,s)] will be useful for studying the exact Hausdorff measure
functions for the range X ([0, 1]).

Lemma 3.4. Let X = {X(1),t € R.} be an operator stable Lévy process in RY. For any
0 <o)y <op <oy <o) <oy <af, there exist positive and finite constants K, ..., Ks
such that the following hold.:

(1) If ay < dy, then for all 0 <a <1 and a* < s <1,
K> a" < E[T(a,s)] < Ksa*. 3.3)

(i) If oy > dy, then for all a > 0 small enough, say, 0 < a < ay, and all a” < s < 1,
Ksa” < E[T(a,s)] < Ksa”, (3.4)

where p' =1+ d5(1 —1/oy) and p” =14 o5(1 — 1 /o).
Proof. We assume first o) < d; and let o) <oy be fixed. By the operator self-
similarity of X and (2.2), we have [[XO)IZIEXD)] = 1B XD, Since

Ax| = |x|I/14~ Y| for any vector x € R% and any invertible linear operator 4 on
R, we use (2.4) in Lemma 2.1 to derive that

[ XD = K74 xD(1)|| forall 0 << 1

Since X"(1) has a continuous and bounded density, it follows that
N
E[T(a,s)] < / P(| XV @) < a) dt
0

< /XP(HX(”(I)H <Kar ") dr
0

7

al o0 ,
< / dt+/, K(ar="/")" d¢
0 axl
< Ksan, (3.5)
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which gives the upper bound in (3.3). To prove the lower bound in (3.3), we fix o]
(1 <i<p) such that of > o; > o/ . It follows from (2.2) and (2.3) in Lemma 2.1
that

E[T(a,5)] = /Oslum(u)((f)(t)u < %, 1< igp) dr

> / P<||X<">(1)|| <KLV 1< <p) de
0 N/

(6a)’/1 )
> / P<||X<’>(1)|| <K % AR sp) dt
0 P
> Ksa™, (3.6)

where 0 < 6 < 1 is a constant such that P(||X(1)|| < %) > 0. Such 6 > 0 exists

because X (1) is full. So the probability in the last integral is bounded below by a
positive constant. Hence (3.3) follows from (3.5) and (3.6).

Now we consider the case when oy > d; = 1. Note that (XV(1), X?(1)) has a
continuous bounded density. Similar to (3.5), we have for any o < o,

E[T(a,s)] < /0 ' P(XV ()| < a, 1XP0)| < a)dt

< / PAXD1) < a2, | XOM)| < Kar™"/*)dr
0

o

a 00
< / atfl/al dr +/ Ka1+d2 tfl/az’lfdz/zx’2 dr
0 P

< K5a”.

[

On the other hand, similar to (3.6) we have
s a - a p
E[T(a,5)] > / P(|X<‘>(1>| < — X0 < Ko —= 7, 2 < i<p) dr
0 Nz N

3.7)

for some constant K¢ > 0. Denote by g(xi, .. .,x,) the density function of X(1). Then
the density function of X((1) is given by

gl(xl):/l lg(x17x25”"xp)dx2”'dxp'
R

Since XV(1) is a strictly stable random variable with index «; > 1, by Theorem 1 of
Taylor [27] its distribution is of type A, ie., g;(0) > 0. Combining this with the
continuity of g, we see that there exist a super-rectangle I = [—m, m] x J in R, where
m >0 is a constant and J is a cube in RY"', and a constant ¢ > 0 such that
g(x1,...,xp) = tforall (xi,...,x,) € I. Now we choose a constant § € (0, 1) such that

K
0\/P

Jc {(xz,...,xp) e R il <
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and let # = 1/(m/p). Note that t > (ya)™ implies \;‘_t*l/““ m. Furthermore, since
oy > o, there exists a constant 0 < ap < 1 such that for all 0 < a < ap, we have
(na)*' < (da)*. Hence, it follows from (3.7) that

E[T(a,s)]

(00 a . a "
> / Dm<|X“’(1)| <=V I xXOM) <K —= V%, 2<i< 1’) de
(nay" N/ N/

(da) 2
/ g(x1,%2,...,x,)dxy - - dx, dt
(na)™ [—a/Jp V%, Vn s

G,
>K€/ — ¢ Vm gy
ay' NP

= K4a"

for some constant K4 > 0 that may depend on the constants m, ¢, p and the cube J.
This finishes the proof of (3.4). O

Now we can prove the upper bounds in Theorems 3.1 and 3.2.

Lemma 3.5. For any Borel set E C R, almost surely

. ocldimHE lf dll’IlHE < dl/oq,
dim, X(E) < i . (3.8)
1 4+ oo(dim, E — 1/o))  otherwise
and
. acldimPE lf dimPE < dl/ocl,
dim, X(E) < . . (3.9)
1 4+ oo(dim, E — 1/o1)  otherwise.

Remark 3.6. It should be pointed out that, unlike (3.8), the upper bounds for
dim, X(EF) in (3.9) may not be sharp even when X is a Brownian motion, cf.
Talagrand and Xiao [26]. The problem for determining dim, X (£) for operator stable
Lévy processes is still open (cf. Problem 4.3).

Proof. We only prove (3.8). A similar argument also yields that for every bounded
set £ C R4, almost surely

ocldi—mBE if d1m E < d/o,

- (3.10)
1 4+ op(dim,E — 1/a;) otherwise.

dim, X(E) < {
Then (3.9) follows from (2.11) and (3.10).
Assume ﬁrst that dim, F < d;/o;. For any y > dim, E, we choose o] > o such
that y'= 1 +7> dlm”E Then for every ¢ > 0, there exists a sequence {I;} of
intervals in IR+ with length |/;| < & such that

o0 o0
Ec|JI; and Y LI <1. (3.11)
i=1 i=1
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For each interval I;, let s; = |I;] and b; = |I;]'/*". It follows from Lemmas 3.3 and 3.4
that X (/;) can be covered by M; cubes C;; € A(b;) of sides b; in R? and

E(M) < K |I;| - ||~/ (3.12)
Note that
M;
i j=1

and the diameter of C;; is Vdb;. That is, {Cij}isa (+/d e'/*)-covering of X(E). It
follows from (3.11) and (3.12) that

o0 o0
[E(E; M, b > <K Z LA
o0
— KZ 11, < K.
i=1

Letting ¢ — 0 and using Fatou’s lemma, we have E(s*7-m(X(E))) < K. Thus s*7-
m(X(E)) < co a.s. which implies that dim, X(E) < a;y a.s. Since y > dim,E is
arbitrary, we obtain (3.8) in the case when dim, E < d; /0.

Now we consider the case when dim, E > d;/o;. This implies that o; > 1 and
dy = 1. For any y > dim, E, we choose o) > o, such that

a// a//
Y&l - 2429 > dim,E. (3.13)
L5
So there exists a sequence {/;} of intervals in R, such that (3.11) holds. Let s; = |/;|
and b; = |1;]"/*. Denote by M; the number of cubes CQJ € A(b;) of side b; in R? that
meet X (/;). Then by Lemmas 3.3 and 3.4,

E(M) < KL - 10,77/, (3.14)
where we recall that p” =14 o5(1 — 9711)~ It follows from (3.14) and (3.11) that

0 -
(S <k
i=1

o0
:K§ |Ii|17a/2’/oc2+a’z/y/ocg
—

15

o0
|Il_|1—ﬂ"/fxz X |1i|0<’2“y'/0’«2+(1—0<’2/0<1’1)/0<2
i=1

o0
=K> I <K.
i=1

The same argument as in the first part yields dim, X(E) < | + op(dim, E — 1/a;) a.s.
Thus we have proven (3.8). [

Lemma 3.7 below proves the lower bounds of dim, X(E) in Theorem 3.1. Similar
results under more restrictive conditions [such as either d =1 or independence
among the components of X] can be found in Falconer [5] and Lin and Xiao [15]. By
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taking £ =10,1] and using (2.12), we obtain the desired lower bound for
dim, X ([0, 1]) in Theorem 3.2.

Lemma 3.7. Let X = {X(f),t € R} be an operator stable Lévy process in R?. Then for
any Borel set E C R, almost surely

acldimHE lf dll’IlHE < dl/oq,

3.15
1 4+ oo(dim, E — 1/o1)  otherwise. (3-15)

dim, X(E) > {

Proof. For the proof of (3.15), we use a standard capacity argument; see e.g.,
Kahane [12, Chapter 10], Falconer [4, Chapter 4], Mattila [16, Chapter 8], Taylor
[28] or Xiao [33]. Note that Frostman’s lemma and theorem are only proved for
compact sets in Kahane [12]. Both of them are still valid for all Borel sets as shown in
Falconer [4, Chapter 4] and Mattila [16, Chapter §].

First consider the case when dim, E < d;/oy. If dim, E = 0, there is nothing to
prove. So we assume dim, E > 0. For any 0 < y < o;dim,, E, we choose 0 < o] < a;
such that y < «jdim, E. Then, it follows from Frostman’s lemma [cf. 12,16] that there
exists a probability measure ¢ on E such that

//a(ds)a(dt) - . (3.16)
E |s— 1]/

By Frostman’s theorem [cf. 12,16], we know that, in order to prove dim, X(E) = 7y
almost surely, is suffices to show

/ / E(1 X (s) — X (O] a(ds)a(d?) < oo. (3.17)
EJE
It follows from (2.2) that for all 5,7 € R, such that |s — ¢ < 1
E(IX(s) — X1 7) = E(llls — 0P X (D7)
< E(llls — P XD 77)
< K|s— 177", (3.18)
where in deriving the last inequality, we have used Lemma 2.1 and the elementary

fact that if a random variable X in R? has a bounded density, then for any
0<y<d, E(JX|I77) < oo. Also, a simple argument using Lemma 2.1 shows that

sup E(J|X(s) — X()II™7) < oo.

ls—] > 1
Now it is clear that (3.17) follows from (3.18) and (3.16).

Now we consider the case when dim,E > /oy and d; =1. Let 1 <y<1+
oa(dim, E — 1 /o) be fixed. Note that since p = y/oaa — (1 /02 — 1 /o) < dim, E, we
can choose 0 < o) < o, such that p' =vy/o) — (1/a5 — 1/o1) < dim, E. Then there
exists a probability measure ¢ on E such that

[
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Similar to (3.18), we use (2.2) to deduce that for all s,z € Ry such that |s — 7] < 1,

E(IX(s) — X(O)II77)
= E(|l| — sI®X(D)II™)
< E([le = s XD + (11 = 512 X277

1
<k [ A 1. x2) dx, dv,
S ren gs — P b 4 Dl = 1P

1
K/ - X1,x2)dx; dx
arve s — (PP bl + s — P 0 P
R 1
= Kls— 77/ / i L xdude, (3.20)
v |xp |7 A s — 27270/ | x| |7

where g(x1,x») is the density function of (XV(1), X®(1)) which is bounded and
continuous. We will use integration by parts to derive an upper bound for the
integral J in (3.20). To this end, let

F(ri,r2) = PUXO] < iy [XPD)] < 1),

Then by using spherical coordinates, we can write

F(r,rn) = / / g(x1, x2) dx2 dx;
Ixil<r Jlxall <

-/ /0 “ /S 3(p1, p20) P u(d0) dpy dpy, (3.21)

dy—1
where §(y;,,0) is bounded and continuous in (y;,,,0) € R x Ry x S4,—1 and p is
the surface measure on the unit sphere Sy, | in R?2. Note that there also exists a
finite constant K7 > 0 such that

F@ri,rn) < (AAK;r )1 AKqrp) forall ry, r, = 0. (3.22)

For simplicity of notation, we denote ¢ = |s — ¢|'/%~!/* By using Fubini’s theorem
and integration by parts when integrating dr;, we deduce

o0 o0 1
J = — F(dr;,d
L e panan)
« <l ! " dr—1
=/ de/ %2/ / g(pr, r20)r5*~" p(d)dp, | dry
0 o | +ar) o Js,-

= /Oldrz/ooo[”']drl"'/loodrz/ooo['”]drl

= J+Js. (3.23)
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Now we estimate J; and J, separately. Since § is bounded, we have
1

1 . 00 w,"/—
J1<K/ rgz_ drz/ ﬁrldrl
o (r+cry)

K Ll'z 1 o ’yshi) d
mrdre [ = ds
(Crz) o (s1+1D

= M__1(8 |S t| (5 1)(1/9‘2*1/11) (324)
-1

In getting the second inequality above, we have used the change of variable r| =
crps1. Also note that since 1 <y <o) <2<dr+ 1, the last two integrals are
convergent and Ky is a positive and finite constant.

On the other hand, it follows from Fubini’s theorem and integration by parts for
dr; that

—1
'))r
J= - / 1(d6) / dr 21 / / 3p1. p20)p% " dp, dp,
Sdy-1 (V +C'
% 2y? C’}" ’ !
+ / u(do) / dry / i W
Say-1 1 ("1"‘6”’2)
x [/ / 3Py, p20)p5~ ldpldpz} dr,
00~y 2 =1 =1
/ drl/ 2/(:r1 r3
1+ or)
[ / / / 31, p20)p 1u(de)dpldp2] dr).
(12 1

Note that the triple integral in the brackets is F(rq,r,), thus (3.22) together with a
change of variables r| = cry s; implies that

K/ dr2/ r dr1
(r1 +C'r2)
e S

s
< — —drz/ ds;
¢ 1 o (s]+ 1)

= Ky |s — ¢| 707D/ 1/m) (3.25)

Here we have used again the fact that y > 1.
Combining (3.20), (3.23), (3.24) and (3.25), we have proven that for |s — 7] < 1

E(IX(s) — X(O)II77) < K |s — ¢| V=% = g |g — g7, (3.26)
Again a simple argument using (2.2) and Lemma 2.1 shows that

sup E(1X(9) = X0 7) < E[(XOMP + X217 < 0.

[s—t] =1
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Therefore, it follows from (3.19) and (3.26) that (3.17) holds. Using Frostman’s
theorem again, we have dim, X(E) > y a.s. This finishes the proof of Lemma 3.7.

4. Further remarks and open questions

Let X = {X(¢),t € R,} be a Lévy process in R? with Lévy exponent 1. Recently,
Khoshnevisan et al. [14] have proved the following formula for dim,X ([0, 1]) in
terms of : almost surely

. _ 1 dé
dim, X ([0, 1]) = sup{a <d: /éew: e Re (1 " l//(5)> s < + oo}.
4.0

This gives a different, analytic way to study the Hausdorff dimension of X ([0, 1]) for
Lévy processes. We refer to Khoshnevisan and Xiao [13] for further developments on
Hausdorff dimension and capacity. The following result is an extension of
Proposition 7.7 (see also Remark 7.8) of Khoshnevisan and Xiao [13], as well as
the result of Pruitt and Taylor [22] for Lévy processes with stable components.

Proposition 4.1. Let X = {X(7),t € R,} be a Lévy process in R? with Lévy exponent
V. If satisfies the following condition: there are constants 2=

P =Py = - = Py > 0 such that for every ¢ > 0, there exists a constant T > 1 such
that
K71 1 K £
——7 o SRe ( ) < d”é” ;. Ve R with | & =1, (4.2)
IEN"D Sy 1E;1% 1+ y(0) > i=11&1P

where K > 1 is a constant which may depend on ¢ and t. Denote ny = max{j : f; = f}.
Then almost surely,
B if By <m,

dim,, X ([0, 1]) = { 1+ B8,(1=1/B,) otherwise. )

Proof. The proof, based on (4.1), is a slight modification of that of Proposition 7.7
of Khoshnevisan and Xiao [13]. Hence it is omitted. [

Proposition 4.1 leads to a completely different proof of the Hausdorff dimension
of X([0, 1]) for operator stable Lévy processes.

Theorem 4.2. Let X be an operator stable Lévy process in R? as in Theorem 3.2. Then
(3.2) holds almost surely.

Proof. In the notations of Section 3, we will show that for every ¢ > 0, there exists a
constant K > 1 such that (4.2) holds for f; > --- > B, defined by B, =, if
Sdi <j < St d;, where dy = 0. Once this is proved, the theorem will follow
from Proposition 4.1 with n; = d;.
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The proof is based on asymptotic inverses, a method first used in Meerschaert [17]
to get sharp bounds on the probability tails of operator stable random vectors. Use
the Jordan decomposition (see, e.g., [18, Theorem 2.1.16]) to obtain a basis by, ..., by
for R in which B is block-diagonal where every block is of the form

a 0 0 - 0 cC 0 0 - 0
1l a 0 - 0 I C 0 - 0
01 a : or |0 I C : (4.4)
0o ... 1 a 0 I C

where a is a real eigenvalue of B in the first case, and in the second case

a —b 1 0
C= ( ) and I = ( ), 4.5
b a 0 1

where a + 1b is a complex conjugate pair of eigenvalues of B. Define ||x|| = /(x, x)
using the inner product associated with this basis (see, e.g., [18, Proposition 1.1.20
(®)]), so that (b;,b;) =1 (i =j). In these coordinates, the matrix power % can be
explicitly computed (see [18, Lemma 2.2.3]) as well as the norm |[8x]| for every
x € R? (see [18, Proof of Theorem 2.2.4]). This follows easily from the (unique)
decomposition B =S+ N where S is semi-simple (diagonalizable over the complex
numbers) and N is nilpotent (N = 0 for some positive integer m). In the first case
[i.e., Bisa (k + 1) x (k + 1) block as the first matrix in (4.4)], if x = (x1, ..., Xx41) are

the coordinates for one block and z(¢) = tx = (z1(¥), . .., zk+1(?)), then
= “(log 1)"
zi(1) = Zij_n (4.6)
n=0
for all j=1,....,k+1. In the second case, if u=(x1,y,...,Xk+1,V41) are
coordinates for one block and t2u = (z{(¢), wi(?), . .., zx41(£), wip1 (1)), then
& t"(log 1y .
zi(1) = Z (cos(blog 1) x;_, — sin(blog 1) y,_)),
Jj= lu 1 n
w;(f) = ((’)1g 9 (sin(blog #) xj—, + cos(blog 1) y,_;) 4.7)
n=0
for all j=1,...,k+ 1. Recall from Section 2 the direct sum decomposition RY =

Vi@---® V, and the associated block-diagonal representation B= B @ --- @ B,
where B; : V; — V; and every eigenvalue of B; has real part equal to a;. Now apply
Theorem 3.1 in Meerschaert and Veeh [19] to obtain a further direct sum
decomposition V;=U; & ---® Uy, where Uy is a B-invariant subspace and
every non-zero vector x € Uj; is of order j, so that N/x = 0and N"'x # 0. Note that
every basis element by, ..., b, lies in one of these subspaces. Write x = ZiZ/’xij with
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respect to this direct sum decomposition, so that x; € Uj. Then it follows from (4.6)
and (4.7) that

P4 —2g 2(j—1)
T TG S G Uy I, (45)
= = G -DY
where B* 1s the transpose of B, 0;(f,x) is a linear combination of terms of the form
t~4(log t) x| x| |x455] with k < 2(j — 1), x;; is one of the coordinates of x;; in the
basis by,...,b,, and the coefficients of this linear combination are independent of
both x and ¢. Then clearly, R(¢) = 1/||t~% x| is a regularly varying function of ¢ > 0
at infinity with index ¢ = min{q; : x; # 0} where x = >_.x; with respect to the direct
sum decomposition R =V, @ --- @ V,. Of course the function R(¢) =1/ 5 x|
(as well as #(r) below) also depends on x. We have suppressed x so that the notation
will not get too heavy.
Since a > 0, the function R(¢) has an asymptotic inverse #(r), regularly varying at
infinity with index « = 1/a, such that R(«(r)) ~ r as r — oo (see, e.g., [3, p. 28] or [24,
p- 21]). In fact, we can take

P q()

(r)=> > Ky (logryV="lx;)*, (4.9)
i=1 j=1
where Kj; = (ai_l/U— DN*, and the convergence of R(#(r))/r — 1 as r — oo is
uniform in x on compact sets of R?\{0}. To see this, let i be the index such that
a; = a, and let j = k + 1 be the order of x;. Then by (4.8) we can write

g T (log )
7 X" =——5—
(kY
and the convergence is uniform in x on compact sets of R?\{0}. Similarly, it follows
from (4.9) that as r — oo

1% + o(r~2(log 1)*) as t — oo, (4.10)

1r) = K; r*(log n)* || x;11* + o(+*(log r)**) 4.11)

uniformly for x on compact sets of R?\{0}.

Now it suffices to show that R(#(r))~> = [|#(r)" % x||*> ~ r~2 as r — oo uniformly for
x on compact sets of R?\{0}. This follows from (4.10), (4.11) and an elementary
computation:

2k

R((r) " = I s [Kyrog ™ 1] (log Y™ Iy + -

=r240(7%) asr— oo, (4.12)

where the convergence is uniform in x on compact sets of R?\{0}. This establishes
our claim.
Since X (f) and t2X(1) are identically distributed we have

(&) =y ¢) (4.13)
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for all ¢ € RY and all # > 0. Let F(&) = Re (Y(&)) so that tF(&) = F(t5 &) forall t > 0
and ¢ € RY. Moreover, F(¢) is bounded away from zero and infinity on compact
subsets of R?\{0} since X(¢) is full (see, e.g., [18, Corollary 7.1.12]).

Given x € R/\{0} and r > 0, we define 0, = 1(r)"% (rx). Then it follows from the
above that as r— oo, ||0,]| = rl|lt(r)"% x| = r/R(t(r)) = 1 uniformly for x on
compact sets in R?. Consequently for every 0 < 5 < 1, there exists some ry > 0 such
that 1 —n < ||6,]| < 1 +nforallr > rpand all x € S;. Here S; = {x : ||x|| = 1} is the
unit sphere in RY.

For any ¢ € R\{0}, let r = ||£|] and x = &/r € Sy so that & = rx. Tt follows that

F(rx) = F(1(r® 0,) = t(r)F(0,) (4.14)
and F(6,) is bounded away from zero and infinity for all » > ry and x € S;. On the
other hand, for any ¢ > 0, there is a constant t > max{ro, ¢} such that for all r >,
(log r)%4O=D < y#/2 for every 1 < i < p. Therefore, it follows from (4.14) and (4.9)
that

q(0) -
FEO <KD > ri(log r 0= |x)™
i=1 j=1
p

P
<K 0l = KIEIT Y 1" (4.15)

i=1 i=1
for all ||€]| = 7. Similarly, we derive from (4.14) and (4.9) that for all ||| > t,

P q@)

F&) =K' Yy ri(log ryV="|xy)|”

i=1 j=1

4
>K' >l (4.16)
i=1

Now we consider G(¢) = Im ((¢)). Note that (4.13) implies tG(¢) = G(¢5 ¢) for all
t> 0 and ¢ € RY. By the continuity of (&), G(¢) is bounded on compact subsets of
R?. Hence, similar to (4.15), we have that for all ||| > 1,

r_ 40) ] )4
IGEOI< K Y Y r(log /=Dy < KNI Y N1E 1™ (4.17)
i=1 j=1 i=1
Combining (4.15), (4.16) and (4.17) with the following identity:
1 1 4+ Rey(é)
R = s 4.18
) (1 + w@)) (1 + Rey(9)” + (Im y(2))’ (19
we obtain
Ko 1 Ky d -
————— < R < , V R h > T.
R (1 m w(@) S S e Yes R with >
(4.19)

Thus (4.2) holds. This completes our proof. [l
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We end this section with some open questions. Since dim, X ([0, 1]) = dim, X ([0, 1])
is given by Theorem 3.2, it would be interesting to further investigate the following
natural question.

Problem 4.3. Let X = {X(¢),1 € R.} be an operator stable Lévy process in R?. Find
exact Hausdorff and packing measure functions for the range X ([0, 1]).

We also mention that, if X is a Lévy process with stable components in R? or an
operator stable Lévy process in R?, no general formula for the packing dimension of
X(E) has yet been established. When X is a one-dimensional Brownian motion, the
packing dimension of X(E) was studied by Talagrand and Xiao [26] who showed
that the inequality dim, X (E) < 2 dim, £ holds for some Cantor-type set £ C [0, 1].
Hence the formula analogous to that for dim, X (E) does not hold for the packing
dimension dim, X(E). Xiao [32] proved a formula for dim,X(E) in terms of the
packing dimension profile of E introduced by Falconer and Howroyd [7]. We believe
a result analogous to that in Xiao [32] for Brownian motion still holds for all stable
Lévy processes in R with stability index o > 1 [This is the only remaining problem
for dim, X (E), where X is a stable Lévy process X in R? with index o, since Perkins
and Taylor [20] have shown that if o < d, then a.s. dim, X (E) = adim, E for all Borel
sets E C R, ]. However, for Lévy processes with stable components in R? or operator
stable Lévy processes, the packing dimension profile introduced by Falconer and
Howroyd [7] does not seem to be appropriate for characterizing dim, X (E£). One may
need to introduce a corresponding concept of packing dimension profile that can
capture different growths in different directions.

Shieh [25] has investigated the Hausdorff dimension of the multiple points of a
class of operator stable processes including Lévy processes with stable components.
Let X = {X(¢),7 € R;} be an operator stable Lévy process in R? with exponent B
which has a; < --- < ay on its diagonal and 0 elsewhere. Let

Ly = {x € R? : 3 distinct 7,,...,# such that X(t;) = --- = X(t) = x}.

be the set of k-multiple points of X. Under certain conditions, Shieh [25] proved that
for k = 2 almost surely,

d d
dim, L; = min{ocl (k —(k-1_ ocil> ,d — koyg (Z a! — 1) } (4.20)
i=1 i=1

where o; = ¢! (i = 1,...,d) and negative dimension means that the set Ly is empty.
We believe his result may still be true for all operator stable Lévy processes, where
now a; are the real parts of the eigenvalues of B as described at the beginning of
Section 3 and each o; = al-_1 is repeated d; = dim V/; times. It would be interesting to

solve the following problem:

Problem 4.4. Let X = {X (1), € Ry} be an operator stable Lévy process in R?. Let
L. be the set of k-multiple points. Show that (4.20) holds.
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