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Abstract

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀ t ∈ RN ,

where X1, . . . , Xd are independent copies of a centered Gaussian random field X0. Under
certain general conditions, Xiao (2007a) defined an upper index α∗ and a lower index
α∗ for X0 and showed that the Hausdorff dimensions of the range X

(
[0, 1]N

)
and graph

GrX
(
[0, 1]N

)
are determined by the upper index α∗. In this paper, we prove that the

packing dimensions of X
(
[0, 1]N

)
and GrX([0, 1]N ) are determined by the lower index α∗

of X0. Namely,

dimPX
(
[0, 1]N

)
= min

{
d,

N

α∗

}
, a.s.

and

dimPGrX
(
[0, 1]N

)
= min

{
N

α∗
, N + (1− α∗)d

}
, a.s.

This verifies a conjecture in Xiao (2007a). Our method is based on the potential-theoretic
approach to packing dimension due to Falconer and Howroyd (1997).

Running head: A packing dimension theorem for Gaussian random fields
2000 AMS Classification numbers: 60G15, 60G17; 28A80.
Key words: Gaussian random fields, packing dimension, packing dimension profile, range,

graph.

1 Introduction

Fractal dimensions such as Hausdorff dimension, box-counting dimension and packing dimen-
sion are very useful in studying fractals [see, e.g., Falconer (1990)], as well as in characterizing
roughness or irregularity of stochastic processes and random fields. We refer Taylor (1986) and
Xiao (2004) for extensive surveys on results and techniques for Markov processes, and to Adler
(1981), Kahane (1985) and Xiao (2007b) for geometric results for Gaussian random fields such
as fractional Brownian motion and the Brownian sheet.

Compared with Lévy processes, however, there have not been many results on the packing
dimensions of random fractals associated with Gaussian random fields. The main reason is
that most studies on fractals properties of Gaussian random fields so far have been limited to
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fractional Brownian motion or the Brownian sheet, whose analytic and geometric properties
are determined by a single parameter and are typical examples of random monofractals [see,
e.g., Seuret (2008a, 2008b) for more information]. If X is such a Gaussian random field, then
it is often true that the packing dimensions of its range X

(
[0, 1]N

)
= {X(t), t ∈ [0, 1]N} and

graph GrX
(
[0, 1]N

)
=

{
(t,X(t)) : t ∈ [0, 1]N

}
coincide with their Hausdorff dimensions.

Significant difference between the Hausdorff and packing dimensions of the image X(E)
appears when E ⊆ RN is an arbitrary Borel set. Talagrand and Xiao (1996) proved that,
even for such “nice” Gaussian random fields as fractional Brownian motion and the Brownian
sheet, the Hausdorff and packing dimensions of X(E) can be different because they depend
on different aspects of the fractal structure of E. Xiao (1997) further showed that the packing
dimension of X(E) is determined by the packing dimension profile introduced by Falconer and
Howroyd (1997) [see Section 2 for its definition].

As noted in Xiao (2007a), fractal properties of the range X
(
[0, 1]N

)
and graph GrX

(
[0, 1]N

)
themselves become more involved when X is a general Gaussian random field. To be more
specific, let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd defined on a
probability space (Ω,F ,P) by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (1.1)

where X1, . . . , Xd are independent copies of a real-valued, centered Gaussian random field
X0 = {X0(t), t ∈ RN} which belongs to a wide class of Gaussian random fields. In order to
study sample path properties of X, Xiao (2007a) introduced an upper index α∗ and a lower
index α∗ for X0 [see Section 2 for their definitions] and proved that

dimHX
(
[0, 1]N

)
= min

{
d,

N

α∗

}
, a.s. (1.2)

and

dimHGrX
(
[0, 1]N

)
= min

{
N

α∗
, N + (1− α∗)d

}
, a.s. (1.3)

where dimH denotes Hausdorff dimension. That is, the Hausdorff dimension of X
(
[0, 1]N

)
and GrX

(
[0, 1]N

)
are determined by the upper index α∗ of X0. Xiao (2007a, Remark 3.9)

conjectured that the packing dimensions of X
(
[0, 1]N

)
and GrX

(
[0, 1]N

)
are determined by

the lower index α∗ of X0.
The objective of this paper is to verify this conjecture by proving the following result:

Under certain mild conditions on X0,

dimPX
(
[0, 1]N

)
= min

{
d,

N

α∗

}
, a.s. (1.4)

and

dimPGrX
(
[0, 1]N

)
= min

{
N

α∗
, N + (1− α∗)d

}
, a.s., (1.5)

where dimPE denotes the packing dimension of E. The results (1.2)– (1.5) show that, similar to
the well-known cases of Lévy processes [see Pruitt and Taylor (1996)], the Hausdorff dimensions
of X

(
[0, 1]N

)
and GrX

(
[0, 1]N

)
may be different from their packing dimensions.

The combined results of Xiao (2007a) and this paper suggest that, unlike fractional Brow-
nian motion which is a monofractal, general Gaussian processes and random fields may exhibit
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interesting multifractal structures. This would make general Gaussian random fields attractive
for stochastic modeling in various areas including turbulence and image processing. It would
be of significance to pursue this line of research [see Remark 3.7].

The rest of this paper is organized as follows. In Section 2 we recall the definitions and
some basic properties of Gaussian random fields, packing dimension and packing dimension
profiles. In Section 3 we state and prove our main result. The method for proving the lower
bounds in (1.4) and (1.5) is potential-theoretic. It can be viewed as an analogue of the classical
and powerful “capacity argument” [based on the Frostman theorem] for Hausdorff dimension
computation. It will be clear from the proof of Theorem 3.1 that this potential-theoretic
method is applicable to stochastic processes which are not necessarily Gaussian. In particular,
it can be applied to the locally self-similar processes considered by Benassi, Cohen and Istas
(2003).

We will use K to denote a positive constant which may differ in each occurrence.
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Descartes-Paris 5, supported in part by the ANR project “mipomodim” NT-05-1-4230. He
thanks Professor Anne Estrade for her hospitality and stimulating discussions. The research
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The author thanks the referee for pointing out the articles of Bardet and Bertrand (2007a,
2007b) and Seuret (2008a, 2008b), and for his/her helpful comments which have lead to im-
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2 Preliminaries

In this section, we recall briefly the definitions and some basic properties of Gaussian random
fields, packing dimension and packing dimension profiles.

2.1 Upper and lower indices of Gaussian random fields

Let X0 = {X0(t), t ∈ RN} be a real-valued Gaussian random field with X0(0) = 0 almost
surely. We assume that X0 satisfies the following Condition (C):

(C) There exist positive constants δ0, K ≥ 1 and a right continuous function φ : [0, δ0) →
[0,∞) such that φ(0) = 0 and for all t ∈ RN and h ∈ RN with ‖h‖ ≤ δ0,

K−1 φ2(‖h‖) ≤ E[(
X0(t + h)−X0(t)

)2] ≤ K φ2(‖h‖). (2.1)

Note that the function φ2(‖h‖) depends only on ‖h‖, so we can say that Condition (C) requires
the increments of X0 to be approximately stationary and isotropic.

The upper index of φ at 0 is defined by

α∗ = inf
{

β ≥ 0 : lim
r↓0

φ(r)
rβ

= ∞
}

(2.2)

with the convention inf ∅ = ∞. Analogously, the lower index of φ at 0 is defined by

α∗ = sup
{

β ≥ 0 : lim
r↓0

φ(r)
rβ

= 0
}

. (2.3)
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For convenience, we simply call α∗ and α∗ the upper and lower indices of X0, respectively. It
is well known that, if α∗ > 0, then X0 has almost surely continuous sample paths; see Lemma
3.3 below.

When the real-valued Gaussian random field X0 = {X0(t), t ∈ RN} has stationary, isotropic
increments and a continuous covariance function, the above upper and lower indices α∗ and
α∗ coincide with the upper and lower indices of σ(h), where

σ2(h) = E
[(

X0(t + h)−X0(t)
)2]

, ∀h ∈ RN . (2.4)

When α∗ = α∗ = α, X0 is called an index-α Gaussian field; see Adler (1981).
Since most interesting examples of Gaussian random fields satisfying Condition (C) are

those with stationary increments, we collect some basic facts about them.
Suppose the Gaussian field X0 has stationary increments and continuous covariance func-

tion R(s, t) = E
[
X0(s)X0(t)

]
. If follows from Yaglom (1957) that R(s, t) can be written as

R(s, t) =
∫

RN

(
ei〈s,λ〉 − 1

)(
e−i〈t,λ〉 − 1

)
∆(dλ) + 〈s,Qt〉, (2.5)

where 〈x, y〉 is the ordinary scalar product in RN , Q is an N ×N non-negative definite matrix
and ∆(dλ) is a nonnegative symmetric measure on RN\{0} satisfying

∫

RN

‖λ‖2

1 + ‖λ‖2
∆(dλ) < ∞. (2.6)

The measure ∆ is called the spectral measure of X0. It follows from (2.5) that X0 has the
following stochastic integral representation:

{
X0(t), t ∈ RN

} d=
{∫

RN

(
ei〈t,λ〉 − 1

)
W (dλ) + 〈Y, t〉, t ∈ RN

}
, (2.7)

where d= means equality in all finite-dimensional distributions. In (2.7), Y is an N -dimensional
Gaussian random vector with mean 0 and covariance matrix Q, W (dλ) is a centered complex-
valued Gaussian random measure which is independent of Y and satisfies E

(
W (A)W (B)

)
=

∆(A∩B) and W (−A) = W (A) for all Borel sets A, B ⊆ RN with finite ∆ measure. Since the
effect of the linear term 〈Y, t〉 in (2.7) on the problems we consider is trivial, we will assume
Y = 0. Consequently, we have

σ2(h) = E
[(

X0(t + h)−X0(t)
)2] = 2

∫

RN

(
1− cos 〈h, λ〉) ∆(dλ). (2.8)

It is important to observe that the incremental-variance function σ2(h) in (2.8) is a negative
definite function in the sense of I. J. Schoenberg and can be viewed as the characteristic
exponent of a symmetric infinitely divisible distribution; see Berg and Forst (1975) for more
information on negative definite functions. This connection suggests that there may be some
duality between the properties of X0 and those of symmetric Lévy processes. Indeed, the
upper and lower indices of X0 defined above are reminiscent to the upper and lower indices
for Lévy processes introduced by Blumenthal and Getoor (1961) [Even though for studying
local properties of a Gaussian random field one is interested in the behavior of σ2(h) near
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h = 0, while Blumenthal and Getoor’s indices are concerned with the asymptotic behavior of
σ2 at infinity]. To large extent, our work in this paper is inspired by studies on sample path
properties of Lévy processes.

Note that, in general, one can also define upper and lower indices β∗ and β∗ for σ(h) in a
way similar to (2.2) and (2.3). For example,

β∗ = inf
{

β ≥ 0 : lim
‖h‖→0

σ(h)
‖h‖β

= ∞
}

(2.9)

with the convention inf ∅ = ∞, and the lower index β∗ is defined analogously. However,
compared to the indices α∗ and α∗ for φ, the indices β∗ and β∗ may behave more wildly as
shown by the following example.

Example 2.1 Let N ≥ 2 and let ∆ be a Borel measure on RN with support in a linear subspace
L of RN and satisfying (2.6). If Y is a Gaussian random field with stationary increments and
spectrum measure ∆, then for all h in the linear subspace of RN that is orthogonal to L, we
have σ2(h) = 0. Thus β∗ = ∞. ¤

Lemma 2.2 below, which is taken from Xiao (2007a), provides a sufficient condition for the
inequality β∗ ≤ 1 to hold.

Lemma 2.2 Let X0 = {X0(t), t ∈ RN} be a Gaussian random field in R with stationary
increments and spectrum measure ∆. If either N = 1 or, N ≥ 2 and ∆ has an absolutely
continuous part with density f(λ). Then β∗ ≤ 1.

In this paper, we only consider Gaussian random fields satisfying Condition (C) and leave
general anisotropic random fields to be treated elsewhere [see Remark 3.6]. We remark that the
class of Gaussian random fields satisfying Condition (C) is large. It includes not only fractional
Brownian motion, the Brownian sheet and Gaussian processes with regularly varying incre-
mental variance functions [all of them satisfy α∗ = α∗], but more importantly also Gaussian
random fields with stationary increments and different upper and lower indices. To be more
concrete, given any constants 0 < a < b < 1 and a measurable function H(λ): RN\{0} → [a, b],
let ∆ := ∆H be the Borel measure on RN\{0} with density function

fH(λ) =
1

‖λ‖2H(λ)+N
. (2.10)

Then the stochastic integral in (2.7) defines a centered Gaussian random field X0 = {X0(t), t ∈
RN} with stationary increments. If H(λ) ≡ H ∈ (0, 1), then X0 is the N -parameter fractional
Brownian motion (FBM) with index H. If N = 1 and

H(λ) =
K∑

j=0

Hj1l[ωj , ωj+1)(|λ|),

where Hj ∈ (0, 1) (0 ≤ j ≤ K) and ω0 = 0 < ω1 < · · · < ωK < ωK+1 = ∞ are constants,
then X0 is the (MK) multiscale FBM studied by Bardet and Bertrand (2007a, 2007b). It is
not difficult to choose a function H(λ) so that X0 satisfies Condition (C) with different upper
and lower indices. Such examples have been constructed by Xiao (2007a) and many more can
be provided by modifying the constructions of Lévy processes with different upper and lower
Blumenthal-Getoor indices [see Pruitt and Taylor (1996) and the references therein for more
information].
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2.2 Packing dimension and packing dimension profile

Packing dimension and packing measure were introduced in the early 1980s by Tricot (1982)
and Taylor and Tricot (1985) as dual concepts to Hausdorff dimension and Hausdorff measure.
Since then they have become useful tools in analyzing fractal sets. Packing dimension profile
was introduced by Falconer and Howroyd (1997) for computing the packing dimension of
orthogonal projections. Their definition of packing dimension profiles is based on potential-
theoretic approach. Later Howroyd (2001) defined another packing dimension profile from the
point of view of box-counting dimension. Recently, Khoshnevisan and Xiao (2006) proved that
the packing dimension profiles of Falconer and Howroyd (1997) and Howroyd (2001) are the
same.

For any ε > 0 and any bounded set E ⊂ RN , let N(E, ε) be the smallest number of balls
of radius ε needed to cover E. The upper box-counting dimension of E is defined as

dimBE = lim sup
ε→0

log N(E, ε)
− log ε

and the packing dimension of E is defined as

dimPE = inf
{

sup
n

dimBEn : E ⊂
∞⋃

n=1

En

}
, (2.11)

see Tricot (1982) or Falconer (1990, p.45). It is well known that 0 ≤ dimHE ≤ dimPE ≤
dimBE ≤ N for every set E ⊂ RN .

For a finite Borel measure µ on RN , its packing dimension is defined by

dimPµ = inf{dimPE : µ(E) > 0 and E ⊂ RN is a Borel set}. (2.12)

Falconer and Howroyd (1997) defined the s-dimensional packing dimension profile of µ as

Dimsµ = sup
{

β ≥ 0 : lim inf
r→0

Fµ
s (x, r)
rβ

= 0 for µ-a.a. x ∈ RN

}
, (2.13)

where, for any s > 0, Fµ
s (x, r) is the s-dimensional potential of µ defined by

Fµ
s (x, r) =

∫

RN

min{1, rs ‖y − x‖−s} dµ(y). (2.14)

Falconer and Howroyd (1997) showed that

0 ≤ Dimsµ ≤ s and Dimsµ = dimPµ if s ≥ N, (2.15)

Note that the identity in (2.15) provides the following equivalent characterization of dimPµ in
terms of the potential Fµ

N (x, r):

dimPµ = sup
{

β ≥ 0 : lim inf
r→0

Fµ
N (x, r)

rβ
= 0 for µ-a.a. x ∈ RN

}
. (2.16)

For any Borel set E ⊆ RN , the s-dimensional packing dimension profile of E is defined by

DimsE = sup
{
Dimsµ : µ ∈ M+

c (E)
}

, (2.17)

where M+
c (E) denotes the family of finite Borel measures with compact support in E. It

follows from (2.15) that 0 ≤ DimsE ≤ s and DimsE = dimPE if s ≥ N .
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3 Main result

Now we consider the packing dimensions of the range and graph of an (N, d) Gaussian random
field. The following is our main result.

Theorem 3.1 Let X = {X(t), t ∈ RN} be the Gaussian random field in Rd defined by (1.1).
We assume that the associated random field X0 satisfies Condition (C) and 0 < α∗ ≤ α∗ ≤ 1.
If φ satisfies either one of the following conditions: For any ε > 0 small enough, there exists
a constant K such that either

∫ 1

0

(
φ(a)
φ(ax)

)d

xN−1 dx ≤ K a−ε for all a ∈ (0, 1], (3.1)

or ∫ 1/a

1

(
φ(a)
φ(ax)

)d

xN−1 dx ≤ K a−ε for all a ∈ (0, 1]. (3.2)

Then

dimPX([0, 1]N ) = min
{

d,
N

α∗

}
, a.s. (3.3)

and

dimPGrX
(
[0, 1]N

)
= min

{
N

α∗
, N + (1− α∗)d

}
, a.s. (3.4)

Remark 3.2 The conditions (3.1) and (3.2) correspond to, roughly speaking, whether X hits
points or not. They appeared in Xiao (2007a) for studying respectively the exact Hausdorff
measure of the range and the regularity of local times of X. If φ is regularly varying at the
origin with index α, then (3.1) is satisfied whenever N > αd, and (3.2) is satisfied whenever
N ≤ αd. Thus in the regularly varying case, at least one of these conditions are automatically
satisfied. In general, (3.1) holds if N ≥ α∗d, and (3.2) holds provided N ≤ α∗d. ¤

The proof of Theorem 3.1 will be divided into proving the upper and lower bounds for
dimPX([0, 1]N ) and dimPGrX

(
[0, 1]N

)
separately. The upper bounds are proved by using the

modulus of continuity of X and a covering argument, and the proof of the lower bounds is based
on the potential-theoretic approach to packing dimension [see (2.16)] of finite Borel measures.

We will make use of the following lemmas. Lemma 3.3 is reminiscent to Corollary 2.3
or Theorem 2.10 in Dudley (1973). It can be proved by using the Gaussian isoperimetric
inequality.

Lemma 3.3 Assume the real-valued Gaussian random field X0 = {X0(t), t ∈ RN} satisfies
Conditions (C) and 0 < α∗ ≤ α∗ ≤ 1. Let

ωX0(δ) = sup
t, t + s ∈ [0, 1]N

‖s‖ ≤ δ

|X0(t + s)−X0(t)|

be the uniform modulus of continuity of X0(t) on [0, 1]N . Then there exists a finite constant
K > 0 such that

lim sup
δ→0

ωX0(δ)

φ(δ)
√

log 1
δ

≤ K, a.s. (3.5)
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For any Borel measure µ on RN , the image measure of µ under the mapping t 7→ f(t) is
defined by

(
µ ◦ f−1

)
(B) := µ

{
t ∈ RN : f(t) ∈ B

}
for all Borel sets B ⊂ Rd.

The following lemma was proved in Xiao (1997), which relates dimPf(E) with the packing
dimensions of the images measures.

Lemma 3.4 Let E ⊂ RN be an analytic set. Then for any continuous function f : RN → Rd

dimPf(E) = sup
{
dimP

(
µ ◦ f−1

)
: µ ∈ M+

c (E)
}

. (3.6)

Proof of Theorem 3.1 We first prove the upper bound in (3.3). Since dimPX([0, 1]N ) ≤ d
a.s., it is sufficient to show that dimPX([0, 1]N ) ≤ N/α∗ a.s. For any γ < α∗, Lemma 3.3 implies
that X(t) satisfies almost surely a uniform Hölder condition of order γ on [0, 1]N . Hence a
standard covering argument [cf. Falconer (1990), Kahane (1985)] shows that dimBX([0, 1]N ) ≤
N/γ a.s. This and (2.11) imply dimPX([0, 1]N ) ≤ N/γ a.s. Letting γ ↑ α∗ along the sequence
of rational numbers yields the desired upper bound.

Similarly, by using Lemma 3.3 and a covering argument, we can verify that for any γ < α∗,

dimBGrX
(
[0, 1]N

) ≤ min
{

N

γ
, N + (1− γ)d

}
, a.s.,

which implies the upper bound in (3.4).
Now we proceed to prove the lower bounds in (3.3). Let λN be the Lebesgue measure on

[0, 1]N . By Lemma 3.4, we have dimPX([0, 1]N ) ≥ dimP

(
λN ◦X−1

)
almost surely. Hence it is

sufficient to show that

dimP

(
λN ◦X−1

) ≥ min
{

d,
N

α∗

}
, a.s. (3.7)

For simplicity of notation, we will, from now on, denote the image measure λN ◦X−1 by µX .
Note that, for every fixed s ∈ RN , Fubini’s theorem implies

EF
µ

X
d

(
X(s), r

)
= E

∫

Rd

min
{
1, rd‖v −X(s)‖−d

}
dµX (v)

=
∫

[0,1]N
Emin

{
1, rd‖X(t)−X(s)‖−d

}
dt.

(3.8)

The last integrand in (3.8) can be written as

Emin
{
1, rd‖X(t)−X(s)‖−d

}

= P
{‖X(t)−X(s)‖ ≤ r

}
+ E

{
rd‖X(t)−X(s)‖−d · 1l{‖X(t)−X(s)‖≥r}

}
.

(3.9)

By Condition (C), we obtain that for all s, t ∈ [0, 1]N and r > 0,

P
{‖X(t)−X(s)‖ ≤ r

} ≤ K min
{

1,
rd

φ(‖t− s‖)d

}
. (3.10)
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Denote the distribution of X(t)−X(s) by Γs,t(·). Let ν be the image measure of Γs,t(·) under
the mapping T : z 7→ ‖z‖ from Rd to R+. Then the second term in (3.9) can be written as

∫

Rd

rd

‖z‖d
1l{‖z‖≥r} Γs,t(dz) =

∫ ∞

r

rd

ρd
ν(dρ)

≤ d

∫ ∞

r

rd

ρd+1
P
{‖X(t)−X(s)‖ ≤ ρ

}
dρ,

(3.11)

where the last inequality follows from an integration-by-parts formula.
Hence, by (3.10) and (3.11) we derive that the second term in (3.9) can be bounded by

K rd

∫ ∞

r

1
ρd+1

min
{

1,

(
ρ

φ(‖t− s‖)
)d}

dρ

≤ K

{
1 if r ≥ φ(‖t− s‖),(

r
φ(‖t−s‖)

)d
log

(
φ(‖t−s‖)

r

)
if r < φ(‖t− s‖).

(3.12)

It follows from (3.9), (3.10), (3.11) and (3.12) that for any 0 < ε < 1 and s, t ∈ [0, 1]N ,

Emin
{
1, rd‖X(t)−X(s)‖−d

} ≤ K min
{

1,

(
r

φ(‖t− s‖)
)d−ε}

. (3.13)

Combining (3.8) and (3.13) we derive

EF
µ

X
d

(
X(s), r

) ≤ K

∫

[0,1]N
min

{
1,

(
r

φ(‖t− s‖)
)d−ε}

dt

≤ K

∫ 1

0
min

{
1,

(
r

φ(x)

)d−ε}
xN−1 dx

= K

{ ∫ φ−1(r)

0
xN−1 dx +

∫ 1

φ−1(r)

(
r

φ(x)

)d−ε

xN−1 dx

}

=̂I1 + I2.

(3.14)

In the above, φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse function of φ. It can
be seen that φ−1 is non-decreasing and satisfies φ

(
φ−1(x)

)
= x and limx→0 φ−1(x) = 0.

Clearly, we have I1 = K
[
φ−1(r)

]N
. In order to estimate I2, we distinguish two cases. If φ

satisfies (3.1), then for all r > 0 small enough, we derive

I2 ≤ K rd−ε

∫ 1

0

(
1

φ(x)

)d−ε

xN−1 dx ≤ K rd−ε. (3.15)

On the other hand, if φ satisfies (3.2), then we make a change of variables to derive that for
all r > 0 small enough,

I2 ≤ K rd−ε
[
φ−1(r)

]N
∫ 1/φ−1(r)

1

xN−1

φ
(
φ−1(r)x

)d−ε
dx ≤ K

[
φ−1(r)

]N−ε
. (3.16)
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It follows from the above that for all r > 0 small enough,

EF
µ

X
d

(
X(s), r

) ≤ K
{[

φ−1(r)
]N−ε + rd−ε

}
. (3.17)

Now for any 0 < γ < min
{
d, N/α∗

}
, we choose ε > 0 small such that

γ <
N − 2ε

α∗
and γ < d− ε. (3.18)

By the first inequality in (3.18), we see that there exists a sequence ρn → 0 such that

φ(ρn) ≥ ρ(N−2ε)/γ
n for all integers n ≥ 1. (3.19)

We choose a sequence {rn, n ≥ 1} of positive numbers such that φ−1(rn) = ρn. Then φ(ρn) = rn

and limn→∞ rn = 0.
By Fatou’s lemma and (3.17) we obtain that for every s ∈ [0, 1]N ,

E
(

lim inf
r→0

F
µ

X
d

(
X(s), r

)

rγ

)
≤ K lim inf

n→∞

[
φ−1(rn)

]N−ε + rd−ε
n

rγ
n

≤ K lim inf
n→∞

{
ρN−ε

n

φ(ρn)γ
+ φ(ρn)d−γ−ε

}
= 0.

(3.20)

In deriving the last equality, we have made use of (3.18) and (3.19).
By using Fubini’s theorem again, we see that almost surely,

lim inf
r→0

F
µ

X
d

(
X(s), r

)

rγ
= 0 for λN -a.a. s ∈ RN .

This and (2.16) together imply dimPµX ≥ γ almost surely. Since γ can be arbitrarily close to
min

{
d, N/α∗

}
, we have proved (3.7) and, consequently, the lower bound in (3.3).

Finally, we prove the lower bound in (3.4). Denote by νX the image measure of λN under
the mapping t 7→ (t,X(t)). Then νX is a Borel probability measure on RN+d with support in
GrX

(
[0, 1]N

)
. Because of Lemma 3.4, it is sufficient to show that for all γ satisfying

0 < γ < min
{

N

α∗
, N + (1− α∗)d

}
, (3.21)

we have dimPνX ≥ γ almost surely.
For this purpose, let us fix an s ∈ [0, 1]N and consider

EF
ν

X
d+N

((
s,X(s)

)
, r

)
=

∫

[0,1]N
Emin

{
1,

rd+N

(‖t− s‖+ ‖X(t)−X(s)‖)d+N

}
dt. (3.22)

We split the last integral over the regions {t ∈ [0, 1]N : ‖t− s‖ ≤ r} and {t ∈ [0, 1]N : ‖t− s‖ >
r}. Then, in the first region, we can bound the integrand in (3.22) as follows:

Emin
{

1,
rd+N

(‖t− s‖+ ‖X(t)−X(s)‖)d+N

}
≤ P

{
‖X(t)−X(s)‖ ≤ r

}

+ E
(

rd+N

(‖t− s‖+ ‖X(t)−X(s)‖)d+N
1l{‖X(t)−X(s)‖>r}

)
.

(3.23)
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The first term is bounded in (3.10). Some simple computation shows that the second term
in (3.23) is bounded from above by K min

{
1,

(
r

φ(‖t−s‖)
)d}. Hence for all t ∈ [0, 1]N with

‖t− s‖ ≤ r,

Emin
{

1,
rd+N

(‖t− s‖+ ‖X(t)−X(s)‖)d+N

}
≤ K min

{
1,

(
r

φ(‖t− s‖)
)d}

. (3.24)

On the region {t ∈ [0, 1]N : ‖t− s‖ > r} we have

Emin
{

1,
rd+N

(‖t− s‖+ ‖X(t)−X(s)‖)d+N

}
= E

(
rd+N

(‖t− s‖+ ‖X(t)−X(s)‖)d+N

)

≤ K
rd+N

‖t− s‖Nφ(‖t− s‖)d
,

(3.25)

where, in deriving the last inequality, we have used the following verifiable fact: If Ξ is a
standard normal vector in Rd and a ∈ R, then for all β > d,

E
[

1
(
a2 + ‖Ξ‖2

)β/2

]
≤ K a−(β−d).

See, e.g. Kahane (1985, p.279).
Combining (3.22), (3.24), (3.25) and making a change of variables, we obtain

EF
ν

X
d+N

((
s,X(s)

)
, r

)
≤ K

∫ r

0
min

{
1,

(
r

φ(x)

)d}
xN−1 dx + K rd+N

∫ 1

r

dx

xφ(x)d

=̂J1 + J2.

(3.26)

In order to bound J1, once again we distinguish the two cases separately. If (3.1) holds,
then similar to (3.15) we can verify that for ε > 0 and r > 0 small,

J1 ≤ K
[
φ−1(r)

]N + K
rd+N

φ(r)d

∫ 1

0

(
φ(r)
φ(rx)

)d

xN−1 dx

≤ K

([
φ−1(r)

]N +
rd+N−ε

φ(r)d

)
.

(3.27)

On the other hand, if (3.2) holds, then we make a change of variables to get

J1 ≤ K
[
φ−1(r)

]N
∫ 1/φ−1(r)

1

(
φ
(
φ−1(r)

)

φ
(
φ−1(r)x

)
)d

xN−1 dx ≤ K
[
φ−1(r)

]N−ε
. (3.28)

Next, we note that φ is non-decreasing and this yields

J2 = K rd+N

∫ 1

r

dx

xφ(x)d
≤ K rd+N log 1/r

φ(r)d
. (3.29)

Combining (3.26)–(3.29), we obtain

EF
ν

X
d+N

((
s, X(s)

)
, r

)
≤ K

([
φ−1(r)

]N−ε +
rd+N−ε

φ(r)d

)
. (3.30)
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Because of (3.30), we can use the same argument as in the proof of (3.7) to show that, for
all γ satisfying (3.21), the following holds almost surely:

lim inf
r→0

F
ν

X
d+N

(
(s,X(s)), r

)

rγ
= 0 for λN -a.a. s ∈ RN .

Hence we have dimPνX ≥ γ almost surely. This finishes the proof of Theorem 3.1. ¤

We conclude this paper with some comments and open questions.

Remark 3.5 In general, the problems of determining the Hausdorff and packing dimensions of
X(E), where E ⊆ RN is a Borel set, remain open. It seems possible to establish a zero-one law
for the β-dimensional Hausdorff and packing measures of X(E) and prove that there exist two
constants c1(E, X) and c2(E, X) such that dimHX(E) = c1(E, X) and dimPX(E) = c2(E,X)
almost surely. It is more difficult to identify the constants c1(E,X) and c2(E, X), which
may require more information on the geometry of E than its packing dimension or Hausdorff
dimension. In this regard, the results of Khoshnevisan and Xiao (2005) for Lévy processes may
be instructive. ¤

Remark 3.6 In this paper we have only considered Gaussian random fields which are ap-
proximately isotropic in both time and space-variables. It would be interesting to determine
the packing dimensions of the range and graph of anisotropic Gaussian random fields [cf.
Xiao (2007b)]. Since the packing dimension profiles of Falconer and Howroyd (1997) relies on
isotropy, new geometric tools will have to be developed. These problems are currently under
investigation and will appear elsewhere. ¤

Remark 3.7 As we mentioned in the Introduction, a general Gaussian random field X0 =
{X0(t), t ∈ RN} satisfying Condition (C) with different upper and lower indices may exhibit
non-trivial multifractal structures. I believe that almost surely the local regularity of X0(t) is
determined by the asymptotic properties of φ at 0, for all t ∈ RN . Since φ(r) oscillates between
two power functions as r → 0, it would be more appropriate to introduce the notion of upper
and lower local Hölder exponents for X0 and to determine the corresponding singularity spectra.
The second question is to determine the Hausdorff and packing dimensions of the set of λ-fast
points defined by

F (λ) =



t ∈ [0, 1]N : lim sup

‖h‖→0

|X0(t + h)−X0(t)|
φ(‖h‖)

√
log

(
1/‖h‖)

≥ λ





at least for a subclass of Gaussian random fields with stationary increments and different upper
and lower indices. It may be possible to modify and extend the general results in Khoshnevisan,
Peres and Xiao (2000) on limsup random fractals to solve this problem.

Finally, we remark that Seuret (2008a, 2008b) has recently characterized an interesting
class of continuous multifractal functions, each of which is the composition of a monofractal
(such as a fractional Brownian motion) with a time subordination. In light of this work, it
would be interesting, even in the special case of N = 1, to study the multifractal structure of
functions obtained by composing a general Gaussian process X0 with a time subordination. ¤
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