
PACKING DIMENSION OF THE RANGE OF A LÉVY PROCESS

DAVAR KHOSHNEVISAN AND YIMIN XIAO

Abstract. Let {X(t)}t≥0 denote a Lévy process in Rd with exponent Ψ.
Taylor (1986) proved that the packing dimension of the range X([0 , 1]) is
given by the index

(0.1) γ′ = sup

�
α ≥ 0 : lim inf

r→0+

Z 1

0

P {|X(t)| ≤ r}
rα

dt = 0

�
.

We provide an alternative formulation of γ′ in terms of the Lévy exponent
Ψ. Our formulation, as well as methods, are Fourier-analytic, and rely on
the properties of the Cauchy transform. We show, through examples, some
applications of our formula.

1. Introduction

Let X := {X(t)}t≥0 denote a d-dimensional Lévy process (Bertoin, 1998; Sato,
1999) which starts at the origin. Define Ψ to be the Lévy exponent of X, normalized
so that E[exp(iz · X(t))] = exp(−tΨ(z)) for all t ≥ 0 and z ∈ Rd, and let dimP

denote the packing dimension (Tricot, 1982; Sullivan, 1984). S. J. Taylor (1986)
has proved that with probability one, dimP X([0 , 1]) = γ′, where γ′ is the index of
Hendricks (1983); see (0.1).

Usually, one defines a Lévy process by constructing its Lévy exponent Ψ. From
this perspective, formula (0.1) is difficult to apply in concrete settings. Primarily
this is because the small-r behavior of

∫ 1

0
P{|X(t)| ≤ r} dt is only well-understood

when X is a nice Lévy process. For instance, when X is a subordinator γ′ can be
shown to be equal to the Blumenthal and Getoor (1961) upper index β (Fristedt and
Taylor, 1992; Bertoin, 1999); see also Theorem 3.3 below. When X is a general Lévy
process Pruitt and Taylor (1996) find several quantitative relationships between γ′

and other known fractal indices of Lévy processes.
The principle goal of this article is to describe γ′ = dimP X([0 , 1]) more explicitly

than (0.1), and solely in terms of the Lévy exponent Ψ. For all r > 0 define

(1.1) W (r) :=
∫

Rd

κ(x/r)∏d
j=1(1 + x2

j )
dx,

where κ is the following well-known function (Orey, 1967; Kesten, 1969):

(1.2) κ(z) := Re
(

1
1 + Ψ(z)

)
for all z ∈ Rd.
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2 KHOSHNEVISAN AND XIAO

This function is symmetric (i.e., κ(−z) = κ(z) for all z ∈ Rd) and satisfies the
pointwise bounds 0 ≤ κ ≤ 1, which we use tacitly throughout. The following
contains our formula for γ′.

Theorem 1.1. For all d-dimensional Lévy processes X,

(1.3) dimP X([0 , 1]) = sup
{

α ≥ 0 : lim inf
r→0+

W (r)
rα

= 0
}

= lim sup
r→0+

log W (r)
log r

,

almost surely, where sup∅ := 0.

Xiao (2004, Question 4.16) has asked if we can write dimP X([0 , 1]) explicitly in
terms of Ψ. Theorem 1.1 answers this question in the affirmative.

The following is one of the many consequences of Theorem 1.1.

Theorem 1.2. Let X be a d-dimensional Lévy process that has a non-trivial, non-
degenerate Gaussian part. That is, X = G + Y , where G is a non-degenerate
Gaussian Lévy process, and Y is an independent pure-jump Lévy process. Then,
dimP X([0 , 1]) = dimP G([0 , 1]) and dimH X([0 , 1]) = dimH G([0 , 1]) a.s., where
dimH denotes the Hausdorff dimension.

We do not know of a direct proof of this result, although it is a very natural
statement. However, some care is needed as the result can fail when G is degenerate
(Example 4.1). Our methods will make clear that in general we can say only that
dim X([0 , 1]) ≥ dim G([0 , 1]) a.s., where “dim” stands for either “dimP” or “dimH .”

We also mention the following ready consequence of Theorem 1.1:

Corollary 1.3. Let X be a Lévy process in Rd and X ′(t) := X(t)−X ′′(t), where
X ′′ is an independent copy of X. Then, dimP X([0 , 1]) ≥ dimP X ′([0 , 1]) a.s.

It has been shown that Corollary 1.3 continues to hold if we replace dimP by
dimH everywhere; see Khoshnevisan, Xiao, and Zhong (2003) and/or (1.4) below.
Thus we have further confirmation of the somewhat heuristic observation of Kesten
(1969, p. 7) that the range of X is larger than the range of its symmetrization.

Theorem 1.1 is proved in Section 2. Our proof also yields the following almost-
sure formula for the Hausdorff dimension of X([0, 1]):

(1.4) dimH X([0 , 1]) = sup
{

α ≥ 0 : lim sup
r→0+

W (r)
rα

= 0
}

= lim inf
r→0+

log W (r)
log r

;

see Remark 2.4. Recently, Khoshnevisan, Xiao, and Zhong (2003) established an
equivalent formulation of this formula. Whereas their derivation is long and compli-
cated, ours is direct and fairly elementary. Section 3 contains non-trivial examples
wherein we compute dimP X([0 , 1]) for anisotropic Lévy processes X. Finally, The-
orem 1.2 is proved in Section 4.

Acknowledgement. We thank the anonymous referee for his/her careful reading,
and for making suggestions which improved the exposition of this paper.

2. The Incomplete Renewal Measure

Define U to be the incomplete renewal measure of X. That is, for all Borel sets
A ⊂ Rd,

(2.1) U(A) :=
∫ 1

0

P{X(t) ∈ A} dt.
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We may deduce from (0.1) that

(2.2) dimP X([0 , 1]) = lim sup
r→0+

log U(B(0 , r))
log r

,

where B(a , r) := {z ∈ Rd : |z − a| ≤ r} for all a ∈ Rd and r ≥ 0 so that∫ 1

0
P{|X(t)| ≤ r} dt = U(B(0, r)), and where |y| := max1≤j≤d |yj | is the `∞-norm

of y ∈ Rd.
Let ζ denote an independent, mean-one exponential random variable. The killed

occupation measure of B(0 , r) can then be defined by

(2.3) T (r) :=
∫ ζ

0

1B(0,r)(X(t)) dt ∀ r > 0,

where 1A denotes the indicator function of A.

Proposition 2.1. For all r > 0,

(2.4)
e

4d(e− 1)
E[T (r)] ≤ U(B(0 , r)) ≤ e E[T (r)].

In order to prove this we first recall the notion of weak unimodality (Khosh-
nevisan and Xiao, 2003).

Definition 2.2. A Borel measure µ on Rd is c-weakly unimodal if c > 0 is a
constant that satisfies supa∈Rd µ(B(a , r)) ≤ cµ(B(0 , r)) for all r > 0.

The following is a variant of Lemma 4.1 of Khoshnevisan and Xiao (2003).

Lemma 2.3. U is 4d-weakly unimodal.

Proof. Let us fix a ∈ Rd and r > 0, and define σ := inf{s > 0 : |X(s) − a| ≤ r},
where inf ∅ := ∞. Clearly, σ is a stopping time, and

(2.5) U(B(a , r)) = E
[∫ 1

σ

1B(a,r)(X(s)) ds ; σ ≤ 1
]

.

Thanks to the triangle inequality, the strong Markov property implies that

U
(
B(a , r)

)
= E

[∫ (1−σ)+

0

1B(0,r)(X(u + σ)− a) du

]

≤ E
[∫ 1

0

1B(0,2r)(X(u + σ)−X(σ)) du

]
= U

(
B(0 , 2r)

)
.

(2.6)

Euclidean topology in the `∞-norm dictates that there are points z1, . . . , z4d ∈
B(0 , 2r) that have the property that ∪4d

i=1B(zi , r/2) = B(0 , 2r). According to
(2.6), we have the following “volume doubling” property:

(2.7) U(B(0 , 2r)) ≤
4d∑

i=1

U(B(zi , r/2)) ≤ 4d U(B(0 , r)).

The desired result follows from this and (2.6). ¤

Proof of Proposition 2.1. Note that

(2.8) U(B(0 , r)) ≤ e

∫ 1

0

P{|X(t)| ≤ r} e−t dt ≤ e E[T (r)].
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This proves the upper bound in (2.4). To prove the other half we note that

(2.9) E[T (r)] =
∫ ∞

0

P{|X(t)| ≤ r} e−t dt ≤
∞∑

j=0

e−j E[U(B(X(j) , r))],

thanks to the Markov property. By Lemma 2.3, E[U(B(X(j) , r))] ≤ 4dU(B(0 , r))
for every j ≥ 0. The lower bound in (2.4) follows from this and (2.9). ¤
Proof of Theorem 1.1. We derive only the second identity of (1.3); the first is man-
ifestly an equivalent statement.

Let (Ff)(z) :=
∫
Rd eiz·xf(x) dx denote the Fourier transform of f ∈ L1(Rd).

For all fixed r > 0 and x ∈ Rd define

(2.10) φr(x) =
d∏

j=1

1− cos(2rxj)
2πrx2

j

.

Then φr(x) ≥ 0, and (Fφr)(z) =
∏d

j=1(1 − |zj |/(2r))+ for all z ∈ Rd (Durrett,
1996, p. 94). As usual, a+ := max(a , 0) for all a ∈ R. Evidently, φr ∈ L1(Rd),
and 0 ≤ Fφr ≤ 1 pointwise.

Note that z ∈ B(0 , r) implies that 1 − (2r)−1|zj | ≥ 1
2 . This implies that

1B(0, r)(z) ≤ 2d (Fφr)(z) for all z ∈ Rd. Therefore, by the Fubini–Tonelli the-
orem,

(2.11) E[T (r)] ≤ 2d

∫

Rd

κ(x)φr(x) dx ≤ 2dW (r).

The last inequality follows from the elementary bound

(2.12)
1− cos(2u)

2πu2
≤ 1

1 + u2
for all u ∈ R.

This can be verified by considering |u| ≤ (π−1)−1/2 and |u| > (π−1)−1/2 separately.
Thanks to (2.2) and Proposition 2.1,

(2.13) dimP X([0 , 1]) ≥ lim sup
r→0+

log W (r)
log r

a.s.

In order to establish the converse inequality we introduce the process {S(t)}t≥0

defined by S(t) := (S1(t) , . . . , Sd(t)), where S1, . . . , Sd are independent symmetric
Cauchy processes in R, all with the same characteristic function E[eizS1(t)] = e−t|z|.
We assume further that S is independent of X. Then for all λ > 0, E

[
exp{iX(t) ·

S(λ)}] = E
[
exp{−λ

∑d
j=1 |Xj(t)|}

]
. On the other hand, the scaling property of S

implies

(2.14) E
[
eiX(t)·S(λ)

]
= E

[
e−tΨ(S(λ))

]
=

1
πd

∫

Rd

e−tΨ(λx)

∏d
j=1(1 + x2

j )
dx.

For all r, k > 0 and x ∈ Rd, exp{−(k/r)
∑d

j=1 |xj |} ≤ 1B(0,r)(x) + e−k1B(0,r)c(x).
Therefore, 1B(0,r)(x) ≥ E[exp{ix · S(k/r)}]− e−k1B(0,r)c(x), whence

(2.15) E[T (r)] ≥
∫ ∞

0

E
[
eiX(t)·S(k/r)

]
e−t dt− e−k(1− E[T (r)]).

This and (2.14) together with the fact that the quantity in (2.14) imply that

(2.16) (1− e−k)E[T (r)] ≥ −e−k +
1
πd

W
( r

k

)
.
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Now we choose k = r−ε, for an arbitrary small ε > 0, to find that the inequality in
(2.13) is an equality. This completes our proof. ¤

Remark 2.4. From the proof of Theorem 1.1 we see that E[T (r)] and W (r) are
roughly comparable; i.e., for all ε, r > 0 sufficiently small,

(2.17)
1
πd

W (r1+ε)− exp(−r−ε) ≤ E[T (r)] ≤ 2dW (r).

Thanks to Proposition 2.1 this yields (1.4).

3. Some Examples

We illustrate the utility of Theorem 1.1 by specializing it to a large class of
examples.

3.1. Anisotropic Examples. It is possible to construct examples of anisotropic
Lévy “stable-like” processes whose dimP X([0 , 1]) are computable. The following
furnishes most of the basic technical background that we shall need.

Theorem 3.1. Let X be a Lévy process in Rd with Lévy exponent Ψ. Suppose
there exist constants β1, . . . , βd such that

(3.1) 2 ≥ β1 ≥ · · · ≥ βd > 0 and lim
‖z‖→∞

1
ln ‖z‖ lnRe

(∑d
j=1 |zj |βj

1 + Ψ(z)

)
= 0.

In the above, ‖z‖ denotes the `2-norm of z ∈ Rd. If N := max{1 ≤ j ≤ d : βj =
β1}, then almost surely,

(3.2) dimP X([0 , 1]) =





β1, if β1 ≤ N,

1 + β2

(
1− 1

β1

)
, otherwise.

Proof. Throughout this proof we write c and C for generic constants whose values
can change between lines. In order to simplify the exposition somewhat, we note
that it is sufficient to prove (3.2) under the following [slightly] stronger form of
(3.1):

(3.3)
c

1 +
∑d

j=1 |zj |βj

≤ Re
(

1
1 + Ψ(z)

)
≤ C

1 +
∑d

j=1 |zj |βj

for all z ∈ Rd.

First we consider the case when β1 ≤ N . Condition (3.3) implies that if r ∈
(0 , 1), then

(3.4) W (r) ≥ c rβ1

∫

Rd

dx

(1 +
∑d

j=1 |xj |βj )
∏d

j=1(1 + x2
j )

= C rβ1 .

Hence we have limr→0 r−αW (r) = ∞ for all α > β1. It follows from this and
Theorem 1.1 that dimP X([0 , 1]) ≤ β1 a.s.

Recall that N := max{1 ≤ j ≤ d : βj = β1}. From this it follows that

W (r) ≤ c

∫

RN

dx(
1 + ‖x/r‖β1

) ∏N
j=1

(
1 + x2

j

)

= c rβ1

[∫

‖x‖≤1

dx

rβ1 + ‖x‖β1
+ C

]
≤ c rβ1 log(1/r).

(3.5)
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In the above, log(1/r) accounts for the case that β1 = N . The preceding bound
implies that limr→0 r−αW (r) = 0 for every α < β1. This leads to the lower bound,
dimP X([0 , 1]) ≥ β1 a.s.

Next we consider the case when β1 > N . This implies N = 1 and β1 > β2. In
order to prove that dimP X([0 , 1]) ≤ 1 + β2(1 − β−1

1 ) a.s. we first derive a lower
bound for W (r). We do this by restricting the integral to the domain D := {x ∈
Rd : |xj | ≤ 1 for 3 ≤ j ≤ d}. More precisely, by (3.3) we have

W (r) ≥ c

∫

D

dx(
1 +

∑d
j=1 |xj/r|βj

) ∏d
j=1

(
1 + x2

j

)

≥ c

∫

D

dx(
1 +

∑d
j=1 |xj/r|βj

) ∏2
j=1

(
1 + x2

j

) .

(3.6)

Let (x3 , . . . , xd) ∈ [−1 , 1]d−2 be fixed and let A := 1 +
∑d

j=3 |xj/r|βj . Consider

I :=
∫

R2

dx1 dx2

(A + |x1/r|β1 + |x2/r|β2)
∏2

j=1(1 + x2
j )

≥ rβ2

∫ ∞

r1−(β2/β1)
dx1

∫ ∞

0

dx2

(rβ2A + rβ2−β1xβ1
1 + xβ2

2 )
∏2

j=1(1 + x2
j )

.

(3.7)

Observe that rβ2−β1xβ1
1 ≥ 1 for all x1 ≥ r1−(β2/β1). On the other hand, rβ2A ≤ d−1

for all r ∈ (0 , 1). It follows from these facts, and a change of variables, that

I ≥ c rβ2

∫ ∞

r1−(β2/β1)

dx1

1 + x2
1

∫ ∞

1

1(
rβ2−β1xβ1

1 + xβ2
2

)
x2

2

dx2

≥ c rβ2

∫ ∞

r1−(β2/β1)

dx1

1 + x2
1

· 1

rβ2−β1xβ1
1

≥ C rβ1

∫ 1

r1−(β2/β1)

dx1

xβ1
1

≥ c r1+β2(1−β−1
1 ).

(3.8)

Combine this with (3.6) and (3.7) to deduce that W (r) ≥ c r1+β2(1−β−1
1 ) for all

r ∈ (0 , 1), whence limr→0+ r−αW (r) = ∞ for all α > 1+β2(1−β−1
1 ). This implies

that dimP X([0 , 1]) ≤ 1 + β2(1− β−1
1 ) a.s.

Now we derive the lower bound for dimP X([0 , 1]). It follows from (3.3) that

W (r) ≤ c

∫

R2

dx1 dx2(
1 + |x1/r|β1 + |x2/r|β2

) ∏2
j=1

(
1 + x2

j

)

= 4c rβ2

∫ ∞

0

dx1

1 + x2
1

∫ ∞

0

dx2(
B + xβ2

2

)(
1 + x2

2

) ,

(3.9)

where B := rβ2 + rβ2−β1xβ1
1 . It remains to verify that the last expression in (3.9) is

at most c r1+β2(1−β−1
1 ) log(1/r), where log(1/r) appears because of the possibility

that β2 = 1.
By breaking the dx2-integral according to whether |x2| ≤ 1 or |x2| > 1, and after

a change of variables, we can verify the following elementary inequalities:

(i) If B ≤ 1, then
∫∞
0

(B + xβ2
2 )−1(1 + x2

2)
−1 dx2 ≤ cg(x1), where: g(x1) = 1

if β2 < 1, log(B−1) if β2 = 1, and B(1/β2)−1 if β2 < 1.
(ii) If B > 1, then

∫∞
0

(B + xβ2
2 )−1(1 + x2

2)
−1 dx2 ≤ c/B.



PACKING DIMENSION OF THE RANGE OF A LÉVY PROCESS 7

We return to (3.9) and split the dx1-integral respectively over the intervals {x1 :
B ≤ 1} and {x1 : B > 1}. It follows from (3.9), (i) and (ii), and a direct com-
putation, that W (r) ≤ cr1+β2(1−β−1

1 ) log(1/r). Hence, Theorem 1.1 implies that
dimP X([0 , 1]) ≥ 1 + β2(1− β−1

1 ) a.s. This finishes the proof Theorem 3.1. ¤

In the following, we apply Theorem 3.1 to operator-stable Lévy processes in
Rd with d ≥ 2. Let us first recall from Sharpe (1969) that a non-degenerate
distribution µ on Rd is called operator-stable if there exist sequences of independent
identically distributed random vectors {Xn} in Rd, nonsingular linear operators
{An}, and vectors {an} in Rd such that {An

∑n
k=1 Xk − an} converges in law to

µ. A distribution µ on Rd is called full if it is not supported on any (d − 1)-
dimensional hyper-plane. Sharpe (1969) proves that a full distribution µ in Rd

is operator-stable if and only if there exists a non-singular linear operator B on
Rd such that µt = tBµ ∗ δ(b(t)) for all t > 0 and some b(t) ∈ Rd. Here, µt

denotes the t-fold convolution power of µ, and tBµ(dx) := µ(t−Bdx) is the image
measure of µ under the action of the linear operator tB :=

∑∞
n=0(log t)nBn/n!.

In the above, B and {b(t), t > 0} are called a stability exponent and the family
of shifts of µ, respectively. The set of all possible exponents of an operator-stable
law is characterized by Holmes et al. (1982); see also Meerschaert and Scheffler
(2001, Theorem 7.2.11). By analogy with the one-dimensional case, an operator-
stable distribution µ satisfying µt = tBµ will be called strictly operator-stable; see
Sharpe (1969, p. 64).

A stochastic process Y := {Y (t)}t∈R+ with values in Rd is said to be operator
self-similar if there exists a linear operator B on Rd such that for every c > 0,
{Y (ct)}t≥0

d= {cB Y (t)}t≥0, where “ d=” denotes the equality of finite-dimensional
distributions. The linear operator B is called a self-similarity exponent of Y . Let
X = {X(t)}t≥0 be a Lévy process in Rd starting from 0 such that the distribution
of X(t) is full for every t > 0. Hudson and Mason (1982, Theorem 7) proved that
X is operator self-similar if and only if the distribution of X(1), ν := P ◦ (X(1))−1,
is strictly operator-stable. In this case, every stability exponent B of ν is also a
self-similarity exponent of X. Hence, from now on we will call a Lévy process X in
Rd operator-stable if the distribution of X(1) is full and strictly operator-stable;
and refer to B simply as an exponent of X.

Operator-stable Lévy processes are scaling limits of d-dimensional random walks
that are normalized by linear operators (Meerschaert and Scheffler, 2001, Chapter
11). All d-dimensional strictly stable Lévy processes of index α are operator-stable
with exponent B := α−1I, where I denotes the (d× d) identity matrix.

More generally, let X1, . . . , Xd be independent stable Lévy processes in R with
respective indices α1, . . . , αd ∈ (0 , 2]. Define X(t) := (X1(t) , . . . , Xd(t)). One
can then verify that X is an operator-stable Lévy process whose exponent B is
the (d × d) diagonal matrix diag(α−1

1 , α−1
2 , . . . , α−1

d ). These processes were first
introduced by Pruitt and Taylor (1969) under the title of Lévy processes with stable
components. These processes have been used to construct various counterexamples
(Hendricks, 1983).

Let X be an operator-stable Lévy process in Rd with exponent B. Factor the
minimal polynomial of B into q1(x) , · · · , qp(x) where all roots of qi(x) have real
part ai, and ai < aj for i < j. Define αi := a−1

i , so that α1 > · · · > αp, and
note that 0 < αi ≤ 2 (Meerschaert and Scheffler, 2001, Theorem 7.2.1). Define
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Vi := Ker(qi(B)) and di := dim(Vi). Then d1 + · · · + dp = d, and V1 ⊕ · · · ⊕ Vp is
a direct-sum decomposition of Rd into B-invariant subspaces. We may write B as
B = B1⊕· · ·⊕Bp, where Bi : Vi → Vi and every eigenvalue λ of Bi has the property
that Re λ = ai. We can apply Theorem 3.1 for operator-stable Lévy processes to
obtain a wholly different proof of the following theorem of Meerschaert and Xiao
(2005, Theorem 3.2).

Theorem 3.2 (Meerschaert and Xiao (2005)). Let X be an operator-stable Lévy
process in Rd as described above. Then almost surely,

(3.10) dimP X([0 , 1]) =





α1 if α1 ≤ d1,

1 + α2

(
1− 1

α1

)
otherwise.

Proof. Define βj := α` where ` is determined by
∑`−1

i=0 di < j ≤ ∑`
i=`−1 di, and

d0 := 0. Because Meerschaert and Xiao (2005) have established (3.1), Theorem 3.1
implies (3.10) with N := d1. ¤

3.2. Subordinators. Let us consider the special case that X is a [non-negative]
subordinator. We conclude this article by showing that our Theorem 1.1 includes
the well known formula for dimP X([0 , 1]); see Fristedt and Taylor (1992) and
Bertoin (1999, §5.1.2). Let Φ denote the Laplace exponent of X, normalized so that
E[exp(−λX(t))] = exp(−tΦ(λ)) for all λ, t ≥ 0. The following is an immediately
consequence of Theorem 1.1.

Theorem 3.3 (Fristedt and Taylor (1992); Bertoin (1999)). With probability one,

(3.11) dimP X([0 , 1]) = lim sup
λ→∞

log Φ(λ)
log λ

.

Proof. Let S = {S(t)}t≥0 denote an independent Cauchy process in R such that
E[exp(iξS(t))] = exp(−t|ξ|) for all t ≥ 0 and ξ ∈ R. Then,

(3.12) e−tΦ(λ) = E
[
e−λX(t)

]
= E

[
eiX(t)S(λ)

]
=

1
π

∫ ∞

−∞

e−tΨ(λz)

1 + z2
dz.

Multiply both sides by e−t and integrate [dt] to find that

(3.13)
1

1 + Φ(λ)
=

1
π

W
( 1
λ

)
.

A direct appeal to Theorem 1.1 finishes the proof. ¤

4. Proof of Theorem 1.2

Throughout, ‖x‖ := (x2
1 + · · ·+ x2

d)
1/2 for all x ∈ Rd. This is the usual `2-norm

on Rd, and should not be confused with the `∞-norm |x| = max1≤j≤d |xj | that we
have used so far.

Because of the Lévy–Khintchine formula (Bertoin, 1998), we can write X as
X = G + Y , where G is a Gaussian Lévy process and Y is an independent pure-
jump Lévy process. Thanks to the centered-ball inequality of Anderson (1955),
a 7→ P{|G(t)− a| ≤ r} is maximized at the origin. Apply this, conditionally on Y ,
to find that

(4.1) P{|X(t)| ≤ r} ≤ P{|G(t)| ≤ r} for all t, r > 0.
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It follows from (0.1) and (2.2) that dimP G([0 , 1]) ≤ dimP X([0 , 1]) a.s. The anal-
ogous bound for dimH follows from this and the formula of Pruitt (1969).

In order to prove the converse bound we appeal to Theorem 1.1. Recall that

(4.2) ΨX(z) = O(‖z‖2) as ‖z‖ → ∞.

(Bochner, 1955, eq. (3.4.14), p. 67). The subscript X refers to the process X, the
subscript G to the process G, etc. Therefore, there exists a constant C such that

(4.3) κX(z) ≥ C

1 + ‖z‖2 for all z ∈ Rd.

The non-degeneracy of G implies that ‖z‖−2ΨG(z) is bounded below uniformly for
all z ∈ Rd. Because ReΨY (z) ≥ 0, it follows that there exists a constant c such
that κX(z) ≥ cκY (z) for all z ∈ Rd. Therefore, WX(r) ≥ cWG(r), and Theorem
1.1 shows that dimP X([0 , 1]) ≤ dimP G([0 , 1]) a.s. The analogous bounds for dimH

follows from (1.4), Remark 2.4 and Proposition 2.1. This completes the proof. ¤

We conclude this section by mentioning a simple example wherein Theorem 1.2
fails because G is degenerate.

Example 4.1. Let Y be an isotropic stable Lévy process in R2 with index α ∈
(1 , 2]. Let G1 be an independent one-dimensional Brownian motion, and define
G(t) := (G1(t) , 0). Then, X := G + Y has the form of the process in Theorem 1.2,
but now G is degenerate. Direct calculations show that ΨY (z) = c‖z‖α for some
c > 0, and ΨG(z) = c′z2

1 for some c′ > 0. It follows readily from this discussion
that ΨX(z) = c‖z‖α + c′z2

1 , whence it follows that

(4.4)
A1

|z1|2 + |z2|α ≤ κX(z) ≤ A2

|z1|2 + |z2|α for all z := (z1 , z2) ∈ R2,

where A1 and A2 are universal constants. Theorem 3.1 implies that with probability
one, dimP X([0 , 1]) = 1 + α(1 − 1

2 ) = 1 + (α/2). On the other hand, according to
Theorem 1.1, with probability one dimP Y ([0 , 1]) = α, whereas dimP G([0 , 1]) = 1.
Therefore, if α ∈ (1 , 2) then dimP X([0 , 1]) is almost surely strictly greater than
both dimP Y ([0 , 1]) and dimP G([0 , 1]).

Despite the preceding, it is not always necessary that G is non-degenerate, viz.,

Example 4.2. Let Y := {Y (t)}t∈R+ be a Lévy process in Rd with characteristic
exponent Ψ(ξ) = ‖ξ‖2L(ξ), where L : Rd → C is slowly varying at infinity. Such
exponents can be constructed via the Lévy–Khintchine formula. For any Gaussian
process G := {G(t)}t∈R+ in Rd define X := Y + G. It follows from Theorem 3.1
that dimP X([0 , 1]) = dimP Y ([0 , 1]) = min(2 , d) almost surely.
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