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WEAK UNIMODALITY OF FINITE MEASURES,
AND AN APPLICATION TO POTENTIAL THEORY

OF ADDITIVE LÉVY PROCESSES

DAVAR KHOSHNEVISAN AND YIMIN XIAO

(Communicated by Claudia M. Neuhauser)

Abstract. A probability measure µ on Rd is called weakly unimodal if there
exists a constant κ ≥ 1 such that for all r > 0,

(0.1) sup
a∈Rd

µ(B(a, r)) ≤ κµ(B(0, r)).

Here, B(a, r) denotes the `∞-ball centered at a ∈ Rd with radius r > 0.
In this note, we derive a sufficient condition for weak unimodality of a mea-

sure on the Borel subsets of Rd. In particular, we use this to prove that every
symmetric infinitely divisible distribution is weakly unimodal. This result is
then applied to improve some recent results of the authors on capacities and
level sets of additive Lévy processes.

1. Introduction

For any integer k ≥ 1 and any x ∈ Rk, let |x| = max1≤`≤k |x`| and ‖x‖ =
(
∑k

`=1 x
2
` )

1
2 denote the `∞ and `2 norms on Rk, respectively. Moreover, B(x, r) =

{y ∈ Rd : |x− y| ≤ r} stands for the closed r-ball about x ∈ Rd, while (Rd,B(Rd))
denotes the usual d-dimensional Euclidean space, together with its Borel σ-algebra.

Given a measure µ on (Rd,B(Rd)), we say that µ is κ-weakly unimodal if there
exists a positive constant κ ≥ 1 such that for all r > 0, (0.1) holds, the point being
that κ can be chosen independently of r > 0. In this note, we use Fourier analytical
methods to derive a general criterion for the weak unimodality of measures on
(Rd,B(Rd)).

Our intended application is to the potential theory of additive Lévy processes,
as described by Khoshnevisan and Xiao [4]. An additive Lévy process X in
Rd is an N -parameter stochastic process X = {X(t); t ∈ RN+} that has the form
X(t) =

∑N
j=1 Xj(tj), whereX1, . . . , XN are independent Lévy processes with values

in Rd. Using the notation of Khoshnevisan and Xiao [4], we write X = X1⊕· · ·⊕
XN . We refer to Bertoin [2] and Sato [7] for definitions and properties of Lévy
processes, infinitely divisible distributions and self-decomposable distributions.
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Following Khoshnevisan and Xiao [4], we say that an additive Lévy process
X is κ-weakly unimodal if there exists one κ, such that the distribution of the
random vector X(t) is κ-weakly unimodal for every t ∈ RN+\∂RN+ . If and when this
is so, we say that the process X is weakly unimodal. In Khoshnevisan and Xiao

[4], we applied the various results of Anderson [1], Kanter [3], Medgyessy [5],
Sato [6], Wolfe [8], [9], [10], and Yamazato [11] to obtain various sufficient
conditions for X to be weakly unimodal. For example, we showed that if for every
t ∈ RN+\∂RN+ , the distribution of X(t) is symmetric and self-decomposable, then
X is weakly unimodal with κ = 1. Using the criterion for weak unimodality of
the present paper, we are able to prove that every symmetric infinitely divisible
distribution is weakly unimodal. This can, in turn, be used to improve the recent
results of the authors on capacities and level sets of additive Lévy processes.

2. Weak unimodality and Fourier analysis

Throughout, ̂ denotes the Fourier transform on Rd normalized so that for every
f ∈ L1(Rd),

f̂(ξ) =
∫
Rd
eiξ·xf(x) dx, ∀ξ ∈ Rd.

Our main result is the following.

Theorem 2.1. Any finite measure µ on (Rd,B(Rd)) is κ-weakly unimodal with
κ = 16d(1 + δ2), as long as there exists δ > 0, such that

(2.1) | Im µ̂(ξ)| ≤ δRe µ̂(ξ), ∀ξ ∈ Rd.

Since µ̂(0) = µ(Rd), (2.1) is a kind of sector condition. Moreover, it tacitly
asserts that Re µ̂ ≥ 0, pointwise. Motivated by this remark, in Section 4 we will
exhibit a probability measure that is κ-weak unimodal but does not satisfy the
sector–like property (2.1).

Corollary 2.2. Any finite measure on (Rd,B(Rd)) whose Fourier transform is
nonnegative is κ-weakly unimodal with κ = 16d.

Proof of Theorem 2.1. For any r > 0, consider the function

ϕr(x) =
d∏
j=1

1− cos(2rxj)
2πrx2

j

, ∀x ∈ Rd.

Then ϕr is a non-negative function with Fourier transform given by

(2.2) ϕ̂r(ξ) =
d∏
j=1

(
1− |ξi|

2r

)+

, ∀ξ ∈ Rd,

where x+ = max(x, 0).
Suppose 1A is the indicator function of the set A. Then, ξ ∈ B(a, r) implies that

1− (2r)−1|ξj − aj | ≥ 1
2 for every j = 1, . . . , d. In light of (2.2), this shows that

1B(a,r)(ξ) ≤ 2dϕ̂r(ξ − a), ∀ξ ∈ Rd.
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Integrating this [dµ] yields

µ(B(a, r)) ≤ 2dϕ̂r ? µ(a), ∀a ∈ Rd, r > 0,

≤ 2d
∫
Rd
ϕr(ξ)|µ̂(ξ)| dξ, ∀r > 0,(2.3)

where ? denotes convolution. On the other hand, whenever 1 − |ξj |r > 0 for all
j = 1, . . . , d, we have ξ ∈ B(0, r). This and (2.2), together, imply

1B(0,r)(ξ) ≥ ϕ̂r/2(ξ), ∀r > 0, ξ ∈ Rd.
We integrate this with respect to µ to obtain

µ(B(0, r)) ≥
∫
Rd
ϕ̂r/2(ξ)µ(dξ)

=
∫
Rd
ϕr/2(y) Re µ̂(y) dy

≥ (1 + δ2)−
1
2

∫
Rd
ϕr/2(y)|µ̂(y)| dy (by (2.1))

≥ 2−d(1 + δ2)−
1
2 sup
a∈Rd

µ(B(a, r2 )),(2.4)

thanks to (2.3). To complete our proof, we use a covering argument. Let a1, . . . , a4d

∈ [0, 2r]d be chosen such that
– the interiors of B(a

`
, r)’s are disjoint as ` varies in {1, . . . , 4d}; and

–
⋃4d

`=1B(a
`
; r2 ) = B(0, 2r).

Applying (2.4) yields

sup
a∈Rd

µ(B(a, r)) ≤ 2d(1 + δ2)
1
2µ(B(0, 2r))

≤ 2d(1 + δ2)
1
2

4d∑
`=1

µ(B(a
`
, r2 )).

Another application of (2.4) yields the desired result. �

3. Infinitely divisible laws and potential theory

Recall that a probability measure µ on (Rd,B(Rd)) is infinitely divisible if its
Fourier transform has the representation µ̂(ξ) = e−Ψ(ξ) (∀ξ ∈ Rd), where Ψ(x) is
given by the Lévy-Khintchine formula; see Bertoin [2] or Sato [7] for this and
more information. The function, Ψ, is called the Lévy exponent of µ. Recall that
µ is symmetric if for all A ∈ B(Rd), µ(A) = µ(−A).

Corollary 3.1. Any symmetric infinitely divisible law µ on (Rd,B(Rd)) is κ-weakly
unimodal with κ = 16d.

Proof. Note that µ(•) = 1
2µ(•) + 1

2µ(−•) has Lévy exponent Ψ = Ψ; thus, Ψ is
real. Moreover, since |µ̂(ξ)| ≤ 1, Ψ(ξ) ≥ 0. Thus, µ̂ ≥ 0, pointwise, and Corollary
2.2 completes our proof. �

Thanks to Corollary 3.1, the weak unimodality condition in Khoshnevisan and

Xiao [4, Th. 2.9] holds tautologically. This only uses the fact that wheneverX is an
Rd-valued, N -parameter, symmetric additive Lévy process, X(t) has a symmetric
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infinitely divisible law on (Rd,B(Rd)), for each t ∈ RN+ \ ∂RN+ . In particular, in the
notation of Khoshnevisan and Xiao [4], we have

Theorem 3.2. Let X1, . . . , XN be N independent symmetric Lévy processes on Rd
and let X = X1 ⊕ · · · ⊕ XN . Suppose X is absolutely continuous and Φ denotes
the gauge function of X. Then Φ ∈ L1

loc(RN ), if and only if any of the following
conditions are satisfied:

a) P{Leb{X([c,∞[N )} > 0} = 1, for all c > 0;
b) P{Leb{X([c,∞[N )} > 0} > 0, for all c > 0;
c) P{Leb{X([c,∞[N )} > 0} > 0, for some c > 0;
d) P{X−1(0) ∩ [c,∞[N 6= ∅} > 0, for all c > 0;
e) P{X−1(0) ∩ [c,∞[N 6= ∅} > 0, for some c > 0,

where Leb denotes Lebesgue’s measure on (Rd,B(Rd)).

When X−1(0) 6= ∅, it is of interest to determine its Hausdorff dimension. Our
next theorem provides upper and lower bounds for dim

H
X−1(0) in terms of the

following two indices associated to the gauge function Φ:

γ = inf
{
β > 0 : lim inf

s→0
‖s‖N−βΦ(s) > 0

}
,

γ = sup
{
β > 0 :

∫
[0,1]N

1
‖s‖β Φ(s) ds <∞

}
.

It is easy to verify that 0 ≤ γ ≤ γ ≤ N .
Henceforth, ‖s‖ designates the N -dimensional vector (‖s‖, . . . , ‖s‖).

Theorem 3.3. Given the conditions of Theorem 3.2, for any 0 < c < C <∞,

(3.1) P
{
γ ≤ dim

H
(X−1(0) ∩ [c, C]N ) ≤ γ

}
> 0.

Moreover, if there exists a constant K1 > 0 such that

(3.2) Φ(s) ≤ Φ(K1‖s‖) for all s ∈ [0, 1]N ,

then P{dim
H

(X−1(0) ∩ [c, C]N ) = γ} > 0.

Remark 3.4. Clearly, if X1, . . . , XN have the same Lévy exponent, then (3.2)
holds. In particular, it follows from Theorems 3.2 and 3.3 that if X1, . . . , XN

are independent isotropic stable Lévy processes in Rd with index α ∈]0, 2] and
X = X1 ⊕ · · · ⊕XN , then

(i) P{X−1(0) 6= ∅} > 0 if and only if Nα > d; and
(ii) if Nα > d, then P

{
dimH X

−1(0) = N − d
α

}
> 0.

In this case, it would be interesting to determine a Hausdorff measure function ψ
such that 0 < ψ-m(X−1(0)) <∞, where ψ-m denote Hausdorff measure.

4. A counter-example

Consider a Lévy process X = {X(t); t ≥ 0} on Rd and let µt denote the dis-
tribution of the vector X(t) for each t ≥ 0. Clearly, {µt; t ≥ 0} is a convolution
semigroup whose 1-potential is

U(A) =
∫ ∞

0

e−sµs(A) ds, ∀A ∈ B(Rd).
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On the other hand, in §3 we already saw that µ̂t(ξ) = e−tΨ(ξ) for a Lévy exponent Ψ.
This yields Û = {1+Ψ}−1. We note that U is a probability measure on (Rd,B(Rd)),
and (2.1) for U is equivalent to

| Im Ψ(ξ)| ≤ δ{1 + Re Ψ(ξ)}, ∀ξ ∈ Rd.
This is precisely the classical sector condition, and motivates the few allusions to
this condition in §1. On the other hand, the sector condition is not needed for
4d-weak unimodality of U , as the following shows.

Lemma 4.1. U is always 4d-weakly unimodal.

Proof. We present a probabilistic proof that is quite well-known in the context of
random walks. Throughout, we shall fix a ∈ Rd and r > 0, and let σ = inf{s > 0 :
|X(s)− a| < r}. Clearly, σ is a stopping time, and

U(B(a, r)) = E
[ ∫ ∞

0

e−s1{|X(s)−a|<r} ds
]

= E
[ ∫ ∞

σ

e−s1{|X(s)−a|<r} ds
]
,

where
∫∞
σ (· · · ) = 0 on {σ = +∞}. Thus, writing e−∞ = 0 and X(∞) = 0, we have

U(B(a, r)) ≤ E
[ ∫ ∞

0

e−(s+σ)1{|X(s+σ)−X(σ)+X(σ)−a|<r} ds
]

≤ E
[ ∫ ∞

0

e−(s+σ)1{|X(s+σ)−X(σ)|<2r} ds
]
.

By the strong Markov property of X , the latter is not greater than U(B(0, 2r)).
We now apply the same covering argument used in our proof of Theorem 2.1 to
complete this proof. �

Acknowledgment

We thank Steve Evans for his insightful remark that there may be connections
between weak unimodality and the classical sector condition.

References

1. T. W. Anderson (1955). The integral of a symmetric unimodal functions over a symmet-
ric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6, 170–176. MR
16:1005a
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