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Abstract

Let X(t) (t ∈ R+) be a stable process in a random scenery. The Hausdorff

dimension of certain level sets is determined and the existence of the local time of

X(t) is proved.
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1 Introduction

Let B+ = {B+(t) : t ≥ 0} and B− = {B−(t) : t ≥ 0} denote two standard Brownian

motions in R and define a two-sided Brownian motion B = {B(t), t ≥ 0} by

B(t) =





B+(t) if t ≥ 0

B−(−t) if t < 0 .

Let Z = {Z(t) : t ≥ 0} be a strictly stable Lévy process of index β ∈ (1, 2] in R with

characteristic function

E (exp(iξZ(t))) = exp
(
−t|ξ|β 1 + iνsgn(ξ) tan(βπ/2)

χ

)
,
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where χ and ν are real parameters such that χ > 0 and −1 ≤ ν ≤ 1. We assume that

B+, B− and Z are defined on a common probability space and that they are mutually

independent. Given a function f : R → R, we let

∫

R
f(x)dB(x) =

∫ ∞

0
f(x)dB+(x) +

∫ ∞

0
f(−x)dB−(x)

provided that both of the Itô integrals on the right-hand side are defined.

Let L = {Lx
t : t ≥ 0, x ∈ R} be the local time of Z. It is well known that (cf.

Boylan [1]) L has a version which is jointly continuous in (t, x). Throughout this paper,

we assume that L is such a version. For each t ≥ 0, let

X(t) =
∫

R
Lx

t dB(x) .

Then the process X = {X(t) : t ≥ 0} is well defined. It is easy to verify that X is

self-similar with index

α = 1− 1

2β
,

that is, for every a > 0, {X(at) : t ≥ 0} d
= {aαX(t) : t ≥ 0}, where “

d
=” means the

two processes have the same distribution, and X has stationary increments. This class

of self-similar processes was first introduced and studied by Kesten and Spitzer [9]. See

also Lou [13]. Since each of these processes can be realized as the limit in distribution of

a random walk in random scenery, following Khoshnevisan and Lewis [10], we will call

them stable processes in random scenery. If β = χ = 2, then Z is a standard Brownian

motion and X is called a Brownian motion in random scenery. For each t ≥ 0, let

Y (t) = B(Z(t)). Then Y = {Y (t), t ≥ 0} is an iterated Brownian motion, which has

received a lot of attention in the past several years; we refer to Khoshnevisan and Lewis

[11] for an extensive list of references. Recently, Khoshnevisan and Lewis [12] have

related the quadratic and quartic variations of iterated Brownian motion to Brownian

motion in random scenery, which led them to expect a certain duality between iterated

Brownian motion and Brownian motion in random scenery. This was supported by the

results in Khoshnevisan and Lewis [10], where a law of the iterated logarithm for stable

processes in random scenery was proved. Khoshnevisan and Lewis [11], motivated by
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“duality”, conjectured that for Brownian motion in random scenery

(1.1) dimX−1(0) =
1

4
,

where X−1(0) = {s ≥ 0 : X(s) = 0} is the zero set of X and dim denotes Hausdorff

dimension. We refer to Falconer [6] for the definition and properties of Hausdorff measure

and Hausdorff dimension.

The objective of the present paper is to study the Hausdorff dimension of the level

sets of stable processes in random scenery. For each t ≥ 0 fixed, consider the level set

Mt = {s ≥ 0 : X(s) = X(t)} .

Here is the main result.

Theorem 1.1 Let X = {X(t), t ≥ 0} be a stable process in random scenery. Then for

every t > 0,

(1.2) dimMt =
1

2β
a.s.

Remark. Our result is not about the Hausdorff dimension of the level set at a fixed

level, so it does not prove (1.1) in the case of Brownian motion in random scenery. But

the proof of Theorem 1.1 does show that the right hand side of (1.2) serves as an upper

bound for dimX−1(x), where x ∈ R is fixed. We believe that a result similar to (1.2)

also holds for dimX−1(x).

The rest of this paper is organized as follows. In Section 2 we establish an upper

bound for the uniform modulus of continuity and prove the existence of square-integrable

local times of X. The proof of Theorem 1.1 is given in Section 3. It is evident that our

arguments rely heavily on the results of Khoshnevisan and Lewis [10] and Berman [4].

2 Modulus of Continuity and Local Times

Lemma 2.1 (Khoshnevisan and Lewis [10]) There exists a positive number γ = γ(β)

such that

lim
λ→∞

λ−
2β

1+β log P (X(1) ≥ λ) = −γ .
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The following result on the uniform modulus of continuity is an easy consequence

of Lemma 2.1 and the first part of Lévy’s uniform modulus of continuity argument

for Brownian motion. Discussions for general, not necessarily Gaussian, Banach space

valued processes can be found in Csáki and Csörgő [5].

Proposition 2.1 For any −∞ < T1 < T2 < ∞, we have

(2.1) lim sup
h→0

sup
T1≤t≤T2−h

sup
0≤s≤h

|X(t + s)−X(t)|
hα(log(1/h))

1+β
2β

≤
(

1

γ

) 1+β
2β

a.s.

Proof. Since X = {X(t), t ≥ 0} is α-self-similar with stationary increments, it

follows from Lemma 2.1 that for every ε > 0, there exists λ0 > 0 such that for every

t ≥ 0, h > 0 and λ ≥ λ0

(2.2) P
(
|X(t + h)−X(t)| ≥ hαλ

)
≤ exp

(
−(γ − ε)λ

2β
1+β

)
.

Hence (2.1) follows from (2.2) and a chaining argument. See Theorem 3.1 of Csáki and

Csörgő [5].

Remark. An open problem is to find the uniform modulus of continuity for X. We

do not know whether the constant in (2.1) is the right one.

In order to study the existence of the local times of X, we need some information

about the density function of X(t) relative to Lebesgue measure. For each t ≥ 0, let

Vt =
∫

R
(Lx

t )
2dx .

Then Vt is the conditional variance of X(t) given σ(Z(s) : 0 ≤ s ≤ t) and it is also

self-similar: for every a > 0,

(2.3) {Vat : t ≥ 0} d
= {a2αVt : t ≥ 0} .

As observed by Khoshnevisan and Lewis [10], there exist two positive constants K1 and

K2, depending on β only, such that for each λ ≥ 0,

(2.4) exp(−K1λ
β) ≤ P (V1 > λ) ≤ exp(−K2λ

β) .

It follows from Fubini’s theorem and (2.4) that

(2.5) E
(

1√
V1

)
=

1

2

∫ ∞

0
x−

3
2 P (V1 ≤ x)dx = K3 < ∞ .
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Lemma 2.2 For every t > 0, X(t) has a bounded continuous density function pt(y) and

there exists a positive constant r0 such that for every 0 < r ≤ r0 and every x ∈ R,

(2.6) K4 min{1, r} ≤ P (|X(1)− x| ≤ r) ≤ K5 min{1, r} ,

where K4 is a positive constant depending on x and β only and K5 is a positive constant

depending on β only.

Proof. For each t > 0, consider the characteristic function of X(t):

E exp(iuX(t)) = E exp
(
−u2

2

∫

R
(Lx

t )
2dx

)
, u ∈ R.

By Fubini’s theorem, (2.3) and (2.5),

∫

R
|E exp(iuX(t))| du = E

(√
2π∫

R(Lx
t )2dx

)
=

√
2πK3

tα
.

It follows that X(t) has a bounded continuous density function pt(y) and, by the inversion

formula for Fourier transformations,

pt(y) = E
[

1√
2π

∫
R(Lx

t )2dx
exp

(
− y2

2
∫
R(Lx

t )2dx

)]

(2.7) =
1√
2πtα

E
[

1√
V1

exp
(
− y2

2t2αV1

)]
.

Finally, (2.6) follows from (2.7) and (2.5) directly.

We recall briefly the definition of local time. For a comprehensive survey on the

study of local times of both random and non-random vector fields before the early 80’s,

we refer to Geman and Horowitz [7]. For some new developments on the local times

of Gaussian random fields and related processes, see Xiao [15]. Let X(t) be any Borel

function on R+ with values in R. For any Borel set I ⊂ R+, the occupation measure of

X is defined by

µI(A) = λ1{t ∈ I : X(t) ∈ A}

for every Borel set A ⊂ R, where λ1 is the one-dimensional Lebesgue measure. If µI is

absolutely continuous with respect to Lebesgue measure, we say that X(t) has a local

time on I and define its local time φ(x, I) to be the Radon-Nikodym derivative of µI . If
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I = [0, t], we will simply write φ(x, I) as φ(x, t). It is known that local time satisfies the

following occupation density formula: for every Borel set I ⊂ R+ and every measurable

function f : R → R,

(2.8)
∫

I
f(X(t))dt =

∫

R
f(x)φ(x, I)dx .

Proposition 2.2 For each finite interval I ⊂ [0,∞), X(t) has a local time φ(x, I) on

I satisfying

(2.9)
∫

R
φ(x, I)2dx < ∞ a.s.

Proof. By the fact that X is α-self-similar and has stationary increments, and (2.6),

we have for every ε > 0,

1

2ε

∫

I

∫

I
P (|X(t)−X(s)| ≤ ε)dsdt =

1

2ε

∫

I

∫

I
P

(
|X(1)| ≤ ε

|t− s|α
)
dtds

≤ K5

∫

I

∫

I

1

|t− s|α dtds = K6 < ∞ .

Hence

lim inf
ε→0

1

2ε

∫

I

∫

I
P (|X(t)−X(s)| ≤ ε)dsdt ≤ K6 < ∞ .

By Theorem 21.15 in Geman and Horowitz [7], X has a local time φ(x, I) on I such that

(2.9) is satisfied.

Remark. Proposition 2.2 can also be proved by using Fourier analysis as in Berman

[2] and Kahane [8]. We notice that for each fixed Borel set I, the Fourier transform of

the local time φ(x, I) is

(2.10) φ̂I(u) =
∫

I
exp(iuX(t))dt .

3 Proof of Theorem 1.1

In order to prove the lower bound in (1.2), we need to construct a random Borel measure

with support in Mt and use a capacity argument. The following lemma, which is a

combination of Proposition 2.2 and the results of Berman ([3], [4]), asserts that a version

of the local time of X will meet our requirements.

6



Lemma 3.1 There exists a version of the local time φ(x, t), still denoted by φ(x, t), such

that

(i) For each t > 0, φ(x, t) is square-integrable in x; and for each x ∈ R, φ(x, ·) is a

measure on the Borel subsets of [0,∞);

(ii) For each x ∈ R, the measure φ(x, ·) has its support contained in X−1(x) or else

is equal to 0;

(iii) φ(X(t), I) > 0 for almost all t ∈ I, almost surely.

Proof. Statement (i) is a consequence of Proposition 2.2, Lemmas 1.1 and 1.4 in

Berman [4]. (ii) follows from Lemma 1.5 of Berman [4] and (iii) follows from (i) and

Lemma 1.1 of Berman [3] respectively.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove that for every x ∈ R,

dimX−1(x) ≤ 1

2β
a.s.

By the σ-stability of Hausdorff dimension, it is sufficient to show that for every interval

I = [ε,M ], with ε > 0,

(3.1) dim(X−1(x) ∩ I) ≤ 1

2β
a.s.

The proof of (3.1) is very similar to the first part of the proof of Theorem 2.1 of Berman

[4]. Even though the stable process in random scenery considered here is not a Gaussian

process, the two main ingredients needed in Berman’s proof are provided by Proposition

2.1 and Lemma 2.2. Hence we omit the details. It follows from (3.1) and Fubini’s

theorem that

(3.2) dimX−1(x) ≤ 1

2β
for almost all x a.s.

Now since X(t) has a local time φ(x, I), by (3.2) and the occupation density formula

(2.8) we have

(3.3) dimMt ≤ 1

2β
for almost all t a.s.
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To prove the reverse inequality, we adapt the argument of Berman [4]. Fix a finite

interval I ⊂ [0,∞). For simplicity, let I = [0, 1]. Put

H(s, t) =
∫

R
φ(x, s)φ(x, t)dx .

Using (2.10) and Parseval’s identity, we can write

H(s, t) =
∫

R
φ̂[0,s](u)φ̂[0,t](u) du

=
∫

R

∫ s

0

∫ t

0
exp

(
iu(X(s′)−X(t′))

)
ds′dt′du .

It follows from a standard approximation that for any nonnegative Borel function g(s, t),

∫

I

∫

I
g(s, t)H(ds, dt) =

∫

I

∫

I

∫

R
g(s, t) exp

(
iu(X(s)−X(t))

)
dudsdt .

Hence by Fubini’s theorem for every 0 < η < 1/(2β) we have

E
(∫

I

∫

I

1

|s− t|η H(ds, dt)
)

=
∫

I

∫

I

∫

R

1

|s− t|η E exp
(
iu(X(s)−X(t))

)
dudsdt

=
∫ 1

0

∫ 1

s

∫

R

1

|s− t|η E exp
(
−u2

2

∫

R
(Lx

t − Lx
s)

2dx
)
dudsdt

(3.4) =
√

2π
∫ 1

0

∫ 1

s

1

|s− t|η E
( 1√∫

R(Lx
t − Lx

s)
2dx

)
dsdt .

Now by using the facts that

Lx
t − Lx

s = lim
ε→0

1

2ε

∫ t

s
1{|Z(s′)−x|≤ε}ds′ a.s.

and Z is 1/β-self-similar with stationary increments, for every fixed pair 0 ≤ s < t,

(3.5)
∫

R
(Lx

t − Lx
s)

2dx
d
= (t− s)2− 1

β V1 .

It follows from (3.5) and (2.5) that (3.4) is at most

K3

√
2π

∫ 1

0

∫ 1

s

1

|s− t|η+1−1/(2β)
dsdt = K(η, β) < ∞ ,

where K(η, β) > 0 is a constant depending on η and β only. Hence by Fubini’s theorem

∫

I

∫

I

1

|s− t|η φ(x, ds)φ(x, dt) < ∞
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for almost all x ∈ R, almost surely. This implies that almost surely

(3.6)
∫

I

∫

I

1

|u− v|η φ(X(t), du)φ(X(t), dv) < ∞ for almost all t ∈ I .

By Lemma 3.1 (i) and (iii), we see that the measure φ(X(t), ·) is a positive measure on

I for almost all t ∈ I, almost surely. It follows from Lemma 3.1 (ii) that the random

measure φ(X(t), ·) is supported on Mt. Hence by (3.6) and Frostman’s theorem (see e.g.

Kahane [8], p. 133) we have almost surely

(3.7) dimMt ≥ 1

2β
for almost all t ∈ I .

Since R+ is a countable union of finite intervals, (3.7) holds for almost all t ≥ 0, almost

surely. Combining this with (3.3), we have

dimMt =
1

2β
for almost all t ≥ 0, almost surely .

Finally by the self-similarity of X, the distribution of dimMt does not depend on t > 0.

This completes the proof of Theorem 1.1.

Comments. This paper raises many open questions about stable processes in ran-

dom scenery. The most obvious one is to prove that for every x ∈ R

dimX−1(x) =
1

2β
a.s.

The upper bound has already been established in the proof of Theorem 1.1. The lower

bound would follow from a capacity argument similar to those of Kahane [8] and Marcus

[14] if we had the following inequality: there exists a positive constant K > 0 such that

for every s < t and r > 0 small enough

P
(
|X(s)− x| ≤ |s|αr, |X(t)−X(s)| ≤ 2|t− s|αr

)
≤ Kr2 .

It seems that this can not be derived from the fact that X(s) and X(t)−X(s) are quasi-

associated as proved by Khoshnevisan and Lewis [10]. Another problem is to study the

joint continuity of the local time φ(x, t) and the Hölder conditions in the set variable.

Results of the later type will shed light on the exact Hausdorff measure of the level sets

of X.
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More generally it would also be interesting to study sample path properties of the

stable process X in a stable scenery defined by

X(t) =
∫

R
Lx

t dU(x) ,

where U = {U(x), −∞ < x < ∞} is a strictly stable Lévy process of index γ ∈ (0, 2]

and L = {Lx
t : t ≥ 0, x ∈ R} is the local time of Z as in the introduction, and U and

Z are independent. Then X is a self-similar process with index

α = 1− 1

β
+

1

γβ

and has stationary increments. For details see Kesten and Spitzer [9]. The method

of the present paper can be applied to prove the existence of local time and the lower

bound for the Hausdorff dimension of Mt for stable processes in stable scenery. However

our method for proving the upper bound for dimMt does not work, because we have not

been able to produce a desired modulus of continuity for X. In fact for stable processes

in stable scenery, neither local nor uniform moduli are known.
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