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Abstract
Let X = {X(t), t ∈ RN} be a Gaussian random field in Rd with stationary increments.

For any Borel set E ⊂ RN , we provide sufficient conditions for the image X(E) to be a
Salem set or to have interior points by studying the asymptotic properties of the Fourier
transform of the occupation measure of X and the continuity of the local times of X on
E, respectively. Our results extend and improve the previous theorems of Pitt [24] and
Kahane [12, 13] for fractional Brownian motion.
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1 Introduction

Let X = {X(t), t ∈ RN} be a centered Gaussian random field with values in Rd. For a Borel
set E ⊆ RN , its image X(E) under X is a random set in Rd. Due to its connections to random
fractals and harmonic analysis, it has been of interest to study the geometric and arithmetic
properties of X(E). We refer to Adler [1], Kahane [12], Khoshnevisan [20] for extensive studies
on various properties of X(E), where X is either a fractional Brownian motion or the Brownian
sheet.

When X is an (N, d)-fractional Brownian motion of index α ∈ (0, 1), then it is known that

dimHX(E) = min
{

d,
dimHE

α

}
, a.s. (1.1)

where dimH denotes Hausdorff dimension. Clearly, two distinct cases come up in (1.1):
dimHE > αd or dimHE ≤ αd. In the first case, a Fourier-analytic argument due to Ka-
hane (see Kahane [12]) shows that X(E) a.s. has positive d-dimensional Lebesgue measure.
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The natural question whether X(E) has non-empty interior was first studied by Kaufman [17]
for X being the standard Brownian motion in R. Pitt [24] and Kahane [12] [13] extended
Kaufman’s result to fractional Brownian motion and proved that X(E) a.s. has interior points
provided dimHE > αd. In the case when dimHE ≤ αd, Kahane [12] [13] has shown that X(E)
is a.s. a Salem set. That is, dimHX(E) = dimFX(E) a.s., where dimF is Fourier dimension
[See Section 2 for the definition].

This paper is concerned with the geometric and arithmetic properties of the image X(E)
for a large class of (N, d)-Gaussian random fields including fractional Brownian motion, frac-
tional Riesz-Bessel motion (cf. Anh et al. [2]) and some Gaussian processes with stationary
increments and discrete spectrum measures (cf. Xiao [28]). We should also mention that the
methods in this paper can be modified to study the images of more general Gaussian random
fields than those considered here. For example, similar results have been proven for ceratin
anisotropic Gaussian random fields such as fractional Brownian sheets by Wu and Xiao [27].

Let µ be a probability measure carried by E and let ν be the image measure of µ under the
mapping t 7→ X(t). In Section 2 we study the asymptotic properties of the Fourier transform
ν̂(ξ) as ξ → ∞. Our observation is that, for a Gaussian random field X with stationary
increments, the asymptotic property of ν̂(ξ) is determined by the asymptotic behavior of the
spectral measure of X at infinity; see Section 2 for more information. Moreover, we show that,
under certain conditions, the image X(E) is a Salem set. These results extend those of Kahane
[12] [13] to a large class of Gaussian random fields.

In Section 3 we prove a sufficient condition for X(E) to have interior points. Even though
we will follow the approach of Pitt [24] and Kahane [12] [13] to reduce the problem of interior
points to proving the existence of a continuous local time of X on E, our method is finer
than those used by Pitt [24], Kahane [12] [13], and is more reminiscent to those in Cuzick and
DuPreez [9] and Xiao and Zhang [32]. As a result, when X is a fractional Brownian motion,
our Theorem 3.2 improves the results of Pitt [24] and Kahane [12] [13].

There are two open questions that can not be answered by the methods known to us, and
we list them at the end of Sections 2 and 3, respectively.

Throughout this paper, we use 〈·, ·〉 and | · | to denote the ordinary scalar product and the
Euclidean norm in Rm respectively, no matter the value of the integer m. Unspecified positive
and finite constants will be denoted by K which may have different values from line to line.
Specific constants in Section i will be denoted by Ki,1 ,Ki,2 and so on.

2 Salem sets

We start by recalling from Kahane [12] [13] the definitions of Fourier dimension and Salem set.
Given a constant β ≥ 0, a Borel set F ⊂ Rd is said to be an Mβ set if there exists a probability
measure ν on F such that

|ν̂(ξ)| = o(|ξ|−β) as ξ →∞. (2.1)

Note that if β > d/2, then (2.1) implies that ν̂ ∈ L2(Rd) and, consequently, F has positive
d-dimensional Lebesgue measure. For any Borel set F ⊂ Rd, its Fourier dimension dimFF is
defined by

dimFF = sup
{
α ∈ [0, d] : F is an Mα/2 set

}
. (2.2)
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It follows from Frostman’s theorem and the following formula for the α-energy (0 < α < d) of
ν:

Iα(ν) = K(α, d)
∫

Rd

∣∣ν̂(ξ)
∣∣2∣∣ξ∣∣α−d

dξ, (2.3)

where K(α, d) > 0 is a constant depending on α and d only (cf. Kahane [12], Ch. 10) that
dimFF ≤ dimHF . Strict inequality may hold. For example, the Fourier dimension of triadic
Cantor set is 0, but its Hausdorff dimension is log 2/ log 3. Unlike the Hausdorff dimension
dimHF which describes a metric property of F , the Fourier dimension dimFF is closely related
to the arithmetic properties of F . As a further example of this aspect, we mentioned that
every set F ⊂ Rd with positive Fourier dimension generates Rd as a group.

We say that a Borel set F is a Salem set, if dimFF = dimHF . Such sets are of importance
in studying the problem of uniqueness and multiplicity for trigonometric series (cf. Zygmund
[34] and Kahane and Salem [15]) and the restriction problem for the Fourier transforms (cf.
Mockenhaupt [22]). The first construction of such a set F on the line with 0 < dimFF < 1 was
given by Salem in 1950 (cf. Kahane and Salem [15], Chapter 8) using probabilistic methods.
Kahane [12] [13] has constructed Salem sets using the images of Brownian motion, stable
Lévy process and fractional Brownian motion. Bluhm [8] has constructed Salem sets using
statistically self-similar fractals. The results of Kahane [12] [13] and Bluhm [8] also determine
the rate of ν̂(ξ) → 0 as ξ → ∞, where ν is either the occupation measure of a stable Lévy
process and fractional Brownian motion, or a statistically self-similar measure. Deterministic
Salem sets with non-integer Hausdorff dimension are more difficult to construct, there are only
a few examples. Kaufman [18] has shown that for a > 0, the set Ea = {x ∈ [0, 1] : d(nx, N) ≤
n−(1+a) has solutions for arbitrarily large integers n} is a Salem set with Hausdorff dimension
dimHEa = 2/(2 + a), where d(x, N) denotes the distance of x to the nearest integer. By
modifying the method of Kaufman [18], Bluhm [6] [7] has provided an explicit Cantor-type
construction of deterministic linear Salem sets with prescribed dimension.

In this section, we continue the line of research of Kahane [12] [13] [14] and study the
asymptotic properties of the Fourier transforms of the image measures of a large class of
(N, d)-Gaussian random fields. In particular, we will show that for every Borel set E ⊂ RN ,
under certain mild conditions, X(E) is almost surely a Salem set.

First let Y = {Y (t), t ∈ RN} be a real-valued, centered Gaussian random field with
Y (0) = 0. We assume that Y has stationary increments and continuous covariance function
R(s, t) = E

[
X(s)X(t)

]
. According to Yaglom [33], R(s, t) can be represented as

R(s, t) =
∫

RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ) + 〈s,Qt〉, (2.4)

where Q is an N × N non-negative definite matrix and ∆(dλ) is a nonnegative symmetric
measure on RN\{0} satisfying

∫

RN

|λ|2
1 + |λ|2 ∆(dλ) < ∞. (2.5)

The measure ∆ is called the spectral measure of Y .
It follows from (2.4) that Y has the following stochastic integral representation:

Y (t) =
∫

RN

(
ei〈t,λ〉 − 1

)
W (dλ) + 〈Ξ, t〉, (2.6)
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where Ξ is an N -dimensional Gaussian random vector with mean 0 and W (dλ) is a centered
complex-valued Gaussian random measure which is independent of Ξ and satisfies

E
(
W (A)W (B)

)
= ∆(A ∩B) and W (−A) = W (A)

for all Borel sets A, B ⊆ RN . Throughout this paper, we will assume that Ξ = 0. This is
equivalent to assuming Q = 0 in (2.4). Consequently, for all h ∈ RN we have

σ2(h) = E
[(

Y (t + h)− Y (t)
)2] = 2

∫

RN

(
1− cos 〈h, λ〉) ∆(dλ). (2.7)

Besides function σ2(h), we will make use of the following function φ : [0,∞) → [0,∞)
defined by

φ(r) = ∆{ξ : |ξ| ≥ r−1} for r > 0 and φ(0) = 0.

Then φ is a non-decreasing and right continuous on [0,∞). In this section, we will assume
that the spectral measure ∆ is absolutely continuous and its density function f(λ) satisfies the
following condition (when N = 1, this is due to Berman [4]):

0 < α =
1
2

lim inf
λ→∞

ϑN |λ|Nf(λ)
φ(1/|λ|) ≤ 1

2
lim sup

λ→∞
ϑN |λ|Nf(λ)

φ(1/|λ|) = α < 1, (2.8)

where ϑ1 = 2 and for N ≥ 2, ϑN = µ(SN−1) is the area [i.e., (N − 1)-dimensional Lebesgue
measure) of the unit sphere SN−1 in RN .

Under the assumption that the spectral measure ∆ has a density f(λ), the condition (2.8) is
more general than assuming φ is regularly varying at 0. In fact, by Theorem 2.1.1 in Bingham
et al. [5] one can show that a necessary and sufficient condition for φ(r) to be regularly varying
at 0 of index 2α is that the limit

α =
1
2

lim
r→∞

rN
∫
SN−1 f(rθ)µ(dθ)

∆{ξ : |ξ| ≥ r}
exists; see Xiao [31] for more details.

The following Lemmas 2.1 and 2.2 are proved in Xiao [31]. They give some properties of φ
and, more importantly, its connection with σ2(h) in (2.7).

Lemma 2.1 Assume the condition (2.8) holds. Then for any ε ∈ (0, 2min{α, 1 − α}), there
exists a constant r0 > 0 such that for all 0 < x ≤ y ≤ r0,

(x

y

)2α+ε
≤ φ(x)

φ(y)
≤

(x

y

)2α−ε
. (2.9)

In particular, the function φ has the following doubling property: there exists a constant K2,1 >
0 such that for all r > 0 small,

φ(2r) ≤ K2,1 φ(r). (2.10)

Using the terminology of Bingham et al. ([5], pp.65–67), (2.9) implies that φ is extended
regularly varying at 0 with upper and lower Karamata indices 2α and 2α, respectively.

Lemma 2.2 Under the assumption (2.8), we have

0 < lim inf
h→0

σ2(h)
φ(|h|) ≤ lim sup

h→0

σ2(h)
φ(|h|) < ∞. (2.11)
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Remark 2.3 In the studies of various properties of Gaussian random fields with stationary
increments, the variance function σ2(h) has played a significant role and it is typically assumed
to be regularly varying at 0 and/or monotone. See, for example, Kasahara et al. [16], Talagrand
[25] [26], Xiao [28] [29] [30] and so on. With the help of Lemmas 2.1 and 2.2, Xiao [31] has
shown that, under the condition (2.8), it is more convenient to use φ(r) to investigate the
sample path properties of Gaussian random fields and thus the regularly varying assumption
on σ2(h) can be significantly weakened and the monotonicity assumption on σ2(h) can be
removed.

The following are some examples of Gaussian random fields satisfying the condition (2.8).

Example 2.4 Let Bα = {Bα(t), t ∈ RN} be an N -parameter fractional Brownian motion of
Hurst index α ∈ (0, 1), then its spectral density is given by

fα(λ) = c(α, N)
1

|λ|2α+N
,

where c(α, N) > 0 is a normalizing constant. Clearly, α = α = α and σ2(h) = |h|2α.

Example 2.5 Consider the mean zero Gaussian random field Y = {Y (t), t ∈ RN} in R with
stationary increments and spectral density

fγ,β(λ) =
c(γ, β, N)

|λ|2γ(1 + |λ|2)β
, (2.12)

where β and γ are constants satisfying

β + γ >
N

2
, 0 < γ < 1 +

N

2

and c(γ, β, N) > 0 is a normalizing constant. Since the spectral density fγ,β involves both
the Fourier transforms of the Riesz kernel and the Bessel kernel, Anh et al. [2] call the
corresponding Gaussian process the fractional Riesz-Bessel motion with indices β and γ, and
they have shown that these Gaussian random fields can be used for modeling simultaneously
long range dependence and intermittency.

It is easy to check that for the spectral measure with density (2.12) the limit in Condition
(2.8) exists, i.e., α = α = γ + β − N

2 . Moreover, since the spectral density fγ,β(x) is regularly
varying at infinity of order 2(β+γ) > N , by a result of Pitman [23] we know that, if γ+β−N

2 <
1, then σ(h) is regularly varying at 0 of order β + γ −N/2 and

σ(h) ∼ |h|β+γ−N/2,

where a(h) ∼ b(h) means a(h)/b(h) → 1 as h → 0. We will see that the results of this paper
are applicable to the fractional Riesz-Bessel motion. For more examples of Gaussian random
fields satisfying (2.8), see Xiao [31].

We also need the following lemma which is a special case of Lemma 2.2 in Xiao [31].
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Lemma 2.6 Assume that the spectral density f satisfies the condition (2.8). Then for any
fixed constants T > 0 and K2,2 > 0, there exists a positive and finite constant K2,3 such that
for all functions g of the form

g(λ) =
n∑

j=1

(
ei〈tj ,λ〉 − ei〈sj ,λ〉), ∀ sj , tj ∈ [−T, T ]N , (2.13)

we have

|g(λ)| ≤ K2,3 |λ|
(∫

RN

|g(ξ)|2 f(ξ) dξ

)1/2

for all |λ| < K2,2 . (2.14)

Let T > 0 be fixed. For all n ≥ 2, t1, . . . , tn, s1, . . . , sn ∈ [−T, T ]N , denote s = (s1, . . . , sn),
t = (t1, . . . , tn) and

Ψ(s, t) = E
[ n∑

j=1

(
Y (tj)− Y (sj)

)]2

. (2.15)

For s ∈ [−T, T ]nN and r > 0, let

F (s, r) =
n⋃

j=1

B(sj , r)

and
G(s, r) =

{
t = (t1, . . . , tn) : tk ∈ F (s, r) for 1 ≤ k ≤ n

}
. (2.16)

The following lemma is essential for the proof of Theorem 2.8.

Lemma 2.7 Assume that the spectral measure ∆ of Y = {Y (t), t ∈ RN} has a density function
f that satisfies (2.8). Then there exists a constant 0 < K2,4 < ∞, depending on α, α and T
only, such that for all r ∈ (0, r0) [r0 is given in Lemma 2.1] and all s, t ∈ [−T, T ]nN with
t /∈ G(s, r), we have Ψ(s, t) ≥ K2,4 φ(r).

Proof By (2.8), we see that for every constant ε ∈ (0, 2min{α, 1−α}), there exists a constant
r1 ∈ (0, r0 ∧ 1) such that

2α− ε <
ϑN |λ|Nf(λ)

φ(1/|λ|) ≤ 2α + ε for all λ ∈ RN with |λ| ≥ 1/r1. (2.17)

It follows from (2.4) that

Ψ(t, s) =
∫

RN

∣∣∣∣
n∑

j=1

(
ei〈tj ,λ〉 − ei〈sj ,λ〉)

∣∣∣∣
2

f(λ)dλ. (2.18)

Now we choose a bump function δ(·) ∈ C∞(RN ) with values in [0, 1] such that δ(0) = 1 and it
vanishes outside the open unit ball. Let δ̂ be the Fourier transform of δ. It is known that δ̂(λ)
is bounded and decays rapidly as λ → ∞. Let δr(t) = r−Nδ(t/r), then the Fourier inversion
formula gives

δr(t) = (2π)−N

∫

RN

e−i〈t,λ〉 δ̂(rλ) dλ . (2.19)

6



Note that since t /∈ G(s, r), there exists tk such that min{|tk − sj |, 1 ≤ j ≤ n} ≥ r. Hence
δr(sj − tk) = 0 for all j = 1, · · · , n. It follows from (2.19) that

∫

RN

( n∑

j=1

(
ei〈tj ,λ〉 − ei〈sj ,λ〉)

)
e−i〈tk,λ〉 δ̂(rλ) dλ

= (2π)N
n∑

j=1

(
δr(tj − tk)− δr(sj − tk)

)

≥ (2π)N r−N .

(2.20)

Next, we split the integral in (2.20) over {λ : |λ| < 1/r1} and {λ : |λ| ≥ 1/r1}. Denote the two
integrals by I1 and I2, respectively. It follows from Lemma 2.6 with K2,2 = 1/r1 that

I1 ≤
∫

|λ|<1/r1

∣∣∣∣
n∑

j=1

(
ei〈tj ,λ〉 − ei〈sj ,λ〉

)∣∣∣∣ |δ̂(rλ)| dλ

≤ K2,3

(∫

RN

∣∣∣∣
n∑

j=1

(
ei〈tj ,ξ〉 − ei〈sj ,ξ〉

)∣∣∣∣
2

f(ξ) dξ

)1/2

·
∫

|λ|<1/r1

|λ| |δ̂(rλ)| dλ

≤ K2,4

[
Ψ(s, t)

]1/2
,

(2.21)

where the last inequality follows from (2.18) and the boundedness of δ̂.
On the other hand, by the Cauchy-Schwarz inequality and (2.18), we have

I2
2 ≤

∫

|λ|≥1/r1

∣∣∣∣
n∑

j=1

(
ei〈tj ,λ〉 − ei〈sj ,λ〉

)∣∣∣∣
2

f(λ) dλ ·
∫

|λ|≥1/r1

1
f(λ)

|δ̂(rλ)|2 dλ

≤ Ψ(s, t) · r−N

∫

|λ|≥r/r1

1
f(λ/r)

|δ̂(λ)|2 dλ.

(2.22)

Note that by using (2.17) and Lemma 2.1, we deduce
∫

|λ|≥ r/r1

1
f(λ/r)

|δ̂(λ)|2 dλ ≤ ϑN (2α− ε)−1 r−N

∫

|λ|≥ r/r1

|λ|N
φ(r/|λ|) |δ̂(λ)|2 dλ

= ϑN (2α− ε)−1 φ(r)−1 r−N

∫

|λ|≥ r/r1

φ(r)
φ(r/|λ|) |λ|

N |δ̂(λ)|2 dλ

≤ K φ(r)−1 r−N

∫

RN

|λ|N+2α+ε |δ̂(λ)|2 dλ

= K φ(r)−1 r−N .

(2.23)

Squaring both sides of (2.20) and combining (2.21), (2.22) and (2.23), we obtain

(2π)2N r−2N ≤ K φ(r)−1 r−2N Ψ(s, t).

This gives the desired inequality. ¤
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Now we consider the (N, d)-Gaussian random field X = {X(t), t ∈ RN} defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (2.24)

where X1, . . . , Xd are independent copies of a real-valued, centered Gaussian random field
Y = {Y (t), t ∈ RN} with stationary increments and Y (0) = 0. We assume that Y has
a spectral density f that satisfies Condition (2.8). Then Lemma 2.2 implies that for some
positive constants K2,5 and K2,6 ,

K2,5 φ(|h|) ≤ E[(
Y (t + h)− Y (t)

)2] ≤ K2,6 φ(|h|) (2.25)

for all t, h ∈ RN with |h| small enough.
For any Borel probability measure µ on RN , let ν = µ ◦ X−1 be the image measure of µ

under X. Then the Fourier transform of ν can be written as

ν̂(ξ) =
∫

RN

ei〈ξ,X(t)〉 µ(dt). (2.26)

The following theorem describes the asymptotic behavior of ν̂(ξ) as ξ →∞.

Theorem 2.8 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field with stationary
increments defined above, and let τ : R+ → R+ be a non-decreasing function satisfying the
doubling property, that is, τ(2r) ≤ K2,7 τ(r) for all r ≥ 0. If µ is a probability measure on
[−T, T ]N such that

µ(B(x, r)) ≤ K2,8 τ(2r), ∀x ∈ RN , r ≥ 0. (2.27)

Then there exists a positive and finite constant η such that almost surely,

lim sup
|ξ|→∞

∣∣ν̂(ξ)
∣∣

√
τ
(
φ−1(|ξ|−2)

)
logη |ξ|

< ∞, (2.28)

where φ−1(x) = inf{y : φ(y) > x} is the inverse function of φ.

Proof By considering the restriction of µ on subsets of its support and the linearity of
the Fourier transform, we see that, without loss of generality, we may and will assume µ is
supported on a Borel set E ⊂ RN with diam E < r1. Hence Lemmas 2.1 and 2.7 are applicable.

For any positive integer n ≥ 1, (2.26) yields

E
(∣∣ν̂(ξ)

∣∣2n)
= E

∫

R2nN

ei〈ξ,
Pn

j=1(X(tj)−X(sj))〉 µn(ds)µn(dt)

=
∫

R2nN

exp
(
− 1

2
|ξ|2Ψ(s, t)

)
µn(ds)µn(dt),

(2.29)

where µn(ds) = µ(ds1) · · ·µ(dsn).
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First we estimate the integral in (2.29) by integrating µn(dt). Let s be fixed and we write
∫

RnN

exp
(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt) =

∫

G(s,r)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt)

+
∞∑

k=1

∫

G(s,r2k)\G(s,r2k−1)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt).

(2.30)

By (2.27), we always have
∫

G(s,r)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt) ≤ (

K2,8 n τ(2r)
)n

. (2.31)

Given ξ ∈ Rd\{0}, we take r = φ−1(|ξ|−2). It follows from Lemma 2.7 and (2.27) that
∫

G(s,r2k)\G(s,r2k−1)
exp

(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt)

≤ exp
(
− 1

2
K2,4 |ξ|2φ(r2k−1)

)
· (K2,8 n τ(2k+1r)

)n

≤ (
K2,8 n τ(2r)

)n exp
(
−K2,9 2k(2α−ε)

)
·Kkn

2,7
.

(2.32)

In deriving the last inequality, we have applied Lemma 2.1, the fact that φ
(
φ−1(x)

) ≥ x and
the doubling property of the function τ .

Combining Equations (2.30), (2.31) and (2.32), we derive an upper bound for the integral
in (2.30):

∫

RnN

exp
(
− 1

2
|ξ|2Ψ(s, t)

)
µn(dt) ≤ (

K2,8 n τ(2r)
)n

·
(

1 +
∞∑

k=1

exp
(
−K2,9 2k(2α−ε)

)
·Kkn

2,7

)

≤ Kn
2,10

nηn τ
(
2φ−1

(|ξ|−2
))n

,

(2.33)

where η = 1 + log K2,7/(2α − ε). Integrating both sides of (2.33) in µn(ds) and by (2.29), we
obtain the following moment estimate

E
(∣∣ν̂(ξ)

∣∣2n) ≤ Kn
2,10

nηn τ
(
2φ−1(|ξ|−2)

)n (2.34)

for all integers n ≥ 1.
Using the same argument as in Kahane ([12], pp. 254–255), we see that (2.34) implies that

almost surely

lim sup
m∈Zd,|m|→∞

∣∣ν̂(m)
∣∣

√
τ
(
2φ−1

(|m|−2
)) (

log |m|)η
< ∞. (2.35)

Therefore (2.28) follows from (2.35) and Lemma 1 of Kahane ([12], p.252). This finishes the
proof of Theorem 2.8. ¤
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Remark 2.9 There seems to be an error in the proof of Kahane ([12], p.266) between lines −7
and −5. The inequality (9) there should be modified as (2.34). Consequently, the conclusion
of his Theorem 1 on page 267 should be revised as in (2.28).

For a given Borel set E ⊂ RN , Theorem 2.8 allows us to determine easily the Fourier
dimension of X(E) for an (N, d)-Gaussian random field X satisfying (2.8).

Corollary 2.10 In addition to the condition of Theorem 2.8, we assume that for some positive
constants 0 < α < 1, K2,11 and K2,12,

K2,11r
2α ≤ φ(r) ≤ K2,12r

2α, ∀ r > 0 small enough. (2.36)

Then, for every Borel set E ⊂ RN with dimHE ≤ αd, X(E) is almost surely a Salem set with
Fourier dimension 1

α dimHE.

Remark 2.11 Condition (2.36) is satisfied if the spectral density f(λ) of Y satisfies

K2,13 |λ|−(2α+N) ≤ f(λ) ≤ K2,14 |λ|−(2α+N), ∀λ ∈ RN with |λ| large enough,

where 0 < α < 1, K2,13 and K2,14 are positive and finite constants. In order for Condition (2.8)
to hold, we require K2,14α/K2,13 < 1. Clearly, this condition is satisfied by both fractional
Brownian motion Bα and fractional Riesz-Bessel motion with indices β and γ such that γ +
β − N

2 < 1.

Proof of Corollary 2.10 Without loss of generality, we assume E is a bounded set, thus
E ⊆ [−T, T ]N for some constant T > 0. For any γ ∈ (0,dimHE), Frostman’s lemma implies
that there is a probability measure µ on E such that µ(B(x, r)) ≤ K rγ for all x ∈ RN and
r > 0. Again, let ν be the image measure of µ under X. Then Theorem 2.8 and (2.36) imply
that almost surely for some K = K(ω),

|ν̂(ξ)| ≤ K |ξ|−γ/(2α)
(
log |ξ|)η/2

, ∀ξ ∈ Rd\{0}. (2.37)

Thus dimFX(E) ≥ γ
α almost surely. Since γ ∈ (0,dimHE) is arbitrary, this yields dimFX(E)

≥ 1
α dimHE a.s.
On the other hand, (2.36) and Lemma 2.2 imply that X(t) satisfies almost surely a uniform

Hölder condition on [−T, T ]N of all orders smaller than α. Hence we have dimHX(E) ≤
1
α dimHE a.s. (cf. Kahane [12], Chapter 10). It follows that dimFX(E) = dimHX(E) =
1
α dimHE almost surely. Therefore, X(E) is almost surely a Salem set. ¤

By examining the proof of Theorem 2.8, we see that (2.28) holds as long as Ψ(s, t) ≥ K φ(r)
if t /∈ G(s, r). Hence, we can provide a more general result on Salem sets for (N, d)-Gaussian
random fields; see Theorem 2.12 below.

For this purpose, we only assume Y = {Y (t), t ∈ RN} is a real-valued, centered Gaussian
random field satisfying the following Condition (C1):

(i). There exist positive constants δ0, K2,15 ≤ K2,16 and a non-decreasing, continuous function
ψ : [0, δ0) → [0,∞) such that for all t ∈ RN and h ∈ RN with |h| ≤ δ0,

K2,15 ψ(|h|) ≤ E[(
Y (t + h)− Y (t)

)2] ≤ K2,16 ψ(|h|). (2.38)
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(ii). Let Ψ(s, t) and G(s, r) be defined by (2.15) and (2.16), respectively. Then there exists
a constant K2,17 > 0 such that

Ψ(s, t) ≥ K2,17 ψ(r) if t /∈ G(s, r). (2.39)

Theorem 2.12 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (2.24)
with Y satisfying Condition (C1). Moreover, we assume the function ψ is of order 2α, that is

2α = inf
{

β ≥ 0 : lim
r→0

ψ(r)
|r|β = ∞

}
= sup

{
β ≥ 0 : lim

r→0

ψ(r)
|r|β = 0

}
, (2.40)

and α ∈ (0, 1). Then for every Borel set E ⊂ RN with dimHE ≤ αd, X(E) is almost surely a
Salem set with Fourier dimension 1

α dimHE.

Proof As we mentioned above, the proof of Theorem 2.8 shows that the condition (2.39)
implies (2.28) [with φ replaced by ψ] for every µ satisfying (2.27). Hence the proof of Theorem
2.12 is similar to that of Corollary 2.10 with obvious modifications and is omitted. ¤

We expect that Theorem 2.12 and Theorem 3.2 in Section 3 are applicable to a wide
class of Gaussian random fields with stationary increments and discrete spectral measures. A
systematic treatment for such Gaussian random fields will have to be done elsewhere because
this would require methods that are different from those in Xiao [31] and the present paper. In
the following, we only give an example of stationary Gaussian processes with discrete spectrum
that satisfies Condition (C1), as well as Condition (C2) in Section 3.

Example 2.13 Let {Xn, Yn, n ≥ 0} be a sequence of independent standard normal random
variables. Then for each t ∈ R, the random Fourier series

Y (t) =
√

8
π

∞∑

n=0

1
2n− 1

(
Xn cos((2n− 1)t) + Yn sin((2n− 1)t)

)
(2.41)

converges almost surely (see Kahane [12]), and Y = {Y (t), t ∈ R} is a centered, periodic and
stationary Gaussian process with mean 0 and covariance function

R(s, t) = 1− 2
π
|s− t| for − π ≤ s− t ≤ π. (2.42)

It can be verified that the spectrum measure ∆ of Y is discrete with ∆({2n−1}) = (2n−1)−2

for all n ∈ N and (2.38) holds with ψ(r) = r. Now we show that (2.39) also holds.

Lemma 2.14 Let Y be the stationary Gaussian process defined by (2.41). Then for any in-
terval I ⊂ [−π, π] with length |I| ≤ π/2 there exists a constant 0 < K2,18 < ∞ such that

(i). for all r ∈ (0, π/2) and all s, t ∈ In with t /∈ G(s, r), we have Ψ(s, t) ≥ K2,18 r.

(ii). for all t ∈ I and all 0 < r ≤ min{|t|, π/2},
Var

(
Y (t)

∣∣ Y (s) : s ∈ I, |s− t| ≥ r
) ≥ K2,18 r. (2.43)
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Proof Since |I| ≤ π/2 it is easy to verify that the covariance function R(s, t) in (2.42) is
biconvex on I in the sense of Berman [3]. Denote I = [a, b]. It follows from Theorem 2.1 in [3]
that Y = {Y (t), t ∈ I} has the following representation

Y (t) = ξ1

√
R(a, b) +

2
π

(
B1(t)−B1(a)

)
+

2
π

(
B2(b)−B2(t)

)
, (2.44)

where ξ1 is a standard normal random variable, B1 = {B(t), t ∈ I} and B2 = {B2(t), t ∈ I}
are Brownian motions on I. All of the processes on the right-hand side of (2.44) are mutually
independent. Of course, the above representation can also be checked directly by verifying the
covariance functions.

Since Statement (i) of Lemma 2.7 holds for Brownian motion on I (see Kahane [12], p.
254), we derive from (2.44) that

Ψ(s, t) ≥ 2
( 2

π

)2
E

[ n∑

j=1

(
B1(tj)−B1(sj)

)]2

≥ K2,18 r. (2.45)

To prove (2.43), it is sufficient to show that for all positive integers k ≥ 1, all sj ∈ I with
|t− sj | ≥ r and cj ∈ R (1 ≤ j ≤ k), we have

E
[
Y (t)−

k∑

j=1

cjY (sj)
]2

≥ K2,18 r. (2.46)

By using (2.44) again, we have

E
[
Y (t)−

k∑

j=1

cjY (sj)
]2

≥
( 2

π

)2
E

[
B1(t)−

k∑

j=0

cjB1(sj)
]2

+
( 2

π

)2
E

[
B2(t)−

k+1∑

j=1

cjB2(sj)
]2

,

(2.47)

where s0 = a, sk+1 = b and

c0 = ck+1 = 1−
k∑

j=1

cj .

Hence (2.46) follows from (2.47) and the property of independent increments of Brownian
motion; see Lemma 4.3 in Khoshnevisan and Xiao [21] for details. This finishes the proof of
Lemma 2.14. ¤

We end this section with the following remark. There are other natural random mea-
sures associated to a Gaussian random field X such as the induced measure on the graph set
GrX(E) = {(t,X(t)) : t ∈ E} and the local time measure on the level set X−1(x) = {t ∈ RN :
X(t) = x}. It is of interest to study the asymptotic properties of the Fourier transforms of
these random measures at infinity, but they are more difficult to handle. The following is an
open question of Kahane ([14], p.155).

Question 2.15 Are the graph and level sets of a stochastic process such as fractional Brownian
motion Salem sets?
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3 Interior points

In this section, we will consider the images of a Gaussian random field X = {X(t), t ∈ RN} in
Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (3.1)

where X1, . . . , Xd are independent copies of a real-valued, centered Gaussian random field
Y = {Y (t), t ∈ RN}. We assume the following Condition (C2):

(i). there exist positive constants δ1, K3,1 ≤ K3,2 and a non-decreasing, continuous function
ψ : [0, δ1) → [0,∞) such that for all t ∈ RN and h ∈ RN with |h| ≤ δ1,

K3,1 ψ(|h|) ≤ E[(
Y (t + h)− Y (t)

)2] ≤ K3,2 ψ(|h|). (3.2)

(ii). For some interval I = [a, b] ⊆ RN , Y is strongly locally ψ-nondeterministic on I, that
is, there exist positive constants K3,3 and r2 such that for all t ∈ I and all 0 < r ≤
min{|t|, r2},

Var
(
Y (t)

∣∣Y (s) : s ∈ I, r ≤ |s− t| ≤ r2

) ≥ K3,3 ψ(r). (3.3)

Remark 3.1 Condition (C2) is very useful in studying sample path properties of Gaussian
random fields, see Xiao [31] and the references therein. It can be seen that Conditions (C2) and
(C1) are closely related. In particular, if a centered Gaussian random field Y = {Y (t), t ∈ RN}
has stationary increments with its spectral density f(λ) satisfying (2.8), then Lemmas 2.1, 2.2
and 2.7 in Section 2 and Theorem 2.5 in Xiao [31] imply that both Conditions (C1) and (C2)
are satisfied with ψ(r) = φ(r). Example 2.13 shows that this may still be true even if the
spectral measure of Y is not absolutely continuous. More examples of Gaussian random fields
satisfying both conditions (C1) and (C2) can be found in Xiao [31]. It is of interest to further
study the connections between these two conditions.

Using the Fourier transforms, it is easy to prove (cf. Kahane [12]) that, under (i) of
Condition (C2), if a Borel set E ⊂ RN carries a probability measure µ such that

∫

E

∫

E

1
ψ(|s− t|)d/2

µ(ds)µ(dt) < ∞, (3.4)

then almost surely, X(E) has positive d-dimensional Lebesgue measure. It is a natural question
to further study when X(E) has interior points. This question for Brownian motion was first
considered by Kaufman [17], and then extended by Pitt [24] and Kahane [12] [13] to fractional
Brownian motion.

The following is our main result of this section which gives a sufficient condition for X(E)
to have interior points. When applied to fractional Brownian motion, Theorem 3.2 improves
the results of Kaufman [17], Pitt [24] and Kahane [12] [13] mentioned in the Introduction.

Theorem 3.2 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (3.1)
with Y satisfying Condition (C2). If a Borel set E ⊂ I has positive capacity with respect to
the kernel κ(r) = ψ(r)−d/2 log2γ(1/ψ(r)) with γ > 1, that is, E carries a probability measure
µ such that

sup
t∈RN

∫

E

1
ψ(|s− t|)d/2

log2γ

(
1

ψ(|s− t|)
)

µ(ds) ≤ K3,4 (3.5)
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for some finite constant K3,4 > 0. Then X(E) has interior points almost surely.

The following is a direct consequence of Theorem 3.2 and Frostman’s theorem (cf. Kahane
[12] or Khoshnevisan [20]). It is more convenient to use.

Corollary 3.3 Under the conditions of Theorem 3.2, let α∗ be the upper index of Y defined
by

α∗ =
1
2

inf
{

β ≥ 0 : lim
r→0

ψ(r)
|r|β = ∞

}
. (3.6)

If E ⊂ I is a Borel set with dimHE > α∗d, then X(E) a.s. has interior points.

For the proof of Theorem 3.2, we need several lemmas. Lemmas 3.4 and 3.6 are due to
Cuzick and DuPreez [9], and Lemma 3.5 is a slight modification of their Lemma 3.

Lemma 3.4 Let {Zi}n
i=1 be linearly-independent centered Gaussian variables. If g : R → R+

is a Borel measurable function, then
∫

Rn

g(v1) e−
1
2
Var(〈v,Z〉) dv =

(2π)(n−1)/2

Q1/2

∫ ∞

−∞
g(z/σ1) e−

1
2
z2

dz, (3.7)

where σ2
1 = Var(Z1 |Z2, . . . , Zn), and Q = det Cov(Z1, . . . , Zn) denotes the determinant of the

covariance matrix of Z.

Lemma 3.5 Assume p(y) is positive and non-decreasing on (0,∞), p(0) = 0, yn/pn(y) is
non-decreasing on [0, 1], and

∫∞
1 p−2(y)dy < ∞. Then there exists a constant K3,5 such that

for all integers n ≥ 1, ∫ ∞

0

| exp(ivy)− 1|n
pn(y)

dy ≤ Kn
3,5

p−n
+

(1
v

)
, (3.8)

where p+(y) = min{1, p(y)}.

Lemma 3.6 For α ≥ e2/2,
∫ ∞

1
(log x)α exp

(
− x2

2

)
dx ≤ √

π (log α)α. (3.9)

We will also make use of the following elementary formula to estimate the determinant of
the covariance matrix of a Gaussian vector Z:

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

j=2

Var
(
Zj

∣∣ {Zi}i≤j−1

)
. (3.10)

For completeness, we state the following basic result of Garsia [10].

Lemma 3.7 [Garsia’s Lemma] Assume that p(u) and Ψ(u) are two positive increasing func-
tions on [0,∞), p(u) ↓ 0 as u ↓ 0, Ψ(u) is convex and Ψ(u) ↑ ∞ as u ↑ ∞. Let D denote an
open hypercube in Rd. If the function f(x) is measurable in D and

A := A(D, f) =
∫

D

∫

D
Ψ

( |f(x)− f(y)|
p(|x− y|/

√
d)

)
dxdy < ∞, (3.11)
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then after modifying f(x) on a set of Lebesgue measure 0, we have

|f(x)− f(y)| ≤ 8
∫ |x−y|

0
Ψ−1

( A

u2d

)
dp(u) for all x, y ∈ D.

Proof of Theorem 3.2 By the Choquet capacity theorem, we may and will assume that E
is compact. Moreover, we will assume that diamE is small such that, say, ψ(diamE) < 1/e.

As in Section 2, let ν be the image measure of µ under the mapping t 7→ X(t). If ν ¿ λd,
where λd is the Lebesgue measure in Rd, then X is said to have a local time on E. The
local time lµ(x) is defined to be the Radon–Nikodým derivative dν/dλd(x) and it satisfies the
following occupation density formula: for all Borel measurable functions f : Rd → R+,

∫

E
f(X(s))µ(ds) =

∫

Rd

f(x)lµ(x) dx. (3.12)

It is known from Geman and Horowitz [11] or Kahane [12] that, when (3.4) holds, lµ(x) ∈
L2(Rd) a.s.

Since X(E) is a compact subset of Rd, (3.12) implies that {x : lµ(x) > 0} is a subset of
X(E). Hence, in order to prove our theorem, it is sufficient to prove that the local time lµ(x)
has a version which is continuous in x; see Pitt ([24], p. 324) or Geman and Horowitz ([11], p.
12). This will be proved by the moment method and Garsia’s continuity lemma.

Let γ > 1 be the constant in Theorem 3.2. We define

p(u) =





0 if u = 0,

log−γ
(

e
√

d
|u|

)
if 0 < |u| ≤ 1,

γ|u| − γ + 1, if |u| > 1.

Clearly, the function p(u) is symmetric on R, strictly increasing on [0,∞) and p(u) ↓ 0 as u ↓ 0.
The following lemma gives the key estimate for finishing the proof of Theorem 3.2.

Lemma 3.8 Let D ⊂ Rd be a hypercube. Then there exists a finite constant K3,6 > 0, depend-
ing on N, d, γ, µ and D only, such that for all even integers n ≥ 2,

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy ≤ Kn
3,6

n! (log n)nγ . (3.13)

We now continue with the proof of Theorem 3.2 and defer the proof of Lemma 3.8 to the
end of this section.

Let Ψ(u) = u exp(uθ), where θ ∈ (1/γ, 1) is a constant. Then Ψ is increasing and convex
on (0,∞). It follows from Jensen’s inequality and Lemma 3.8 that for all closed hypercubes
D ⊂ Rd and all integers n with θ + 1/n < 1,

E
∫

D

∫

D

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)nθ+1

dxdy

≤ K

{
E

∫

D

∫

D

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)n

dxdy

}θ+1/n

≤ Kn (n!)θ+1/n (log n)nγ(θ+1/n)

≤ Kn
3,7

(n!)θ (log n)nγθ,

(3.14)
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where K3,7 is a finite constant depending on N, d, θ, D and K3,6 only.
Expanding Ψ(u) into a power series and applying the above inequality, we derive

E
∫

D

∫

D
Ψ

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)
dxdy

=
∞∑

n=0

1
n!
E

∫

D

∫

D

( |lµ(x)− lµ(y)|
p(|x− y|/

√
d)

)nθ+1

dxdy < ∞,

(3.15)

the last inequality follows from the fact that θ < 1. Hence Garsia’s lemma implies that there
are positive and finite random variables A1 and A2 such that for almost all x, y ∈ D with
|x− y| ≤ e−1,

|lµ(x)− lµ(y)| ≤
∫ |x−y|

0
Ψ−1

( A1

u2d

)
dp(u)

≤ A2

[
log

(
1/|x− y|)

]−(γ−1/θ)
.

Since we have chosen θ in such a way that γ > 1/θ, we see that X has almost surely a local
time lµ(x) on E that is continuous for all x ∈ D. By taking an increasing sequence of closed
hypercubes {Dn, n ≥ 1} such that Rd = ∪∞n=1Dn, we have proved that almost surely lµ(x) is
continuous for all x ∈ Rd. This completes the proof of Theorem 3.2. ¤

Finally, we prove Lemma 3.8.

Proof of Lemma 3.8 By Equation (25.7) in Geman and Horowitz [11], we have that for
every x, y ∈ Rd, and all even integers n ≥ 2,

E [(lµ(x)− lµ(y))n] = (2π)−nd

∫

En

∫

Rnd

n∏

j=1

[
e−i〈uj , x〉 − e−i〈uj , y〉

]

· exp
[
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)]

duµn(dt).

(3.16)

In the above, u = (u1, . . . , un), uj ∈ Rd for each j = 1, . . . , n and we will write it coordinatewise
as uj = (u1

j , . . . , u
d
j ).

Note that for u1, . . . , un, y ∈ Rd, the triangle inequality implies

n∏

j=1

∣∣∣ exp(−i〈uj , y〉)− 1
∣∣∣ =

n∏

j=1

∣∣∣∣ exp
(
− i

d∑

`=1

u`
j y`

)
− 1

∣∣∣∣

≤
n∏

j=1

∣∣∣∣
d∑

k=1

[
exp

(
− i

k∑

`=0

u`
j y`

)
− exp

(
− i

k−1∑

`=0

u`
j y`

)]∣∣∣∣ (y0 = u0
j = 0)

≤
n∏

j=1

[ d∑

k=1

∣∣ exp(−iuk
j yk)− 1

∣∣
]

=
∑ ′ n∏

j=1

∣∣ exp(−iu
kj

j ykj )− 1
∣∣,

(3.17)
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where the summation
∑

´ is taken over all sequences (k1, · · · , kn) ∈ {1, . . . , d}n.
Hence for any fixed hypercube D ⊂ Rd and any even integer n ≥ 2, we have

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy ≤ (2π)−nd
∑ ′ ∫

D

∫

D

∫

En

∫

Rnd

n∏

j=1

∣∣ exp(iukj

j (ykj − xkj ))− 1
∣∣

p(|y − x|/
√

d)
· exp

[
−1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)]

du µn(dt) dx dy

≤ (2π)−ndλd(D)
∑ ′ ∫

DªD

∫

En

∫

Rnd

n∏

j=1

∣∣ exp(iukj

j ykj )− 1
∣∣

p(|ykj |/
√

d)

· exp
[
−1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)]

du µn(dt) dy.

(3.18)

In the above, DªD = {x− y : x, y ∈ D}. We have made a change of variables and have used
the fact that p(|y|/

√
d) ≥ p(|yk|/

√
d) for all k = 1, . . . , d. Also note that (3.5) implies that µ

has no atom and thus Fubini’s theorem implies that

µn{t = (t1, . . . , tn) : ti = tj for some i 6= j} = 0. (3.19)

Hence the integral in (3.18) with respect to µn can be taken over the set En
6= = {t ∈ En :

t1, . . . , tn are distinct}.
Now we fix t ∈ En

6=, a sequence (k1, . . . , kn) ∈ {1, . . . , d}n and consider the integral

Mn =
∫

DªD

∫

Rnd

n∏

j=1

∣∣ exp(iukj

j ykj )− 1
∣∣

p(|ykj |/
√

d)
exp

[
−1

2
Var

( n∑

j=1

〈uj , X(tj)
)]

du dy. (3.20)

Since t1, . . . , tn ∈ E are distinct, (3.10) and (ii) of Condition (C2) imply that the Gaussian
random variables Xk(tj) (k = 1, . . . , d, j = 1, . . . , n) are linearly independent. Hence by
applying the generalized Hölder’s inequality, Lemma 3.4 and Lemma 3.5, we derive that Mn

is bounded by

n∏

j=1

{∫

R

∫

Rnd

[ | exp(iukj

j ykj )− 1|
p(|ykj |/

√
d)

]n

exp
[
−1

2
Var

( n∑

j=1

d∑

`=1

u`
jX`(tj)

)]
du dykj

}1/n

=
(2π)n(d−1)/2

[detCov(Y (t1), . . . , Y (tn))]d/2

·
n∏

j=1

{ ∫

R

∫

R

∣∣ exp
(
iu

kj

j ykj/σj

)− 1
∣∣n

pn(|ykj |/
√

d)
exp

(
−(ukj

j )2

2

)
dykj du

kj

j

}1/n

≤ Kn
3,8

[detCov(Y (t1), . . . , Y (tn))]d/2

n∏

j=1

[ ∫ ∞

0
p−n
+

( σj

v
√

d

)
exp

(
−v2

2

)
dv

]1/n

,

(3.21)

where K3,8 > 0 is a constant depending on D and K3,5 in Lemma 3.5, and σ2
j is the conditional

variance of Xkj (tj) given X`(ti) (` 6= kj or ` = kj , i 6= j).
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Since

p−n
+ (x/

√
d) =

{
lognγ

(
e/x

)
, if 0 < x < 1,

1 if x ≥ 1.

and logα
+(xy) ≤ 2α(logα

+ x + logα
+ y) for all α ≥ 0, where log+ x = max{1, log x}, we deduce

∫ ∞

0
p−n
+

(
σj

v
√

d

)
exp

(
−v2

2

)
dv ≤

∫

σj/v≥1
exp

(
− v2

2

)
dv

+ 2nγ

∫

σj/v<1
lognγ

+ (v) exp
(
−v2

2

)
dv

+ 2nγ

∫

σj/v<1
lognγ

+

( e

σj

)
exp

(
−v2

2

)
dv.

(3.22)

By Lemma 3.6, for n large enough, the above is bounded by

Kn

[
lognγ

+

( e

σj

)
+

(
log(nγ)

)nγ
]
≤ Kn

3,9

[
lognγ

+

( e

σj

)](
log n

)nγ
. (3.23)

It follows from (3.18), (3.20), (3.21), (3.22) and (3.23) that

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy ≤ Kn
3,10

λd(D)(log n)nγ

·
∫

En
6=

1
[detCov(Y (t1), . . . , Y (tn))]d/2

n∏

j=1

logγ
+

( e

σj

)
µn(dt).

(3.24)

Using again the independence of X1, . . . , Xd and Condition (C2), we deduce that

σ2
j = Var

(
Xkj

(tj)
∣∣∣X`(ti), ` 6= kj or ` = kj , i 6= j

)

= Var
(
Xkj (tj)

∣∣Xkj (ti), i 6= j
)

≥ K3,3 ψ
(
min{|tj − ti|, i = 0 or i 6= j}), (t0 = 0).

(3.25)

Now, for any fixed t = (t1, . . . , tn) ∈ En
6=, we define a permutation π of {1, · · · , n} such that

|tπ(1)| = min{|ti|, i = 1, · · · , n},
|tπ(j) − tπ(j−1)| = min

{
|ti − tπ(j−1)|, i ∈ {1, · · · , n}\{π(1), · · · , π(j − 1)}

}
.

(3.26)

Notice that the integrand on the right-hand side of (3.24) is permutation invariant in t1, . . . , tn.
So by (3.25), (3.26) and the fact that diamE is small, we can write

n∏

j=1

logγ
+

( e

σj

)
≤

n∏

j=1

logγ
+

(
K3,11

ψ(min{|tπ(j) − ti| : i = 0 or i 6= π(j)})
)

≤ Kn
3,12

n∏

j=1

logγ
+

(
1

ψ(min{|tπ(j) − tπ(j−1)|, |tπ(j+1) − tπ(j)|})
)

≤ Kn
3,12

n∏

j=1

log2γ
+

(
1

ψ(|tπ(j) − tπ(j−1)|)
)

.

(3.27)
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Combining (3.10) and (3.27), we obtain

1
[detCov(Y (t1), . . . , Y (tn))]d/2

n∏

j=1

logγ
+

( e

σj

)

≤ Kn
3,13

n∏

j=1

1
ψ(|tπ(j) − tπ(j−1)|)d/2

log2γ
+

(
1

ψ(|tπ(j) − tπ(j−1)|)
)

.

(3.28)

Define Γπ = {t ∈ En
6= : t satisfies (3.26)} and write Γπ as Γ when π is the identity

permutation. It follows from (3.24), the permutation invariance of the integrand in its right-
hand side, (3.28) and (3.5) that

E
∫

D

∫

D

(
lµ(x)− lµ(y)
p(|x− y|/

√
d)

)n

dxdy

≤ Kn
3,14

n! (log n)nγ

∫

Γ

n∏

j=1

1
ψ(|tj − tj−1|)d/2

log2γ
+

(
1

ψ(|tj − tj−1|)
)

µn(dt)

≤ Kn
3,6

n! (log n)nγ .

(3.29)

This finishes the proof of Lemma 3.8. ¤

Remark 3.9 Let X1, . . . , Xd be independent Gaussian random fields such that for each
j = 1, . . . , d, Xj satisfies Condition (C2) for some function ψj . Then the (N, d)-Gaussian field
X = {X(t), t ∈ RN} defined by X(t) = (X1(t), . . . , Xd(t)) is anisotropic in Rd. Theorem 3.2
can be extended to such (N, d)-Gaussian random fields. We leave the details to the interested
reader.

Question 3.10 We have mentioned that, if E ⊂ RN carries a probability measure µ such
that (3.4) holds [i.e., Capψ−d/2(E) > 0], then X(E) a.s. has positive Lebesgue measure. It
is an open problem to find a necessary and sufficient condition on E for E[λd(X(E))] > 0.
This problem has a long history and is closely related to potential theory of Gaussian random
fields, see Khoshnevisan [20] for more information. For (N, d)-Gaussian random fields, the only
known result is the following due to Khoshnevisan [19] for N = 2 and Khoshnevisan and Xiao
[21] for general N : If W = {W (t), t ∈ RN

+} is the Brownian sheet [or an additive Brownian
motion] in Rd and E ⊂ RN

+ is a Borel set, then E[λd(W (E))] > 0 if and only if Capd/2(E) > 0.
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