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Abstract

Anisotropic Gaussian random fields arise in probability theory and in various applications.
Typical examples are fractional Brownian sheets, operator-scaling Gaussian fields with station-
ary increments, and the solution to the stochastic heat equation.

This paper is concerned with sample path properties of anisotropic Gaussian random fields
in general. Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd and with
parameters H1, . . . , HN . Our goal is to characterize the anisotropic nature of X in terms of its
parameters explicitly.

Under some general conditions, we establish results on the modulus of continuity, small ball
probabilities, fractal dimensions, hitting probabilities and local times of anisotropic Gaussian
random fields. An important tool for our study is the various forms of strong local nondeter-
minism.
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1 Introduction

Gaussian random fields have been extensively studied in probability theory and applied in a wide
range of scientific areas including physics, engineering, hydrology, biology, economics and finance.
Two of the most important Gaussian random fields are respectively the Brownian sheet and frac-
tional Brownian motion.

The Brownian sheet W = {W (t), t ∈ RN
+}, which was first introduced by a statistician J.

Kitagawa in 1951, is a centered Gaussian random field with values in Rd and covariance function
given by

E
[
Wi(s)Wj(t)

]
= δij

N∏

k=1

sk ∧ tk, ∀s, t ∈ RN
+ , (1.1)

where δij = 1 if i = j and 0 if i 6= j. When N = 1, W is the ordinary Brownian motion in Rd.
For N ≥ 2, W has independent increments over disjoint intervals in RN

+ and such increments are
stationary. We refer to Adler (1981) and Khoshnevisan (2002) for systematic accounts on properties
of the Brownian sheet and to Walsh (1986) and the articles in this volume for its important roles
in stochastic partial differential equations.

For a fixed constant 0 < α < 1, an (N, d)-fractional Brownian motion with index α is a centered
Gaussian random field Xα = {Xα(t), t ∈ RN} with values in Rd and covariance function given by

E
[
Xα

i (s)Xα
j (t)

]
=

1
2
δij

(
|s|2α + |t|2α − |s− t|2α

)
, ∀s, t ∈ RN , (1.2)

where | · | denotes the Euclidean norm in RN . The existence of Xα follows from the positive semi-
definiteness of the kernel on the right hand side of (1.2); see Samorodnitsky and Taqqu (1994) for
a proof. When N = 1 and α = 1/2, Xα is again the Brownian motion in Rd; when N > 1, α = 1/2
and d = 1, it is the multiparameter Brownian motion introduced by P. Lévy; see Kahane (1985)
and Samorodnitsky and Taqqu (1994) for more historical information, probabilistic and statistical
properties of fractional Brownian motion.

By using (1.2) one can verify that Xα is self-similar with exponent α, i.e. for every constant
c > 0, {

Xα(ct), t ∈ RN
} d=

{
cαXα(t), t ∈ RN

}
, (1.3)

where d= means equality in finite dimensional distributions. Moreover, Xα has stationary increments
in the strong sense; see Section 8.1 of Samorodnitsky and Taqqu (1994). In particular, X is isotropic
in the sense that the distribution of X(s) −X(t) depends only on the Euclidean distance |s − t|.
Fractional Brownian motion is naturally related to long range dependence which makes it important
for modelling phenomena with self-similarity and/or long memory properties. In the last decade the
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literature on statistical analysis and applications of fractional Brownian motion has grown rapidly
[cf. Doukhan et al. (2003)].

On the other hand, many data sets from various areas such as image processing, hydrology,
geostatistics and spatial statistics have anisotropic nature in the sense that they have different
geometric and probabilistic characteristics along different directions, hence fractional Brownian
motion is not adequate for modelling such phenomena. Many people have proposed to apply
anisotropic Gaussian random fields as more realistic models. See, for example, Davies and Hall
(1999), Bonami and Estrade (2003) and Benson, et al. (2006).

Several classes of anisotropic Gaussian random fields have been introduced for theoretical and
application purposes. For example, Kamont (1996) introduced fractional Brownian sheets [see the
definition in Section 2.1] and studied some of their regularity properties. Benassi et al. (1997) and
Bonami and Estrade (2003) considered some anisotropic Gaussian random fields with stationary
increments. Biermé et al. (2007) constructed a large class of operator self-similar Gaussian or
stable random fields with stationary increments. Anisotropic Gaussian random fields also arise
naturally in stochastic partial differential equations [see, e.g., Dalang (1999), Mueller and Tribe
(2002), Øksendal and Zhang (2000), Nualart (2006)]; and in studying the most visited sites of
symmetric Markov processes [Eisenbaum and Khoshnevisan (2002)]. Hence it is of importance in
both theory and applications to investigate the probabilistic and statistical properties of anisotropic
random fields.

This paper is concerned with sample path properties of anisotropic Gaussian random fields in
general. From the recent works on fractional Brownian sheets [see Section 2.1 for a list of references]
it is known that the behavior of anisotropic Gaussian random fields may differ significantly from
those of the Brownian sheet and fractional Brownian motion. Our objective is to gather and develop
some general methods for studying the analytic and geometric properties of anisotropic Gaussian
fields. In particular our results are applicable to the solutions of stochastic partial differential equa-
tions including the stochastic heat and wave equations. In a similar vein, Pitt and Robeva (2003),
Robeva and Pitt (2004), Balan and Kim (2006) have proposed to study the Markov properties of
(anisotropic) Gaussian random fields and the solutions to the stochastic heat equations.

The rest of this paper is organized as follows. Section 2 contains definitions and basic proper-
ties of several classes of anisotropic Gaussian random fields including fractional Brownian sheets,
Gaussian random fields with stationary increments and solutions to stochastic partial differential
equations. We also provide the general conditions [i.e., Conditions (C1), (C2), (C3) and (C3′)] for
the Gaussian random fields that will be studied in this paper.

An important technical tool in this paper is the properties of strong local nondeterminism for
anisotropic Gaussian random fields, extending the concept of local nondeterminism first introduced
by Berman (1973) for Gaussian processes. In Section 3, we recall the recent result of Wu and
Xiao (2007) on the property of sectorial local nondeterminism for fractional Brownian sheets; and
we prove a sufficient condition for an anisotropic Gaussian field with stationary increments to be
strongly locally nondeterministic (with respect to an appropriate metric).

Section 4 is concerned with analytic and asymptotic properties of the sample functions of
anisotropic Gaussian fields. We summarize three methods for deriving a sharp modulus of continuity
for all anisotropic Gaussian random fields satisfying Condition (C1). The first method is to use
an extension of the powerful Garsia-Rodemich-Rumsey continuity lemma [see Arnold and Imkeller
(1996), Funaki, Kikuchi and Potthoff (2006), Dalang, Khoshnevisan and Nualart (2007a)]; the
second is the “minorizing metric” method of Kwapień and Risiński (2004); and the third is based
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on the Gaussian isoperimetric inequality. While the first two methods have wider applicability, the
third method produces more precise results for Gaussian random fields.

Section 5 provides an application of strong local nondeterminism in studying small ball proba-
bilities of anisotropic Gaussian fields.

In Section 6, we consider the Hausdorff and packing dimensions of the range X([0, 1]N ) =
{X(t), t ∈ [0, 1]N} and graph GrX([0, 1]N ) = {(t,X(t)), t ∈ [0, 1]N} of X. Due to anisotropy,
these results are different from the corresponding results for fractional Brownian motion and the
Brownian sheet. We also establish an explicit formula for the Hausdorff dimension of the image
X(E) in terms of the generalized Hausdorff dimension of E (with respect to an appropriate metric)
and the Hurst index H. Moreover, when H = 〈α〉 [see below for the notation], we prove the following
uniform Hausdorff dimension result for the images of X: If N ≤ αd, then with probability one,

dimHX(E) =
1
α

dimHE for all Borel sets E ⊆ (0,∞)N . (1.4)

This extends the previous results of Monrad and Pitt (1987), Mountford (1989) and Khoshnevisan,
Wu and Xiao (2006) for fractional Brownian motion and the Brownian sheet, respectively, and is
another application of the strong local nondeterminism.

In Section 7, we determine the Hausdorff and packing dimensions of the level sets, and establish
estimates on the hitting probabilities of Gaussian random fields X satisfying Conditions (C1) and
(C2).

In Section 8, we study the existence and joint continuity of local times of anisotropic Gaussian
random fields under Conditions (C3) and (C3′). Moreover, we discuss local and uniform Hölder
conditions of the local times in the set variable and show their applications in evaluating the exact
Hausdorff measure of the level sets of X.

We end the Introduction with some notation. Throughout this paper, the underlying parameter
space is RN or RN

+ = [0,∞)N . We use | · | to denote the Euclidean norm in RN . The inner product
and Lebesgue measure in RN are denoted by 〈·, ·〉 and λN , respectively. A typical parameter,
t ∈ RN is written as t = (t1, . . . , tN ), or as 〈c〉 if t1 = · · · = tN = c. For any s, t ∈ RN such that
sj < tj (j = 1, . . . , N), [s, t] =

∏N
j=1 [sj , tj ] is called a closed interval (or a rectangle). We will let A

denote the class of all closed intervals in RN . For two functions f and g, the notation f(t) ³ g(t)
for t ∈ T means that the function f(t)/g(t) is bounded from below and above by positive constants
that do not depend on t ∈ T .

We will use c to denote an unspecified positive and finite constant which may not be the same
in each occurrence. More specific constants in Section i are numbered as ci,1 , ci,2 , . . ..

Acknowledgments. This paper is based on lectures given at the Minicourse on Stochastic Partial
Differential Equations held at the University of Utah during May 8–19, 2006. The author thanks the
organizers, Davar Khoshnevisan and Firas Rassoul-Agha, for their invitation and encouragement.
He is also indebted to the participants of the Minicourse for stimulating conversations, to Hermine
Bierimé, Erkan Nane, Mark M. Meerschaert, Wensheng Wang, Dongsheng Wu for their comments
on the manuscript which have led to many improvements of this paper.
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2 Examples and general assumptions

In this section, we give some important examples of anisotropic Gaussian random fields, among
them, fractional Brownian sheets are the most studied. We will show that the methods for studying
fractional Brownian sheets can be modified to investigate sample path properties of anisotropic
Gaussian random fields in general. In §2.4, we provide the general conditions for the Gaussian
random fields that will be studied in this paper.

Even though anisotropic random fields generally do not satisfy the ordinary self-similarity (1.3),
they may have certain operator-scaling properties. Following the terminology of Biermé et al.
(2007), we say that a random field X = {X(t), t ∈ RN} is operator-self-similar [or operator-
scaling ] in the time variable if there exist a linear operator A on RN with positive real parts of the
eigenvalues and some constant β > 0 such that

{
X(cA t), t ∈ RN

} d=
{
cβ X(t), t ∈ RN

}
, ∀ c > 0. (2.1)

In the above, cA is the linear operator defined by cA =
∑∞

n=0
(ln c)nAn

n! . The linear operator A is
called a self-similarity exponent [which may not be unique].

There is also a notion of operator-self-similarity in the space variable [cf. e.g., Mason and Xiao
(2001), Xiao (1995)], which will not be discussed in this paper.

2.1 Fractional Brownian sheets

Fractional Brownian sheets were first introduced by Kamont (1996) who also studied some of their
regularity properties. For a given vector H = (H1, . . . , HN ) ∈ (0, 1)N , an (N, 1)-fractional Brownian
sheet BH

0 = {BH
0 (t), t ∈ RN} with Hurst index H is a real-valued, centered Gaussian random field

with covariance function given by

E
[
BH

0 (s)BH
0 (t)

]
=

N∏

j=1

1
2

(
|sj |2Hj + |tj |2Hj − |sj − tj |2Hj

)
, s, t ∈ RN . (2.2)

It follows from (2.2) that BH
0 (t) = 0 a.s. for every t ∈ RN with at least one zero coordinate.

Note that if N = 1, then BH
0 is a fractional Brownian motion in R with Hurst index H1 ∈ (0, 1);

if N > 1 and H = 〈1/2〉, then BH is the Brownian sheet in R. Hence BH
0 can be regarded as a

natural generalization of one parameter fractional Brownian motion as well as a generalization of
the Brownian sheet.

It follows from (2.2) that BH
0 has the following operator-scaling property: For all constants

c > 0, {
BH

0 (cAt), t ∈ RN
} d=

{
cN BH

0 (t), t ∈ RN
}

, (2.3)

where A = (aij) is the N × N diagonal matrix with aii = 1/Hi for all 1 ≤ i ≤ N and aij = 0 if
i 6= j. Thus, BH

0 is operator-self-similar with exponent A and β = N .
The covariance structure of BH

0 is more complicated than those of fractional Brownian motion
and the Brownian sheet. The following stochastic integral representations are useful. They were
established by Ayache et al. (2002) and Herbin (2006), respectively, and can be verified by checking
the covariance functions.
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• Moving average representation:

BH
0 (t) = κ−1

H

∫ t1

−∞
· · ·

∫ tN

−∞
g(t, s)W (ds), (2.4)

where W = {W (s), s ∈ RN} is a standard real-valued Brownian sheet and

g(t, s) =
N∏

j=1

[(
(tj − sj)+

)Hj−1/2 − (
(−sj)+

)Hj−1/2
]

with s+ = max{s, 0}, and where κH > 0 is a normalization constant.
To give a harmonizable representation for BH

0 , let us recall briefly the definition of a complex-
valued Gaussian measure. Let (E, E , ∆) be a measure space and let A = {A ∈ E : ∆(A) < ∞}.
We say that M̃ is a centered complex-valued Gaussian measure on (E, E ,∆) if {M̃(A), A ∈ A} is
a centered complex-valued Gaussian process satisfying

E
(M̃(A)M̃(B)

)
= ∆(A ∩B) and M̃(−A) = M̃(A)

for all A, B ∈ A. The measure ∆ is called the control measure of M̃. For any complex valued
function f̃ ∈ L2(E, E , ∆), the stochastic integral

∫
E f̃(ξ)M̃(dξ) can be defined; see, e.g., Section

7.2.2 of Samorodnitsky and Taqqu (1994). With this notion, we give the following
• Harmonizable representation:

BH
0 (t) = K−1

H

∫

RN

ψt(λ) W̃ (dλ), (2.5)

where W̃ is a centered complex-valued Gaussian random measure in RN with Lebesgue control
measure and

ψt(λ) =
N∏

j=1

eitjλj − 1

|λj |Hj+
1
2

,

where KH > 0 is a constant. Recently, Wang (2007) gave another stochastic integral representation
for BH

0 .
Let BH

1 , . . . , BH
d be d independent copies of BH

0 . Then the (N, d)-fractional Brownian sheet
with Hurst index H = (H1, . . . , HN ) is the Gaussian random field BH = {BH(t) : t ∈ RN} with
values in Rd defined by

BH(t) =
(
BH

1 (t), . . . , BH
d (t)

)
, t ∈ RN . (2.6)

Several authors have studied various properties of fractional Brownian sheets. For example,
Ayache et al. (2002) provided the moving average representation (2.4) for BH

0 and studied its
sample path continuity as well as its continuity in H. Dunker (2000), Mason and Shi (2001),
Belinski and Linde (2002), Kühn and Linde (2002) studied the small ball probabilities of BH

0 .
Mason and Shi (2001) also computed the Hausdorff dimension of some exceptional sets related to
the oscillation of the sample paths of BH

0 . Ayache and Taqqu (2003) derived an optimal wavelet
series expansion for fractional Brownian sheet BH

0 ; see also Kühn and Linde (2002), Dzhaparidze
and van Zanten (2005) for other optimal series expansions for BH

0 . Stochastic partial differential
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equations driven by fractional Brownian sheets have been studied by Øksendal and Zhang (2000),
and by Hu, Øksendal and Zhang (2000).

For fractal properties, Kamont (1996) and Ayache (2004) studied the box and Hausdorff dimen-
sions of the graph set of an (N, 1)-fractional Brownian sheet. Ayache and Xiao (2005) investigated
the uniform and local asymptotic properties of BH by using wavelet methods, and determined
the Hausdorff dimensions of the image BH([0, 1]N ), the graph GrBH([0, 1]N ) and the level set
Lx = {t ∈ (0,∞)N : BH(t) = x}, where x ∈ Rd. Further results on the geometric and Fourier
analytic properties of the images of BH can be found in Wu and Xiao (2007).

Xiao and Zhang (2002) studied the existence of local times of an (N, d)-fractional Brownian
sheet BH and proved a sufficient condition for the joint continuity of the local times. Ayache, Wu
and Xiao (2006) established the joint continuity of the local times under the optimal condition and
studied the local and uniform Hölder conditions for the maximum local times. Related to the above
results, we mention that Tudor and Xiao (2007) have obtained results on Hausdorff dimensions of
the sample paths, local times and their chaos expansion for (N, d)-bifractional Brownian sheets.

2.2 Anisotropic Gaussian random fields with stationary increments

Let X = {X(t), t ∈ RN} be a real-valued, centered Gaussian random field with X(0) = 0. We as-
sume that X has stationary increments and continuous covariance function R(s, t) = E

[
X(s)X(t)

]
.

According to Yaglom (1957), R(s, t) can be represented as

R(s, t) =
∫

RN

(ei〈s,ξ〉 − 1)(e−i〈t,ξ〉 − 1)∆(dξ) + 〈s, Θt〉, (2.7)

where 〈x, y〉 is the ordinary inner product in RN , Θ is an N ×N non-negative definite matrix and
∆(dξ) is a nonnegative symmetric measure on RN\{0} satisfying

∫

RN

|ξ|2
1 + |ξ|2 ∆(dξ) < ∞. (2.8)

The measure ∆ and its density (if it exists) f(ξ) are called the spectral measure and spectral density
of X, respectively.

It follows from (2.7) that X has the following stochastic integral representation:

X(t) =
∫

RN

(
ei〈t,ξ〉 − 1

)M̃(dξ) + 〈Y, t〉, (2.9)

where Y is an N -dimensional Gaussian random vector with mean 0 and covariance matrix Θ, and
where M̃ is a centered complex-valued Gaussian random measure in RN with control measure ∆,
which is independent of Y. Since the linear term 〈Y, t〉 in (2.9) will not have any effect on the
problems considered in this paper, we will from now on assume Y = 0. This is equivalent to
assuming Θ = 0 in (2.7). Consequently, we have

σ2(h) = E
[(

X(t + h)−X(t)
)2] = 2

∫

RN

(
1− cos 〈h, ξ〉) ∆(dξ). (2.10)

It is important to note that σ2(h) is a negative definite function [see Berg and Forst (1975)] and, by
the Lévy-Khintchine formula, can be viewed as the characteristic exponent of a symmetric infinitely
divisible distribution.
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If the function σ2(h) depends only on |h|, then X is called an isotropic random field. We say
that a Gaussian random field X is approximately isotropic if σ2(h) ³ φ(|h|) in a neighborhood of
h = 0 for some nonnegative function φ. Sample path properties of such Gaussian random fields
have been studied widely. See Xiao (1997b, 2007), Shieh and Xiao (2006) and the references therein
for more information. The results in Ayache and Xiao (2005), Wu and Xiao (2007) on fractional
Brownian sheets indicate that the properties of anisotropic Gaussian random fields can be very
different and often more difficult to be established.

Many Gaussian random fields can be constructed by choosing the spectral measures appropri-
ately. For example, if we consider the spectral density

f(ξ) =
1(∑N

j=1 |ξj |Hj

)2+Q
, ∀ξ ∈ RN\{0}, (2.11)

where the constants Hj ∈ (0, 1) for j = 1, . . . , N and Q =
∑N

j=1 H−1
j , then the corresponding

Gaussian random field X has stationary increments and is operator-self-similar with exponent
A = (aij), where aii = H−1

i and aij = 0 if i 6= j and β = 1. This Gaussian random field is similar
to that in Example 3 of Bonami and Estrade (2003).

The following class of Gaussian random fields constructed by Biermé, Meerschaert and Scheffler
(2007, Section 4) is more general.

Theorem 2.1 Let A be a real N ×N matrix with the real parts of the eigenvalues 1 < a1 ≤ a2 ≤
· · · ≤ aN and let Q = trace(A). If ψ : RN → [0,∞) is a continuous, A′-homogeneous function [
i.e., ψ(cA′ξ) = cψ(ξ) for all c > 0 and ξ ∈ RN . Here A′ denotes the transpose of A] such that
ψ(ξ) > 0 for ξ 6= 0. Then the Gaussian random field

Xψ(t) = Re
∫

RN

(
ei〈t,ξ〉 − 1

) W̃(dξ)
ψ(ξ)1+Q/2

, x ∈ RN , (2.12)

where W̃ is a centered complex-valued Gaussian random measure in RN with Lebesgue control
measure, has stationary increments and is operator-self-similar in the sense of (2.1) with exponent
A and β = 1.

Compared with (2.9), we see that the spectral measure of Xψ is ∆(dξ) = ψ(ξ)−(2+Q) dξ. As the
results of this paper will suggest, the sample functions of Xψ share many properties with fractional
Brownian sheets and many of them can be described in terms of the real parts of the eigenvalues
of A. See Biermé, Estrade, Meerschaert and Xiao (2008) for more details.

2.3 Solutions to stochastic partial differential equations

Gaussian random fields arise naturally as solutions to stochastic partial differential equations. In
the following we list as examples the solutions to the stochastic heat equation and stochastic wave
equation, and discuss possible ways to study their sample path properties using general methods
for Gaussian random fields. We refer to Walsh (1986), Dalang (1999), Dalang and Frangos (1998),
Dalang and Mueller (2003), Mueller and Tribe (2002), Dalang and Sanz-Solé (2005, 2007), Dalang,
Khoshnevisan and Nualart (2007a, 2007b) and the articles in this volume for more information.

2.3.1 The stochastic heat equation
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Funaki’s model for random string in R is specified by the following stochastic heat equation:

∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
+ Ẇ , (2.13)

where Ẇ (x, t) is an R-valued space-time white noise, which is assumed to be adapted with respect
to a filtered probability space (Ω,F ,Ft,P), where F is complete and the filtration {Ft, t ≥ 0} is
right continuous; see Funaki (1983) and Mueller and Tribe (2002) for more information.

Recall from Mueller and Tribe (2002) that a solution of (2.13) is defined as an Ft-adapted,
continuous random field {u(t, x), t ∈ R+, x ∈ R} with values in R satisfying the following properties:

(i) u(0, ·) ∈ Eexp almost surely and is adapted to F0, where Eexp = ∪λ>0Eλ and

Eλ =
{

f ∈ C(R) : |f(x)| e−λ|x| → 0 as |x| → ∞
}

;

(ii) For every t > 0, there exists λ > 0 such that u(s, ·) ∈ Eλ for all s ≤ t, almost surely;

(iii) For every t > 0 and x ∈ R, the following Green’s function representation holds

u(t, x) =
∫

R
G(t, x− y)u(0, y)dy +

∫ t

0

∫

R
G(t− r, x− y) W (dy dr), (2.14)

where G(t, x) = 1√
4πt

e−
x2

4t is the fundamental solution of the heat equation.

We call each solution {u(t, x), t ∈ R+, x ∈ R} of (2.13) a random string process with values in
R, or simply a random string as in Mueller and Tribe (2002). Note that, in general, a random
string may not be Gaussian, a powerful step in the proofs of Mueller and Tribe (2002) is to
reduce the problems about a general random string process to those of the stationary pinned string
U0 = {U0(t, x), t ∈ R+, x ∈ R}, obtained by taking the initial function u(0, ·) in (2.14) to be defined
by

u(0, x) =
∫ ∞

0

∫

R
(G(r, x− z)−G(r, z)) Ŵ (dzdr), (2.15)

where Ŵ is a space-time white noise independent of the white noise Ẇ . Consequently, the stationary
pinned string is a continuous version of the following Gaussian field

U0(t, x) =
∫ ∞

0

∫

R

(
G(t + r, x− z)−G(t + r, z)

)
Ŵ (dz dr)

+
∫ t

0

∫

R
G(r, x− z) W (dz dr),

(2.16)

Mueller and Tribe (2002) proved that the Gaussian field U0 = {U0(t, x), t ∈ R+, x ∈ R} has
stationary increments and satisfies the Conditions (C1) and (C2) in Section 2.4. Let U1, . . . , Ud be
d independent copies of U0, and consider the Gaussian random field U = {U(t, x), t ∈ R+, x ∈ R}
with values in Rd defined by U(t, x) = (U1(t, x), . . . , Ud(t, x)). Mueller and Tribe (2002) found
necessary and sufficient conditions [in terms of the dimension d] for U to hit points or to have
double points of various types. They also studied the question of recurrence and transience for
{U(t, x), t ∈ R+, x ∈ R}. Continuing the work of Mueller and Tribe (2002), Wu and Xiao (2006)
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studied the fractal properties of various random sets generated by the random string processes.
Further results on hitting probabilities of non-linear stochastic heat equations can be found in
Dalang et al. (2006, 2007).

On the other hand, Robeva and Pitt (2004, Proposition 3) showed that the Gaussian random
field

u0(t, x) =
1
2π

∫

R2

ei(ξ1t+ξ2x) − 1
iξ1 + ξ2

2

W̃(dξ1, dξ2), ∀ t ∈ R+, x ∈ R

is another solution to (2.13) satisfying u0(0, 0) = 0. Here W̃ is a centered complex Gaussian
random measure in R2 with Lebesgue control measure. This Gaussian random field has stationary
increments with spectral density

f(ξ) =
1

ξ2
1 + ξ4

2

.

This density function is comparable to (2.11) with H1 = 1/4, H2 = 1/2 and Q = 6. Hence, it
follows from Theorem 3.2 that the Gaussian field {u0(t, x), t ∈ R+, x ∈ R} satisfies the Conditions
(C1) and (C3′) in §2.4. If we define a (2, d)-Gaussian random field {u(t, x), t ∈ R+, x ∈ R} by
u(t, x) =

(
u1(t, x), . . . , ud(t, x)

)
, where u1, . . . , ud are independent copies of u0, then many of its

sample path properties follow from the results in later sections of this paper.
If x ∈ RN and N ≥ 2, the stochastic heat equation (2.13) has no process solution [the solution

is a random Schwartz distribution]. It might be helpful to remark that our random field notation
is different from that in the references on s.p.d.e.’s: now the parameter (t, x) ∈ RN+1 and Rd is
reserved for the state space of random fields.

The approach of Dalang (1999) is to replace Ẇ by a Gaussian noise Ḟ which is white in time
and has spatial covariance induced by a kernel f , which is the Fourier transform of a tempered
measure µ in RN . The covariance of F is of the form

E
(
F (dt, dx)F (ds, dy)

)
= δ(t− s)f(x− y), (2.17)

where δ(·) is the Dirac delta function. The case f(r) = δ(r) would correspond to the case of space-
time white noise. More precisely, let D(RN+1) be the topological space of functions φ ∈ C∞

0 (RN+1)
with the topology that corresponds to the following notion of convergence: φn → φ if and only if
the following two conditions hold:

(i). There exists a compact set K ⊆ RN+1 such that supp(φn − φ) ⊆ K for all n ≥ 1, and

(ii). limn→∞Daφn = Daφ uniformly on K for every multi-index a.

Let F = {F (φ), φ ∈ D(RN+1)} be an L2(Ω,F ,P)-valued, centered Gaussian process with covariance
of the form (φ, ψ) 7→ E

(
F (φ)F (ψ)

)
= J(φ, ψ), where

J(φ, ψ) =
∫

R+

dt

∫

RN

dx

∫

RN

φ(t, x)f(x− y)ψ(t, y) dy. (2.18)

As shown by Dalang (1999), φ 7→ F (φ) can be extended to a worthy martingale measure
(t, A) 7→ Mt(A) [in the sense of Walsh (1986, pages 289–290)] with covariance measure

Q([0, t]×A×B) = 〈M(A);M(B)〉t = t

∫

RN

dx

∫

RN

1A(x)f(x− y)1B(y) dy
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and dominating measure K ≡ Q such that

F (φ) =
∫

R+

∫

RN

φ(t, x)M(dt, dx), ∀φ ∈ D(RN+1).

Moreover, Dalang (1999) constructed generalized stochastic integrals with respect to the martingale
measure M .

Now we consider the stochastic heat equation with vanishing initial conditions, written formally
as

∂u(t, x)
∂t

= ∆u(t, x) + Ḟ , ∀(t, x) ∈ (0, T )× RN (2.19)

and u(0, ·) ≡ 0. Here T > 0 is any fixed constant and Ḟ is the Gaussian noise defined above.
Dalang (1999) proved that (2.19) has a process solution if and only if

∫

RN

1
1 + |ξ|2 µ(dξ) < ∞. (2.20)

Under this condition, the mean zero Gaussian field u = {u(t, x); t ∈ [0, T ], x ∈ RN} defined by

u(t, x) =
∫ T

0

∫

RN

G(t− s, x− y) M(ds, dy) (2.21)

is the process solution of the stochastic heat equation (2.19) with vanishing initial condition. In
the above, G(r, x) = (4πr)−N/2 exp

( − |x|2/(4r)
)

(r > 0, x ∈ RN ) is the fundamental solution of
the heat equation.

Many interesting examples can be constructed by choosing µ(dξ) suitably; see Dalang (1999)
and Balan and Kim (2006). As we mentioned in the Introduction, Robeva and Pitt (2004), and
Balan and Kim (2006) studied the Markov property of the solution of stochastic heat equation
(2.19). In view of the results in this paper, it would be interesting to see when the solutions of
(2.19) satisfy Conditions (C3) or (C3′) in §2.4.

2.3.2 The stochastic wave equation
The stochastic wave equation in one spatial dimension [i.e., N = 1]

∂2u(t, x)
∂2t

− ∂2u(t, x)
∂x2

= Ẇ (t, x), t > 0, x ∈ R, (2.22)

driven by the white noise was considered by Walsh (1986) and many other authors [see Dalang and
Frangos (1998) and Dalang and Mueller (2003) for a list of the references]. In spatial dimension
two or higher, however, the stochastic wave equation driven by the white noise has no solution in
the space of real valued measurable processes [see Walsh (1986)].

For N = 2, Dalang and Frangos (1998) considered the stochastic wave equation driven by the
Gaussian noise Ḟ with covariance (2.17):





∂2u(t,x)
∂t2

= ∆u(t, x) + Ḟ ,
u(0, x) = 0, ∀(t, x) ∈ (0,∞)× R2.
∂u
∂t (0, x) = 0,

(2.23)

11



They proved that (2.23) has a process solution u = {u(t, x) : t ≥ 0, x ∈ R2} if and only if
∫

0+
f(r) r log

(1
r

)
dr < ∞, (2.24)

where f is the kernel in (2.17). Under the latter condition, u = {u(t, x) : t ≥ 0, x ∈ R2} can be
represented as

u(t, x) =
∫ t

0

∫

R2

S(t− s, x− y) M(ds, dy), (2.25)

where S(t, x) = 1
2π (t2− |x|2)−1/21l{|x|<t}. Sample path regularity of the solution {u(t, x) : t ≥ 0, x ∈

R2} has been investigated by Dalang and Frangos (1998), and Dalang and Sanz-Solé (2005).
For the stochastic wave equation with spatial dimension three, we refer to Dalang and Mueller

(2003), and Dalang and Sanz-Solé (2007) for information on the existence of a process solution and
its sample path regularities. It seems that, in all the cases considered so far, the questions on fractal
properties, existence and regularity of the local times of the solutions remain to be investigated.

2.4 General assumptions

Let X = {X(t), t ∈ RN} be a Gaussian random field in Rd defined on some probability space
(Ω,F ,P) by

X(t) =
(
X1(t), . . . , Xd(t)

)
, t ∈ RN , (2.26)

where X1, . . . , Xd are independent copies of X0. We assume that X0 is a mean zero Gaussian
random field with X0(0) = 0 a.s.

Let (H1, . . . ,HN ) ∈ (0, 1)N be a fixed vector. In order to study anisotropic Gaussian fields, we
have found the following metric ρ on RN is often more convenient than the Euclidean metric:

ρ(s, t) =
N∑

j=1

|sj − tj |Hj , ∀ s, t ∈ RN . (2.27)

For any r > 0 and t ∈ RN , we denote by Bρ(t, r) = {s ∈ RN : ρ(s, t) ≤ r} the closed (or open) ball
in the metric ρ.

Let I ∈ A be a fixed closed interval, and we will consider various sample path properties of X(t)
when t ∈ I. For simplicity we will mostly assume I = [ε, 1]N , where ε ∈ (0, 1) is fixed. Typically,
the assumption for I to be away from the axis is only needed for Gaussian fields similar to fractional
Brownian sheets. Even in these later cases, many results, such as those on Hausdorff and packing
dimensions, remain to be true for I = [0, 1]N .

Many sample path properties of X can be determined by the following function:

σ2(s, t) = E
(
X0(s)−X0(t)

)2
, ∀s, t ∈ RN .

In this paper, we will make use of the following general conditions on X0:

(C1). There exist positive constants c2,1 , . . . , c2,4 such that

c2,1 ≤ σ2(t) := σ2(0, t) ≤ c2,2 , ∀ t ∈ I (2.28)
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and

c2,3

N∑

j=1

|sj − tj |2Hj ≤ σ2(s, t) ≤ c2,4

N∑

j=1

|sj − tj |2Hj (2.29)

for all s, t ∈ I. It may be helpful to note that (2.29) is in terms of ρ(s, t)2.

(C2). There exists a constant c2,5 > 0 such that for all s, t ∈ I,

Var
(
X0(t)

∣∣X0(s)
) ≥ c2,5 ρ(s, t)2.

Here and in the sequel, Var
(
Y

∣∣Z)
denotes the conditional variance of Y given Z.

(C3). There exists a constant c2,6 > 0 such that for all integers n ≥ 1 and all u, t1, . . . , tn ∈ I,

Var
(

X0(u) | X0(t1), . . . , X0(tn)
)
≥ c2,6

N∑

j=1

min
0≤k≤n

∣∣uj − tkj
∣∣2Hj ,

where t0j = 0 for every j = 1, . . . , N .

(C3′). There exists a constant c2,7 > 0 such that for all integers n ≥ 1 and all u, t1, . . . , tn ∈ I,

Var
(

X0(u) | X0(t1), . . . , X0(tn)
) ≥ c2,7 min

0≤k≤n
ρ(u, tk)2,

where t0 = 0.

Remark 2.2 The following are some remarks about the above conditions.

• Conditions (C1)–(C3) can be significantly weakened and/or modified in various parts of the
paper to obtain more general results. The present formulation of these conditions has the
advantage that it is more convenient and produces cleaner results.

• Condition (2.28) assumes that X is non-degenerate on I. If (2.29) holds for s = 0 as well,
then (2.28) is automatically true.

• Under condition (C1), X has a version which has continuous sample functions on I almost
surely. Henceforth we will assume without loss of generality that the Gaussian random field
X has continuous sample paths.

• Conditions (C1) and (C2) are related. It is easy to see that (C1) implies that Var
(
X0(t)

∣∣X0(s)
)

≤ c2,4

∑N
j=1 |sj − tj |2Hj for all s, t ∈ I and, on the other hand, (C2) implies σ2(s, t) ≥

c2,5

∑N
j=1 |sj − tj |2Hj . Moreover, if the function σ(0, t) satisfies certain smoothness condition,

say, it has continuous first order derivatives on I, then one can show that (C1) implies (C2)
by using the following fact [which can be easily verified]: If (U, V ) is a Gaussian vector, then

Var(U |V ) =

(
ρ2

U,V − (σU − σV )2
)(

(σU + σV )2 − ρ2
U,V

)

4σ2
V

, (2.30)

where ρ2
U,V = E

[
(U − V )2

]
, σ2

U = E(U2) and σ2
V = E(V 2).
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• Pitt (1978) proved that fractional Brownian motion Xα satisfies Condition (C3′) for all I ∈ A
with H = 〈α〉; Khoshnevisan and Xiao (2007a) proved that the Brownian sheet satisfies the
property (C3) with H = 〈1/2〉 for all I ∈ A which are away from the boundary of RN

+ . It
has been proved in Ayache and Xiao (2005), Wu and Xiao (2007) that, for every ε ∈ (0, 1),
fractional Brownian sheets satisfy Conditions (C1), (C2) and (C3) for all I ⊆ [ε,∞)N .

• Let X be a Gaussian random field with stationary increments and spectral density comparable
to (2.11). Then one can verify that X satisfies Condition (C1). In the next section, we will
prove that X satisfies Condition (C3′) [thus it also satisfies (C2)]. Therefore, all the results
in this paper are applicable to such Gaussian random fields.

• Note that Condition (C3′) implies (C3). It can be verified that the converse does not even
hold for the Brownian sheet [this is an exercise]. Roughly speaking, when H = 〈α〉, the
behavior of a Gaussian random field X satisfying conditions (C1) and (C3′) is comparable to
that of a fractional Brownian motion of index α; while the behavior of a Gaussian random field
X satisfying conditions (C1) and (C3) [but not (C3′)] is comparable to that of a fractional
Brownian sheet. Hence, in analogy to the terminology respectively for fractional Brownian
motion and the Brownian sheet, Condition (C3′) will be called the strong local nondeterminism
[in metric ρ] and Condition (C3) will be called the sectorial local nondeterminism.

• It is well-known that there is a tight relation between Gaussian processes and operators in
Hilbert spaces; see Li and Shao (2001) and the references therein. Recently Linde (2007)
has extended the notion of strong local nondeterminism to a linear operator u : H → C(T ),
where H is a real Hilbert space and C(T ) is the Banach space of continuous functions on the
compact metric space T , and applied this property to derive a lower bound for the entropy
number of u. As examples, Linde (2007) shows that the integral operators related to fractional
Brownian motion and fractional Brownian sheets are strongly locally nondeterministic in his
sense. Following this line, it would be interesting to further study the properties of strong
local nondeterminism analogous to (C3) and (C3′) for linear operators related to anisotropic
Gaussian random fields such as the solutions to the stochastic heat and wave equations.

3 Properties of strong local nondeterminism

One of the main difficulties in studying sample path properties of anisotropic Gaussian random
fields such as fractional Brownian sheets is the complexity of their dependence structure. For
example, unlike fractional Brownian motion which is locally nondeterministic [see Pitt (1978)] or
the Brownian sheet which has independent increments, a fractional Brownian sheet has neither of
these properties. The same is true for anisotropic Gaussian random fields in general. The main
technical tool which we will apply to study anisotropic Gaussian random fields is the properties of
strong local nondeterminism [SLND] and sectorial local nondeterminism.

Recall that the concept of local nondeterminism was first introduced by Berman (1973) to
unify and extend his methods for studying local times of real-valued Gaussian processes, and then
extended by Pitt (1978) to Gaussian random fields. The notion of strong local nondeterminism was
later developed to investigate the regularity of local times, small ball probabilities and other sample
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path properties of Gaussian processes and Gaussian random fields. We refer to Xiao (2006, 2007)
for more information on the history and applications of the properties of local nondeterminism.

For Gaussian random fields, the aforementioned properties of local nondeterminism can only
be satisfied by those with approximate isotropy. It is well-known that the Brownian sheet does not
satisfy the properties of local nondeterminism in the senses of Berman or Pitt. Because of this,
many problems for fractional Brownian motion and the Brownian sheet have to be investigated
using different methods.

Khoshnevisan and Xiao (2007a) have recently proved that the Brownian sheet satisfies the
sectorial local nondeterminism [i.e., (C3) with H = 〈1/2〉] and applied this property to study
various analytic and geometric properties of the Brownian sheet; see also Khoshnevisan, Wu and
Xiao (2006).

Wu and Xiao (2007) extended the result of Khoshnevisan and Xiao (2007a) and proved that
fractional Brownian sheet BH

0 satisfies Condition (C3).

Theorem 3.1 Let BH
0 = {BH

0 (t), t ∈ RN} be an (N, 1)-fractional Brownian sheet with index
H = (H1, . . . , HN ) ∈ (0, 1)N . For any fixed number ε ∈ (0, 1), there exists a positive constant
c3,1, depending on ε,H and N only, such that for all positive integers n ≥ 1, and all u, t1, . . . , tn

∈ [ε, ∞)N , we have

Var
(
BH

0 (u)
∣∣ BH

0 (t1), . . . , BH
0 (tn)

) ≥ c3,1

N∑

j=1

min
0≤k≤n

∣∣uj − tkj
∣∣2Hj , (3.1)

where t0j = 0 for j = 1, . . . , N .

Proof While the argument of Khoshnevisan and Xiao (2007a) relies on the property of independent
increments of the Brownian sheet and its connection to Brownian motion, the proof for BH

0 is based
on a Fourier analytic argument in Kahane (1985, Chapter 18) and the harmonizable representation
(2.5) of BH

0 . We refer to Wu and Xiao (2007) for details. ¤

Now we prove a sufficient condition for an anisotropic Gaussian random field with stationary
increments to satisfy Condition (C3′).

Theorem 3.2 Let X = {X(t), t ∈ RN} be a centered Gaussian random field in R with stationary
increments and spectral density f(λ). Assume that there is a vector H = (H1, . . . , HN ) ∈ (0, 1)N

such that
f(λ) ³ 1( ∑N

j=1 |λj |Hj
)2+Q

, ∀λ ∈ RN\{0}, (3.2)

where Q =
∑N

j=1
1

Hj
. Then there exists a constant c3,2 > 0 such that for all n ≥ 1, and all

u, t1, . . . , tn ∈ RN ,

Var
(

X(u) | X(t1), . . . , X(tn)
)
≥ c3,2 min

0≤k≤n
ρ(u, tk)2, (3.3)

where t0 = 0.
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Remark 3.3 The following are some comments about Theorem 3.2.

(i) When H1 = · · · = HN , (3.3) is of the same form as the SLND of fractional Brownian motion
[cf. Pitt (1978)]. As shown by Xiao (1997b, 2007) and Shieh and Xiao (2006), many sample
path properties of such Gaussian random fields are similar to those of fractional Brownian
motion.

(ii) Condition (3.2) can be significantly weakened. In particular, one can prove that similar
results hold for Gaussian random fields with stationary increments and discrete spectrum
measures; see Xiao (2008) for details.

(iii) It would be interesting to study under which conditions the solutions to the stochastic heat
and wave equations (2.19) and (2.23) are strongly local nondeterministic.

Proof of Theorem 3.2 Denote r ≡ min
0≤k≤n

ρ(u, tk). Since the conditional variance in (3.3) is

the square of the L2(P)-distance of X(u) from the subspace generated by {X(t1), . . . , X(tn)}, it is
sufficient to prove that for all ak ∈ R (1 ≤ k ≤ n),

E
(

X(u)−
n∑

k=1

ak X(tk)
)2

≥ c3,2 r2 (3.4)

and c3,2 > 0 is a constant which may only depend on H and N .
By the stochastic integral representation (2.9) of X, the left hand side of (3.4) can be written

as

E
(

X(u)−
n∑

k=1

akX(tk)
)2

=
∫

RN

∣∣∣∣ei〈u,λ〉 − 1−
n∑

k=1

ak

(
ei〈tk, λ〉 − 1

)∣∣∣∣
2

f(λ) dλ. (3.5)

Hence, we only need to show

∫

RN

∣∣∣ei〈u,λ〉 −
n∑

k=0

ak ei〈tk, λ〉
∣∣∣
2
f(λ) dλ ≥ c3,2 r2, (3.6)

where t0 = 0 and a0 = −1 +
∑n

k=1 ak.
Let δ(·) : RN → [0, 1] be a function in C∞(RN ) such that δ(0) = 1 and it vanishes outside the

open ball Bρ(0, 1) in the metric ρ. Denote by δ̂ the Fourier transform of δ. Then δ̂(·) ∈ C∞(RN )
as well and δ̂(λ) decays rapidly as |λ| → ∞.

Let E be the diagonal matrix with H−1
1 , . . . , H−1

N on its diagonal and let δr(t) = r−Qδ(r−Et).
Then the inverse Fourier transform and a change of variables yield

δr(t) = (2π)−N

∫

RN

e−i〈t,λ〉 δ̂(rEλ) dλ. (3.7)

Since min{ρ(u, tk) : 0 ≤ k ≤ n} ≥ r, we have δr(u − tk) = 0 for k = 0, 1, . . . , n. This and (3.7)
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together imply that

J :=
∫

RN

(
ei〈u,λ〉 −

n∑

k=0

ak ei〈tk,λ〉
)

e−i〈u,λ〉 δ̂(rEλ) dλ

= (2π)N

(
δr(0)−

n∑

k=0

ak δr(u− tk)
)

= (2π)N r−Q.

(3.8)

On the other hand, by the Cauchy-Schwarz inequality and (3.5), we have

J2 ≤
∫

RN

∣∣∣ei〈u,λ〉 −
n∑

k=0

ak ei〈tk,λ〉
∣∣∣
2
f(λ) dλ ·

∫

RN

1
f(λ)

∣∣∣δ̂(rEλ)
∣∣∣
2
dλ

≤ E
(

X(u)−
n∑

k=1

akX(tk)
)2

· r−Q

∫

RN

1
f(r−E λ)

∣∣∣δ̂(λ)
∣∣∣
2
dλ

≤ cE
(

X(u)−
n∑

k=1

akX(tk)
)2

· r−2Q−2,

(3.9)

where c > 0 is a constant which may only depend on H and N .
We square both sides of (3.8) and use (3.9) to obtain

(2π)2N r−2Q ≤ c r−2Q−2 E
(

X(u)−
n∑

k=1

akX(tk)
)2

.

Hence (3.6) holds. This finishes the proof of the theorem. ¤

Given jointly Gaussian random variables Z1, . . . , Zn, we denote by detCov
(
Z1, . . . , Zn

)
the

determinant of their covariance matrix. If detCov
(
Z1, . . . , Zn

)
> 0, then we have the identity

(2π)n/2

detCov
(
Z1, . . . , Zn

) =
∫

Rn

E exp
(
− i

n∑

k=1

uk Zk

)
du1 · · · dun. (3.10)

By using the fact that, for every k, the conditional distribution of Zk given Z1, . . . , Zk−1 is still
Gaussian with mean E(Zk|Z1, . . . , Zk−1) and variance Var(Zk|Z1, . . . , Zk−1), one can evaluate the
integral in the right-hand side of (3.10) and thus verify the following formula:

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

k=2

Var
(
Zk

∣∣Z1, . . . , Zk−1

)
. (3.11)

A little thought reveals that (3.11) still holds when detCov
(
Z1, . . . , Zn

)
= 0. Note that the left-

hand side of (3.11) is permutation invariant for Z1, . . . , Zn, one can represent detCov(Z1, . . . , Zn)
in terms of the conditional variances in n! different ways.

Combined with (3.1) or (3.3), the identity (3.11) can be applied to estimate the joint distri-
bution of the Gaussian random variables X(t1), . . . , X(tn), where t1, . . . , tn ∈ RN . This is why
the properties of strong local nondeterminism are not only essential in this paper, but will also be
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useful in studying self-intersection local times [see Meerschaert et al. (2007) for results on fractional
Brownian sheets], exact Hausdorff measure of the sample paths and other related problems.

The following simple result will be needed in Section 8.

Lemma 3.4 Let X be a Gaussian random field satisfying Condition (C3′) [resp., (C3)]. Then
for all integers n ≥ 1 and for all distinct points t1, . . . , tn ∈ [ε, 1]N [resp., all points t1, . . . , tn ∈
[ε, 1]N with distinct coordinates, i.e., tki 6= tlj when (i, k) 6= (j, l) ], the Gaussian random variables
X(t1), . . . , X(tn) are linearly independent.

Proof We assume Condition (C3′) holds and let t1, . . . , tn ∈ [ε, 1]N be n distinct points. Then it
follows from (3.11) that detCov

(
X(t1), . . . , X(tn)

)
> 0. This proves the lemma. Similar conclusion

holds when Condition (C3) is satisfied. ¤

4 Modulus of continuity

It is sufficient to consider real-valued Gaussian random fields. Ayache and Xiao (2005) established
a sharp modulus of continuity (i.e., including the logarithmic correction) for fractional Brownian
sheets as a consequence of their wavelet expansion for BH

0 . Since the wavelet method depends
on the stochastic integral representation (2.4), it can not be easily applied to Gaussian random
fields in general. In this section, we describe several ways to establish sharp modulus of continuity
for all anisotropic Gaussian random fields satisfying Condition (C1). The first two methods, i.e.,
the extended Garsia-Rodemich-Rumsey continuity lemma and the minorization metric method of
Kwapień and Rosiński (2004), can be applied to random fields which are not necessarily Gaussian.
Hence they can be more convenient when applied to solutions of stochastic partial differential
equations. The third method, which is based on Dudley’s entropy theorem and the Gaussian
isoperimetric inequality, provides a stronger result in the sense that the upper bound is a constant
instead of a random variable [cf. (4.15)].

Theorem 4.1 is an extension of the well-known Garsia-Rodemich-Rumsey continuity lemma
[Garsia et al. (1970)]. It follows from Theorem 2.1 of Funaki, Kikuchi and Potthoff (2006), which
is slightly more general [because of its freedom in choosing the function p] than an analogous result
of Arnold and Imkeller (1996). A similar result can also be found in Dalang, Khoshnevisan and
Nualart (2007a).

For our purpose, we have formulated it in terms of the metric ρ defined in (2.27). Let T ⊆ RN

be a fixed closed interval. For any r > 0 and s ∈ T , recall that Bρ(s, r) =
{
t ∈ T : ρ(t, s) ≤ r}

denotes the closed ball (in T ) with center s and radius r in the metric ρ.

Theorem 4.1 Suppose that Y : T → R is a continuous mapping. If there exist two strictly
increasing functions Ψ and p on R+ with Ψ(0) = p(0) = 0 and lim

u→∞Ψ(u) = ∞ such that

K :=
∫

T

∫

T
Ψ

( |Y (s)− Y (t)|
p(ρ(s, t))

)
dsdt < ∞. (4.1)

Then for all s, t ∈ T , we have

∣∣Y (s)− Y (t)
∣∣ ≤ 8 max

z∈{s,t}

∫ ρ(s,t)

0
Ψ−1

(
4K

λN

(
Bρ(z, u)

)2

)
p̃(du), (4.2)
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where p̃(u) = p(4u) for all u ∈ R+.

Applying Theorem 4.1, we prove the following theorem on the modulus of continuity of an
anisotropic Gaussian random field.

Theorem 4.2 Let X = {X(t), t ∈ RN} be a centered Gaussian field in R satisfying Condition
(C1). Then, almost surely, there exists a random variable A depending on N and (H1, . . . , HN )
only such that A has finite moments of all orders and for all s, t ∈ I,

|X(s)−X(t)| ≤ A ρ(s, t)
√

log
(
1 + ρ(s, t)−1

)
. (4.3)

Proof In Theorem 4.1, let T = I and we choose the functions Ψ(x) = exp
(

x2

4c2,3

)−1 and p(x) = x,

where c2,3 > 0 is the constant in (2.29). It follows from Condition (C1) that the random variable
K in (4.1) has finite moments of all orders and

E(K) = E
∫

I

∫

I
Ψ

( |X(s)−X(t)|
ρ(s, t)

)
dsdt

≤
∫

I

∫

I
EΨ

(
c |ξ|) dsdt = c4,1 < ∞.

(4.4)

In the above ξ is a standard normal random variable. Note that Ψ−1(u) =
√

4c2,3 log(1 + u) and
λN

(
Bρ(z, u)

) ³ uQ is independent of z. Hence by Theorem 4.1 we have

|X(s)−X(t)| ≤ c

∫ ρ(s,t)

0

√
log

(
1 +

4K

uQ

)
du

≤ Aρ(s, t)
√

log(1 + ρ(s, t)−1),

(4.5)

where A is a random variable depending on K and we can choose it so that A ≤ c max{1, log K}.
Thus all moments of A are finite. This finishes the proof of Theorem 4.2. ¤

Let X = {X(t), t ∈ T} be a stochastic process defined on a separable metric space (T, d) and let
ψ be a Young function [that is, ψ is strictly increasing, convex and ψ(0) = 0]. Recently, Kwapień
and Rosiński (2004) investigated the following problem: When can one find an appropriate metric
τ on T such that the implication

sup
s,t∈T

Eψ

( |X(s)−X(t)|
d(s, t)

)
< ∞ ⇒ sup

s,t∈T

|X(s)−X(t)|
τ(s, t)

< ∞, a.s. (4.6)

holds? Their results can be applied to derive sharp modulus of continuity for a large class of
stochastic processes including Gaussian random fields [but not stable random fields].

Recall from Kwapień and Rosiński (2004) that a probability measure m on T is called a weakly
majorizing measure relative to ψ and the metric d if for all s, t ∈ T ,

∫ d(s,t)

0
ψ−1

(
1

m(Bd(s, r))

)
dr < ∞, (4.7)
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where ψ−1 denotes the inverse function of ψ and Bd(s, r) = {t ∈ T : d(t, s) ≤ r}. For every weakly
majorizing measure m, the “minorizing metric” τ = τψ,d,m on T relative to ψ, d and m is defined
as

τ(s, t) = max

{ ∫ d(s,t)

0
ψ−1

(
1

m(Bd(s, r))

)
dr,

∫ d(t,s)

0
ψ−1

(
1

m(Bd(t, r))

)
dr

}
. (4.8)

The following theorem of Kwapień and Rosiński (2004) gives a sufficient condition for (4.6) to
hold.

Theorem 4.3 Let ψ be a Young function satisfying the following growth condition:

ψ(x)ψ(y) ≤ ψ(c4,2(x + y)) for all x, y ≥ 0, (4.9)

where c4,2 > 0 is a constant. Let m be a weakly majorizing measure relative to ψ and d on T .
Then there exists a positive constant c4,3 depending only on ψ such that for every stochastic process
X = {X(t), t ∈ T},

Eψ

(
c4,3 sup

s,t∈T

|X(s)−X(t)|
τ(s, t)

)
≤ 1 + sup

s,t∈T
Eψ

( |X(s)−X(t)|
d(s, t)

)
, (4.10)

where τ is the minorizing metric relative to ψ, d and m.

Note that, for any α > 0, ψ(x) = xα does not satisfy the growth condition (4.9), hence Theorem
4.3 is not applicable to stable random fields.

By applying Theorem 4.3 to the metric space (I, ρ) in our setting, we can provide more infor-
mation about the random variable A in Theorem 4.2.

Corollary 4.4 Let X = {X(t), t ∈ RN} be a centered Gaussian field in R satisfying Condition
(C1). Then there exists a constant c4,4 > 0 such that

E exp

(
c4,4 sup

s,t∈I

|X(s)−X(t)|2
ρ2(s, t) log

(
1 + ρ(s, t)−1

)
)

< ∞. (4.11)

Proof This can be verified by showing that the Lebesgue measure on I is a weakly majorizing
measure relative to the Young function ψ(x) = ex2 − 1 and the metric ρ; and the corresponding
minorizing metric τ(s, t) satisfies

c4,5 ρ(s, t)
√

log
(
1 + ρ(s, t)−1

) ≤ τ(s, t) ≤ c4,6 ρ(s, t)
√

log
(
1 + ρ(s, t)−1

)
,

for all s, t ∈ I. We leave the details to an interested reader. ¤
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As a third method, we mention that it is also possible to obtain a uniform modulus of continuity
for a Gaussian random field satisfying Condition (C1) by using the Gaussian isoperimetric inequality
[cf. Lemma 2.1 in Talagrand (1995)]. To this end, we introduce an auxiliary Gaussian random field
Y = {Y (s, t) : t ∈ I, s ∈ [0, h]} defined by Y (t, s) = X(t + s)−X(t), where h ∈ (0, 1)N . Then the
canonical metric d on T := I × [0, h] associated with Y satisfies the following inequality:

d
(
(t, s), (t′, s′)

) ≤ c min
{
ρ(0, s) + ρ(0, s′), ρ(s, s′) + ρ(t, t′)

}
. (4.12)

Denote the d-diameter of T by D. It follows from (4.12) that D ≤ c4,7

∑N
j=1 h

Hj

j = c4,7 ρ(0, h), and
the d-covering number of T satisfies

Nd(T, ε) ≤ c

(
1
ε

)Q N∏

j=1

(
hj

ε1/Hj

)
≤ c4,8 ε−2Q.

One can verify that
∫ D

0

√
log Nd(T, ε) dε ≤ c4,9 ρ(0, h)

√
log

(
1 + ρ(0, h)−1

)
. (4.13)

It follows from Lemma 2.1 in Talagrand (1995) that for all u ≥ 2c4,9 ρ(0, h)
√

log
(
1 + ρ(0, h)−1

)
,

P
{

sup
(t,s)∈T

∣∣X(t + s)−X(t)
∣∣ ≥ u

}
≤ exp

(
− u2

D2

)
. (4.14)

By using (4.14) and a standard Borel-Cantelli argument, we can prove that

lim sup
|h|→0

supt∈I,s∈[0,h] |X(t + s)−X(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,10 , (4.15)

where c4,10 > 0 is a finite constant depending on c2,4 , I and H only.
We believe that, for Gaussian random fields satisfying (C1), the rate function in (4.3) is sharp.

This has been partly verified by Meerschaert, Wang and Xiao (2007) who proved that, if a Gaussian
field X satisfies Conditions (C1) and (C3), then

c4,11 ≤ lim sup
|h|→0

supt∈I,s∈[0,h] |X(s)−X(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,12 , (4.16)

where c4,11 and c4,12 are positive constants depending on c2,3 , c2,4 , I and H only.
On the other hand, we can also use the above metric entropy method to prove that, for all

t0 ∈ I and u > 0 large enough,

P
{

sup
s∈[0,h]

∣∣X(t0 + s)−X(t0)
∣∣ ≥ ρ(0, h) u

}
≤ exp

(− c4,13 u2
)
, (4.17)

where c4,13 is a positive constant depending on c2,4 , I and H only.

21



By using (4.17) and the Borel-Cantelli lemma, we derive the following local modulus of conti-
nuity for Gaussian random fields satisfying (C1): There exists a positive constant c4,14 such that
for every t0 ∈ I,

lim sup
|h|→0

sups∈[0,h] |X(t0 + s)−X(t0)|
ρ(0, h)

√
log log(1 + ρ(0, h)−1)

≤ c4,14 , a.s. (4.18)

Under certain mild conditions, it can be shown that (4.18) is sharp. For example, Meerschaert,
Wang and Xiao (2007) proved that, if X is a Gaussian random field with stationary increments
and satisfies (C1), then for every t0 ∈ I,

lim sup
|h|→0

sups∈[0,h] |X(t0 + s)−X(t0)|
ρ(0, h)

√
log log(1 + ρ(0, h)−1)

= c4,15 , a.s., (4.19)

where c4,15 is a positive constant.
We should mention that one can also study the uniform and local moduli of continuity in terms

of the increments of X over intervals. Related results of this type for fractional Brownian sheets
have been obtained by Wang (2007).

In the special case when X is a direct sums of independent fractional Brownian motions of
indices H1, . . . ,HN , that is,

X(t) = X1(t1) + · · ·+ XN (tN ), ∀ t = (t1, . . . , tN ) ∈ RN , (4.20)

where X1, . . . , XN are independent fractional Brownian motions in R of indices H1, . . . , HN , re-
spectively, Kôno (1975) established integral tests for the uniform and local upper and lower classes.
It is natural to ask whether his results hold for more general anisotropic Gaussian random fields.

5 Small ball probabilities

In recent years, there has been much interest in studying the small ball probabilities of Gaussian
processes. We refer to Li and Shao (2001) and Lifshits (1999) for extensive surveys on small ball
probabilities and their applications. Small ball properties of fractional Brownian sheets have been
considered by Dunker (2000), Mason and Shi (2001), Belinski and Linde (2002).

The small ball behavior of operator-scaling Gaussian random fields with stationary increments
and the solution to the stochastic heat equation is different, as shown by the following general
result.

Theorem 5.1 Let X = {X(t), t ∈ RN} be a centered Gaussian field in R satisfying Conditions
(C1) and (C3′) on I = [0, 1]N . Then there exist positive constants c5,1 and c5,2 such that for all
ε > 0,

exp
(
− c5,1

εQ

)
≤ P

{
max

t∈[0,1]N
|X(t)| ≤ ε

}
≤ exp

(
− c5,2

εQ

)
, (5.1)

where Q =
∑N

j=1
1

Hj
.

In order to prove the lower bound in (5.1), we will make use of the following general result of
Talagrand (1993), see also Ledoux (1996, p.257).
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Lemma 5.2 Let Y = {Y (t), t ∈ T} be a real-valued Gaussian process with mean zero and let d be
the canonical metric on T defined by

d(s, t) =
(
E|Y (s)− Y (t)|2)1/2

, s, t ∈ T

and denote by Nd(T, ε) the smallest number of d-balls of radius ε > 0 needed to cover T . Assume
that there is a nonnegative function ψ on R+ such that Nd(T, ε) ≤ ψ(ε) for ε > 0 and such that

c5,3ψ(ε) ≤ ψ
(ε

2

)
≤ c5,4ψ(ε) (5.2)

for some constants 1 < c5,3 ≤ c5,4 < ∞ and all ε > 0. Then there is a constant c5,5 > 0 such that

P
{

sup
t,s∈T

|Y (t)− Y (s)| ≤ ε

}
≥ exp

(− c5,5ψ(ε)
)
. (5.3)

Proof of Theorem 5.1 It follows from (C1) that for all ε ∈ (0, 1),

Nρ(I, ε) ≤ c ε−Q := ψ(ε).

Clearly ψ(ε) satisfies the condition (5.2). Hence the lower bound in (5.1) follows from Lemma 5.2.
The proof of the upper bound in (5.1) is based on Condition (C3′) and a conditioning argument

in Monrad and Rootzén (1995). For any integer n ≥ 2, we divide [0, 1]N into nQ rectangles of
side-lengths n−1/Hj (j = 1, . . . , N). We denote the lower-left vertices of these rectangles (in any
order) by tn,k (k = 1, 2, . . . , nQ). Then

P
{

max
t∈[0,1]N

|X(t)| ≤ ε

}
≤ P

{
max

1≤k≤nQ
|X(tn,k)| ≤ ε

}
. (5.4)

It follows from Condition (C3′) that for every 1 ≤ k ≤ nQ,

Var
(
X(tn,k)

∣∣X(tn,i), 1 ≤ i ≤ k − 1
) ≥ c n−1. (5.5)

This and Anderson’s inequality for Gaussian measures imply the following upper bound for the
conditional probabilities

P
{
|X(tn,k)| ≤ ε

∣∣X(tn,j), 1 ≤ j ≤ k − 1
}
≤ Φ(c ε n) , (5.6)

where Φ(x) is the distribution function of a standard normal random variable. It follows from (5.4)
and (5.6) that

P
{

max
t∈[0,1]N

|X(t)| ≤ ε

}
≤ [Φ(c ε n)]n

Q

. (5.7)

By taking n = (cε)−1, we obtain the upper bound in (5.1). ¤

Remark 5.3 If H1 = H2 = · · · = HN , then (5.1) is of the same form as the small ball probabil-
ity estimates for multiparameter fractional Brownian motion; see Talagrand (1995), Li and Shao
(2001).

Among many applications, Theorem 5.1 can be applied to establish Chung-type laws of the
iterated logarithm for anisotropic Gaussian random fields. Moreover, it would also be interesting
to investigate the small ball probabilities of X in other norms such as the L2 or Hölder norms.
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6 Hausdorff and packing dimensions of the range and graph

In this section, we study the Hausdorff and packing dimensions of the range X
(
[0, 1]N

)
=

{
X(t) :

t ∈ [0, 1]N
}

and the graph GrX
(
[0, 1]N

)
=

{
(t,X(t)) : t ∈ [0, 1]N

}
of a Gaussian random field X

satisfying Condition (C1) on [0, 1]N .
Hausdorff dimension and Hausdorff measure have been extensively used in describing thin sets

and fractals. For any set E ⊆ Rd and γ > 0, we will denote the Hausdorff dimension and the
γ-dimensional Hausdorff measure of E by dimHE and Hγ(E), respectively. We refer to Kahane
(1985), Falconer (1990) or Mattila (1995) for their definitions and properties. More generally, for
any nondecreasing, right continuous function ϕ : [0, 1] → [0,∞) with ϕ(0) = 0, one can define the
Hausdorff measure of E with respect to ϕ and denoted it by Hϕ(E). We say that a function ϕ is
an exact Hausdorff measure function for E if 0 < Hϕ(E) < ∞.

Now we recall briefly the definition of capacity and its connection to Hausdorff dimension. A
kernel κ is a measurable function κ : Rd × Rd → [0,∞]. For a Borel measure µ on Rd, the energy
of µ with respect to the kernel κ is defined by

Eκ(µ) =
∫

Rd

∫

Rd

κ(x, y)µ(dx)µ(dy).

For any Borel set E ⊆ Rd, the capacity of E with respect to κ, denoted by Cκ(E), is defined by

Cκ(E) =
[

inf
µ∈P(E)

Eκ(µ)
]−1

,

where P(E) is the family of probability measures carried by E, and, by convention, ∞−1 = 0. Note
that Cκ(E) > 0 if and only if there is a probability measure µ on E with finite κ-energy. We will
mostly consider the case when κ(x, y) = f(|x − y|), where f is a non-negative and non-increasing
function on R+. In particular, if

f(r) =
{

r−α if α > 0,
log

(
e

r∧1

)
if α = 0,

(6.1)

then the corresponding Eκ and Cκ will be denoted by Eα and Cα, respectively; and the latter will
be called the Bessel–Riesz capacity of order α. The capacity dimension of E is defined by

dimc(E) = sup{α > 0 : Cα(E) > 0}.

The well-known Frostman’s theorem [cf. Kahane (1985, p.133) or Khoshnevisan (2002)] states that
dimHE = dimc(E) for every compact set E in Rd. This result provides a very useful analytic way
for the lower bound calculation of Hausdorff dimension. That is, for E ⊆ Rd in order to show
dimHE ≥ α, one only needs to find a measure µ on E such that the α-energy of µ is finite. For
many deterministic and random sets such as self-similar sets or the range of a stochastic process,
there are natural choices of µ. This argument is usually referred to as the capacity argument.

Packing dimension and packing measure were introduced by Tricot (1982) and Taylor and Tricot
(1985) as dual concepts to Hausdorff dimension and Hausdorff measure. We only recall briefly a
definition of packing dimension, which will be denoted by dimP . For any ε > 0 and any bounded
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set F ⊆ Rd, let N(F, ε) be the smallest number of balls of radius ε [in Euclidean metric] needed to
cover F . Then the upper box-counting dimension of F is defined as

dimBF = lim sup
ε→0

log N(F, ε)
− log ε

. (6.2)

The packing dimension of F can be defined by

dimPF = inf
{

sup
n

dimBFn : F ⊆
∞⋃

n=1

Fn

}
. (6.3)

It is known that for any bounded set F ⊆ Rd,

dimHF ≤ dimPF ≤ dimBF ≤ d. (6.4)

Further information on packing dimension and packing measure can be found in Falconer (1990)
and Mattila (1995). We mention that various tools from fractal geometry have been applied to
studying sample path properties of stochastic processes since 1950’s. The survey papers of Taylor
(1986) and Xiao (2004) summarize various fractal properties of random sets related to sample paths
of Markov processes.

Throughout the rest of this paper, we will assume that

0 < H1 ≤ . . . ≤ HN < 1. (6.5)

Theorem 6.1 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field satisfying Condition (C1) on
I = [0, 1]N . Then, with probability 1,

dimHX
(
[0, 1]N

)
= dimPX

(
[0, 1]N

)
= min

{
d;

N∑

j=1

1
Hj

}
(6.6)

and

dimHGrX
(
[0, 1]N

)
= dimPGrX

(
[0, 1]N

)

= min
{ k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

}

=

{ ∑N
j=1

1
Hj

, if
∑N

j=1
1

Hj
≤ d,∑k

j=1
Hk
Hj

+ N − k + (1−Hk)d, if
∑k−1

j=1
1

Hj
≤ d <

∑k
j=1

1
Hj

,

(6.7)

where
∑0

j=1
1

Hj
:= 0.

The last equality in (6.7) is verified by the following lemma, whose proof is elementary and is
omitted. Denote

κ := min
{ k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

}
.
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Lemma 6.2 Assume (6.5) holds. We have

(i) If d ≥ ∑N
j=1

1
Hj

, then κ =
∑N

j=1
1

Hj
.

(ii) If
∑`−1

j=1
1

Hj
≤ d <

∑`
j=1

1
Hj

for some 1 ≤ ` ≤ N , then

κ =
∑̀

j=1

H`

Hj
+ N − ` + (1−H`)d (6.8)

and κ ∈ (
N − ` + d, N − ` + d + 1

]
.

Because of (6.4) we can divide the proof of Theorem 6.1 into proving the upper bounds for the
upper box dimensions and the lower bounds for the Hausdorff dimensions separately. The proofs
are similar to those in Ayache and Xiao (2005) for fractional Brownian sheets. In the following, we
first show that the upper bounds for dimBX

(
[0, 1]N

)
and dimBGrX

(
[0, 1]N

)
follow from Theorem

4.2 and a covering argument.

Proof of the upper bounds in Theorem 6.1. In order to prove the upper bound in (6.6), we
note that clearly dimBX

(
[0, 1]N

) ≤ d a.s., so it suffices to prove the following inequality:

dimBX
(
[0, 1]N

) ≤
N∑

j=1

1
Hj

, a.s. (6.9)

For any constants 0 < γj < Hj (1 ≤ j ≤ N), it follows from Theorem 4.2 that there is a random
variable A of finite moments of all orders such that for almost all ω ∈ Ω,

sup
s,t∈[0,1]N

|X(s, ω)−X(t, ω)|∑N
j=1 |sj − tj |γj

≤ A(ω). (6.10)

We fix an ω such that (6.10) holds and then suppress it. For any integer n ≥ 2, we divide [0, 1]N

into mn sub-rectangles {Rn,i} with sides parallel to the axes and side-lengths n−1/Hj (j = 1, . . . , N),
respectively. Then

mn ≤ c6,1 n
PN

j=1
1

Hj (6.11)

and X
(
[0, 1]N

)
can be covered by X(Rn,i) (1 ≤ i ≤ mn). By (6.10), we see that the diameter of

the image X(Rn,i) satisfies
diamX(Rn,i) ≤ c6,2 n−1+δ, (6.12)

where δ = max{(Hj − γj)/Hj , 1 ≤ j ≤ N}. Consequently, for εn = c6,2 n−1+δ, X
(
[0, 1]N

)
can be

covered by at most mn balls in Rd of radius εn. That is,

N
(
X

(
[0, 1]N

)
, εn

) ≤ c6,1 n
PN

j=1
1

Hj . (6.13)

This implies

dimBX
(
[0, 1]N

) ≤ 1
1− δ

N∑

j=1

1
Hj

, a.s. (6.14)
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By letting γj ↑ Hj along rational numbers, we have δ ↓ 0 and (6.9) follows from (6.14).
Now we turn to the proof of the upper bound in (6.7). We will show that there are several

different ways to cover GrX
(
[0, 1]N

)
by balls in RN+d of the same radius, each of which leads to

an upper bound for dimBGrX
(
[0, 1]N

)
.

For each fixed integer n ≥ 2, we have

GrX
(
[0, 1]N

) ⊆
mn⋃

i=1

Rn,i ×X(Rn,i). (6.15)

It follows from (6.12) and (6.15) that GrX
(
[0, 1]N

)
can be covered by mn balls in RN+d with radius

c6,2 n−1+δ and the same argument as the above yields

dimBGrX
(
[0, 1]N

) ≤
N∑

j=1

1
Hj

, a.s. (6.16)

We fix an integer 1 ≤ k ≤ N . Observe that each Rn,i×X(Rn,i) can be covered by `n,k balls (or

cubes) in RN+d of radius (or side-length) n
− 1

Hk , where by (6.10) we have

`n,k ≤ c n
PN

j=k( 1
Hk
− 1

Hj
) × n

( 1
Hk
−1+δ)d

, a.s.

Hence GrX
(
[0, 1]N

)
can be covered by mn × `n,k balls in RN+d with radius n

− 1
Hk . Consequently,

dimBGrX
(
[0, 1]N

) ≤
k∑

j=1

Hk

Hj
+ N − k + (1−Hk + δHk)d, a.s. (6.17)

Letting γj ↑ Hj along rational numbers, we derive that for every k = 1, . . . , N ,

dimBGrX
(
[0, 1]N

) ≤
k∑

j=1

Hk

Hj
+ N − k + (1−Hk)d. (6.18)

Combining (6.16) and (6.18) yields the upper bound in (6.7). ¤

For proving the lower bounds in Theorem 6.1, we will make use of the following elementary
Lemmas 6.3 and 6.4. The former is proved in Xiao and Zhang (2002, p.212) which will be used to
derive a lower bound for dimHX([0, 1]N ); the latter is proved in Ayache and Xiao (2005) which will
be needed for determining a lower bound for dimHGrX([0, 1]N ). Both lemmas will be useful in the
proof of Theorem 7.1 in Section 7.

Lemma 6.3 Let 0 < α < 1 and ε > 0 be given constants. Then for any constants δ > 2α, M > 0
and p > 0, there exists a positive and finite constant c6,3, depending on ε, δ, p and M only, such
that for all 0 < A ≤ M ,

∫ 1

ε
ds

∫ 1

ε

dt(
A + |s− t|2α

)p ≤ c6,3

(
A−(p− 1

δ
) + 1

)
. (6.19)
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Lemma 6.4 Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A,B) =
∫ 1

0

dt

(A + tα)β(B + t)η
. (6.20)

Then there exist finite constants c6,4 and c6,5, depending on α, β, η only, such that the following
hold for all real numbers A, B > 0 satisfying A1/α ≤ c6,3 B:

(i) If αβ > 1, then

J ≤ c6,5

1
Aβ−α−1Bη

; (6.21)

(ii) If αβ = 1, then

J ≤ c6,5

1
Bη

log
(
1 + BA−1/α

)
; (6.22)

(iii) If 0 < αβ < 1 and αβ + η 6= 1, then

J ≤ c6,5

( 1
Bαβ+η−1

+ 1
)
. (6.23)

Proof of the lower bounds in Theorem 6.1. First we prove the lower bound in (6.6). Note that
for any ε ∈ (0, 1), dimHX([0, 1]N ) ≥ dimHX([ε, 1]N ). It is sufficient to show that dimHX([ε, 1]N ) ≥
γ a.s. for every 0 < γ < min{d,

∑N
j=1

1
Hj
}.

Let µX be the image measure of the Lebesgue measure on [ε, 1]N under the mapping t 7→ X(t).
Then the energy of µX of order γ can be written as

∫

Rd

∫

Rd

µX(dx) µ(dy)
|x− y|γ =

∫

[ε,1]N

∫

[ε,1]N

ds dt

|X(s)−X(t)|γ .

Hence by Frostman’s theorem [see, e.g., Kahane (1985, Chapter 10)], it is sufficient to show that
for every 0 < γ < min{d,

∑N
j=1

1
Hj
},

Eγ =
∫

[ε,1]N

∫

[ε,1]N
E

(
1

|X(s)−X(t)|γ
)

dsdt < ∞. (6.24)

Since 0 < γ < d, we have 0 < E(|Ξ|−γ) < ∞, where Ξ is a standard d-dimensional normal vector.
Combining this fact with Condition (C1), we have

Eγ ≤ c

∫ 1

ε
ds1

∫ 1

ε
dt1 · · ·

∫ 1

ε
dsN

∫ 1

ε

1
( ∑N

j=1 |sj − tj |2Hj
)γ/2

dtN . (6.25)

We choose positive constants δ2, . . . , δN such that δj > 2Hj for each 2 ≤ j ≤ N and

1
δ2

+ · · ·+ 1
δN

<
γ

2
<

1
2H1

+
1
δ2

+ · · ·+ 1
δN

. (6.26)

This is possible since γ <
∑N

j=1
1

Hj
.
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Applying Lemma 6.3 to (6.25) with

A =
N−1∑

j=1

|sj − tj |2Hj and p = γ/2,

we obtain that

Eγ ≤ c6,6 + c6,6

∫ 1

ε
ds1

∫ 1

ε
dt1 · · ·

∫ 1

ε
dsN−1

∫ 1

ε

dtN−1(∑N−1
j=1 |sj − tj |2Hj

)γ/2−1/δN
. (6.27)

By repeatedly using Lemma 6.3 to the integral in (6.27) for N − 2 steps, we derive that

Eγ ≤ c6,7 + c6,7

∫ 1

ε
ds1

∫ 1

ε

dt1(|s1 − t1|2H1
)γ/2−(1/δ2+···+1/δN )

. (6.28)

Since the δj ’s satisfy (6.26), we have 2H1

[
γ/2− (1/δ2 + · · ·+ 1/δN )

]
< 1. Thus the integral in the

right hand side of (6.28) is finite. This proves (6.24), and (6.6) follows.
Now we prove the lower bound in (6.7). Since dimHGrX

(
[0, 1]N

) ≥ dimHX
(
[0, 1]N

)
always

holds, we only need to consider the case when

k−1∑

j=1

1
Hj

≤ d <
k∑

j=1

1
Hj

for some 1 ≤ k ≤ N. (6.29)

Here and in the sequel,
∑0

j=1
1

Hj
= 0.

Let 0 < ε < 1 and 0 < γ <
∑k

j=1
Hk
Hj

+ N − k + (1 −Hk)d be fixed, but arbitrary, constants.
By Lemma 6.2, we may and will assume γ ∈ (N − k + d,N − k + d + 1). In order to prove
dimHGrX([ε, 1]N ) ≥ γ a.s., again by Frostman’s theorem, it is sufficient to show

Gγ =
∫

[ε,1]N

∫

[ε,1]N
E

[
1

(|s− t|2 + |X(s)−X(t)|2)γ/2

]
dsdt < ∞. (6.30)

Since γ > d, we note that for a standard normal vector Ξ in Rd and any number a ∈ R,

E
[

1
(
a2 + |Ξ|2)γ/2

]
≤ c6,8 a−(γ−d),

see, e.g., Kahane (1985, p.279). Consequently, we derive that

Gγ ≤ c6,8

∫

[ε,1]N

∫

[ε,1]N

1
σ(s, t)d |s− t|γ−d

dsdt, (6.31)

where σ2(s, t) = E
[
(X1(s)−X1(t))2

]
. By Condition (C1) and a change of variables, we have

Gγ ≤ c6,9

∫ 1

0
dtN · · ·

∫ 1

0

1(∑N
j=1 t

Hj

j

)d ( ∑N
j=1 tj

)γ−d
dt1. (6.32)
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In order to show the integral in (6.32) is finite, we will integrate [dt1], . . . , [dtk] iteratively. Further-
more, we will assume k > 1 in (6.29) [If k = 1, we can use (6.23) to obtain (6.36) directly].

We integrate [dt1] first. Since H1d > 1, we can use (6.21) of Lemma 6.4 with A =
∑N

j=2 t
Hj

j

and B =
∑N

j=2 tj to get

Gγ ≤ c6,10

∫ 1

0
dtN · · ·

∫ 1

0

1
( ∑N

j=2 t
Hj

j

)d−1/H1
(∑N

j=2 tj
)γ−d

dt2. (6.33)

We can repeat this procedure for integrating dt2, . . . , dtk−1. Note that if d =
∑k−1

j=1
1

Hj
, then we

need to use (6.22) to integrate [dtk−1] and obtain

Gγ ≤ c6,11

∫ 1

0
dtN · · ·

∫ 1

0

1( ∑N
j=k tj

)γ−d
log

(
1 +

1∑N
j=k tj

)
dtk < ∞. (6.34)

Note that the last integral is finite since γ − d < N − k + 1. On the other hand, if d >
∑k−1

j=1
1

Hj
,

then (6.21) gives

Gγ ≤ c6,12

∫ 1

0
dtN · · ·

∫ 1

0

dtk
( ∑N

j=k t
Hj

j

)d−Pk−1
j=1 1/Hj

(∑N
j=k tj

)γ−d
. (6.35)

We integrate [dtk] in (6.35) and by using (6.23), we see that

Gγ ≤ c6,13

[ ∫ 1

0
dtN · · ·

∫ 1

0

dtk+1

(∑N
j=k+1 tj

)γ−d+Hk(d−Pk−1
j=1

1
Hj

)−1
+ 1

]
< ∞, (6.36)

since γ − d + Hk(d −
∑k−1

j=1
1

Hj
) − 1 < N − k. Combining (6.34) and (6.36) yields (6.30). This

completes the proof of Theorem 6.1. ¤

There are several possible ways to strengthen and extend Theorem 6.1. For example, it would be
interesting to determine the exact Hausdorff and packing measure functions for the range X

(
[0, 1]N

)
and graph GrX

(
[0, 1]N

)
for anisotropic Gaussian random fields. When X is the Brownian sheet

or a fractional Brownian motion, the problems on exact Hausdorff measure functions have been
considered by Ehm (1981), Talagrand (1995, 1998), Xiao (1996a, 1997a, 1997b). Here is a summary
of the known results:

(i). Let Xα = {Xα(t), t ∈ RN} be an (N, d)-fractional Brownian motion of index α. If N <
αd, then ϕ1(r) = rN/α log log 1/r ia an exact Hausdorff measure function for the range and
graph of Xα. If N > αd, then Xα([0, 1]N ) a.s. has positive Lebesgue measure and interior

points; and ϕ2(r) = rN+(1−α)d
(
log log 1/r

)αd
N is an exact Hausdorff measure function for the

graph of Xα. If N = αd, then Hϕ3
(
Xα([0, 1]N )

)
is σ-finite almost surely, where ϕ3(r) =

rd log(1/r) log log log 1/r. In the latter case the same is also true for the Hausdorff measure
of the graph set of Xα(t). However, the lower bound problems for the Hausdorff measure of
the range and graph remain open.
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(ii). Let W = {W (t), t ∈ RN
+} be the Brownian sheet in Rd. If 2N < d, then ϕ4(r) =

r2N
(
log log 1/r

)N ia an exact Hausdorff measure function for the range and graph of W .
If 2N > d, then W ([0, 1]N ) a.s. has interior points and ϕ5(r) = rN+ d

2 (log log 1/r)
d
2 is an ex-

act Hausdorff measure function for the graph of W . When 2N = d, the problems for finding
exact Hausdorff measure functions for the range and graph of W are completely open.

It is interesting to notice the subtle differences in the exact Hausdorff functions for the range
and graph sets of fractional Brownian motion and the Brownian sheet, respectively. I believe the
differences are a reflection of the two different types of local nondeterminism that they satisfy.

We remark that the methods in the aforementioned references rely respectively on specific
properties of the Brownian sheet and fractional Brownian motion, and it is not clear whether these
methods are applicable to Gaussian random fields satisfying (C3) or (C3′). It would be interesting
to develop general methods that are applicable to larger classes of (Gaussian) random fields.

The problems on exact packing measure functions for X
(
[0, 1]N

)
and GrX

(
[0, 1]N

)
are related

to the liminf properties of the occupation measures of X and are more difficult to study. When
X is an (N, d)-fractional Brownian motion of index α and N < αd, Xiao (1996b, 2003) proved
that ϕ6(r) = rN/α(log log 1/r)−N/(2α) is an exact packing measure function for X

(
[0, 1]N

)
and

GrX
(
[0, 1]N

)
. For all the other Gaussian fields including the Brownian sheet, the corresponding

problems remain to be open.
On the other hand, it is a natural question is to find dimHX(E) when E ⊆ RN is an arbitrary

Borel set, say a fractal set. It is not hard to see that, due to the anisotropy of X, the Hausdorff
dimension of X(E) can not be determined by dimHE and the index H alone, as shown by Example
6.6 below. This is in contrast with the cases of fractional Brownian motion or the Brownian sheet.

We start with the following Proposition 6.5 which determines dimHX(E) when E belongs to a
special class of Borel sets in RN . Since the proof is almost the same as that of Proposition 3.1 in
Wu and Xiao (2007), we omit the proof.

Proposition 6.5 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field satisfying Condition
(C1) on I = [0, 1]N with parameters (H1, . . . ,HN ). Assume that Ej (j = 1, . . . , N) are Borel subsets
of (0, 1) satisfying the following property: ∃ {j1, . . . , jN−1} ⊆ {1, . . . , N} such that dimHEjk

=
dimPEjk

for k = 1, . . . , N − 1. Let E = E1 × · · · × EN ⊆ RN , then we have

dimHX(E) = min
{

d;
N∑

j=1

dimHEj

Hj

}
, a.s. (6.37)

The following simple example illustrates that, in general, dimHE alone is not enough to deter-
mine the Hausdorff dimension of X(E).

Example 6.6 Let X = {X(t), t ∈ R2} be a (2, d)-Gaussian field with index H = (H1,H2) and
H1 < H2. Let E = E1 × E2 and F = E2 × E1, where E1 ⊆ (0, 1) satisfies dimHE1 = dimPE1 and
E2 ⊆ (0, 1) is arbitrary. It is well known that

dimHE = dimHE1 + dimHE2 = dimHF,

cf. Falconer (1990, p.94). However, by Proposition 6.5 we have

dimHX(E) = min
{

d;
dimHE1

H1
+

dimHE2

H2

}
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and

dimHX(F ) = min
{

d;
dimHE2

H1
+

dimHE1

H2

}
.

We see that dimHX(E) 6= dimHX(F ) in general unless dimHE1 = dimHE2.
Example 6.6 shows that for determining dimHX(E), we need to have more information about

the geometry of E than its Hausdorff dimension.
In order to solve the problem for finding the Hausdorff dimension of the image BH(E) of

fractional Brownian sheet BH , Wu and Xiao (2007) applied a measure-theoretic approach and
introduced a notion of Hausdorff dimension contour for finite Borel measures and Borel sets.

Recall that the Hausdorff dimension of a Borel measure µ on RN (or lower Hausdorff dimension
as it is sometimes called) is defined by

dimHµ = inf
{
dimHF : µ(F ) > 0 and F ⊆ RN is a Borel set

}
. (6.38)

Hu and Taylor (1994) proved the following characterization of dimHµ: If µ is a finite Borel
measure on RN , then

dimHµ = sup

{
γ ≥ 0 : lim sup

r→0+

µ
(
B(t, r)

)

rγ
= 0 for µ-a.e. t ∈ RN

}
, (6.39)

where B(t, r) = {s ∈ RN : |s− t| ≤ r}. It can be verified that for every Borel set E ⊆ RN , we have

dimHE = sup
{
dimHµ : µ ∈ M+

c (E)
}
, (6.40)

where M+
c (E) denotes the family of finite Borel measures on E with compact support in E.

From (6.39), we note that dimHµ only describes the local behavior of µ in an isotropic way and
is not quite informative if µ is highly anisotropic. To overcome this difficulty, Wu and Xiao (2007)
introduce the following notion of “dimension” for E ⊆ (0, ∞)N that is natural for studying X(E).

Definition 6.7 Given a Borel probability measure µ on RN , we define the set Λµ ⊆ RN
+ by

Λµ =
{

λ = (λ1, . . . , λN ) ∈ RN
+ : lim sup

r→0+

µ (R(t, r))
r〈λ,H−1〉 = 0 for µ-a.e. t ∈ RN

}
, (6.41)

where R(t, r) =
∏N

j=1[tj − r1/Hj , tj + r1/Hj ] and H−1 = ( 1
H1

, . . . , 1
HN

).

The following lemma is proved in Wu and Xiao (2007), which summarizes some basic properties
of Λµ. Recall that H1 = min{Hj : 1 ≤ j ≤ N}.

Lemma 6.8 Λµ has the following properties:

(i) The set Λµ is bounded:

Λµ ⊆
{

λ = (λ1, . . . , λN ) ∈ RN
+ : 〈λ, H−1〉 ≤ N

H1

}
. (6.42)

(ii) For all β ∈ (0, 1]N and λ ∈ Λµ, the Hadamard product of β and λ, β◦λ = (β1λ1, . . . , βNλN ) ∈
Λµ.

32



(iii) Λµ is convex, i.e. ∀λ, η ∈ Λµ and 0 < b < 1, bλ + (1− b)η ∈ Λµ.

(iv) For every a ∈ (0,∞)N , supλ∈Λµ
〈λ, a〉 is achieved on the boundary of Λµ.

We call the boundary of Λµ, denoted by ∂Λµ, the Hausdorff dimension contour of µ. See Wu
and Xiao (2007) for some examples for determining ∂Λµ.

For any Borel set E ⊆ RN , we define

Λ(E) =
⋃

µ∈M+
c (E)

Λµ. (6.43)

Similar to the case for measures, we call the set ∪µ∈M+
c (E)∂Λµ the Hausdorff dimension contour

of E. It follows from Lemma 6.8 that, for every a ∈ (0,∞)N , the supermum supλ∈Λ(E) 〈λ, a〉 is
determined by the Hausdorff dimension contour of E.

The same proof of Theorem 3.10 in Wu and Xiao (2007) yields the following result.

Theorem 6.9 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field satisfying Condition
(C1) on I = [0, 1]N . Then for every Borel set E ⊆ [0, 1]N ,

dimHX(E) = min{d, s(H, E)} a.s., (6.44)

where s(H, E) = supλ∈Λ(E) 〈λ,H−1〉 = supµ∈M+
c (E) sµ(E).

In the following, we give a more direct approach. Our results yield more geometric information
about the quantity s(H,E) as well.

For an arbitrary vector (H1, . . . ,HN ) ∈ (0, 1)N , we consider the metric space (RN , ρ), where ρ
is defined by (2.27). For any β > 0 and E ⊆ RN , define the β-dimensional Hausdorff measure [in
the metric ρ] of E by

Hβ
ρ (E) = lim

δ→0
inf

{ ∞∑

n=1

(2rn)β : E ⊆
∞⋃

n=1

Bρ(rn), rn ≤ δ

}
. (6.45)

This is a metric outer measure and all Borel sets are Hβ
ρ -measurable. The corresponding Hausdorff

dimension of E is defined by

dimρ
HE = inf

{
β > 0 : Hβ

ρ (E) = 0
}
. (6.46)

In some special cases, Hausdorff measure and dimension of this type have been applied by Kauf-
man (1972), Hawkes (1978), Taylor and Watson (1985), and Testard (1986) to study the hitting
probability of space-time processes of Brownian motion and other processes.

Note that the metric space (RN , ρ) is complete and separable. Hence the following generalized
Frostman’s lemma is a consequence of Theorem 8.17 in Mattila (1995) and a remark on page 117 of
the same reference. It can also be proved by using a result of Assouad (1977) [cf. Kahane (1985, p.
137)] on the quasi-helix and the classical Frostman’s lemma; see Testard (1986, p. 4) for a special
case.

Lemma 6.10 For any Borel set E ⊆ RN , Hβ
ρ (E) > 0 if and only if there exist a Borel probability

measure on E and a positive constant c such that µ
(
Bρ(x, r)

) ≤ c rβ for all x ∈ RN and r > 0.
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We can now prove the following extension of the Hausdorff dimension result for the range of X
in Theorem 6.1.

Theorem 6.11 Suppose the conditions of Theorem 6.9 hold. Then for every Borel set E ⊆ [0, 1]N ,

dimHX(E) = min{d; dimρ
HE} a.s. (6.47)

Proof Since the idea for proving (6.47) is quite standard, we only give a sketch of it. For any
γ > dimρ

HE, there is a covering {Bρ(rn), n ≥ 1} of E such that
∑∞

n=1(2rn)γ ≤ 1. Note that
X(E) ⊆ ∪∞n=1X

(
Bρ(rn)

)
and the uniform modulus of continuity of X implies that the diameter of

X
(
Bρ(rn)

)
is at most cr1−δ

n , where δ ∈ (0, 1) is a constant. We can show that dimHX(E) ≤ γ/(1−δ)
almost surely. The desired upper bound follows from the arbitrariness of γ and δ.

To prove the lower bound, let γ ∈ (0, min{d; dimρ
HE}) be fixed. Then by using the generalized

Frostman’s lemma [Lemma 6.10] one can show that there exists a probability measure µ on E such
that ∫ ∫

1
ρ(s, t)γ

µ(ds)µ(dt) < ∞. (6.48)

This and Condition (C1) immediately imply

E
∫ ∫

µ(ds)µ(dt)
|X(s)−X(t)|γ < ∞. (6.49)

Hence dimHX(E) ≥ min{d; dimρ
HE} almost surely. ¤

Combining Theorems 6.9 and 6.11, the invariance properties of dimρ
HE and s(H, E), we can

derive the following alternative expression for s(H,E). Of course, this can also be proved directly
by using measure-theoretic methods.

Corollary 6.12 For every Borel set E ⊆ RN , we have dimρ
HE = s(H,E).

As in the case of fractional Brownian sheets considered by Wu and Xiao (2007), the image X(E)
has rich Fourier analytic and topological properties. For example, by modifying the proofs in Wu
and Xiao (2007), one can prove that if X is a Gaussian random field with stationary increments
and spectral density satisfying (3.2) then X(E) is a Salem set [see Kahane (1985) or Mattila (1995)
for definition] whenever dimρ

HE ≤ d, and X(E) has interior points whenever dimρ
HE > d [It is an

exercise to work out the details].
Finally, we consider the special case when H = 〈α〉. Theorem 6.11 implies that for every Borel

set E ⊆ [0, 1]N ,

dimHX(E) = min
{

d,
1
α

dimHE

}
a.s. (6.50)

The following theorem gives us a uniform version of (6.50).

Theorem 6.13 Let X = {X(t), t ∈ RN} be as in Theorem 6.11 with H = 〈α〉. If N ≤ αd and X
satisfies either Condition (C3) or (C3′), then with probability 1

dimHX(E) =
1
α

dimHE for all Borel sets E ⊆ I (6.51)

and
dimPX(E) =

1
α

dimPE for all Borel sets E ⊆ I. (6.52)
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The proof of Theorem 6.13 is reminiscent to those in Monrad and Pitt (1987), Khoshnevisan,
Wu and Xiao (2006) and Wu and Xiao (2007). The key step is to apply Condition (C3) or (C3′)
to prove the following lemma. For simplicity, assume I = [0, 1]N .

Lemma 6.14 Suppose the assumptions of Theorem 6.13 hold, and let δ > 0 and 0 < 2α− δ < β <
2α be given constants. Then with probability 1, for all integers n large enough, there do not exist
more than 2nδd distinct points of the form tj = 4−n kj, where kj ∈ {1, 2, . . . , 4n}N , such that

∣∣X(ti)−X(tj)
∣∣ < 3 · 2−nβ for i 6= j. (6.53)

Proof A proof of Lemma 6.14 under Condition (C3) is given in Wu and Xiao (2007) [see also
Khoshnevisan, Wu and Xiao (2006)]. The proof under (C3′) is similar and is left to the reader as
an exercise. ¤

Both (6.50) and Theorem 6.13 imply that sometimes one can determine the packing dimension
of the image X(E) by the packing dimension of E. However, it follows from the results in Talagrand
and Xiao (1996) that the conclusion is false if N > αd. The method in Xiao (1997c) shows that if
X = {X(t), t ∈ RN} is a Gaussian random field satisfying (C1) with H = 〈α〉 then for every Borel
set E ⊆ I,

dimPX(E) =
1
α

Dim
αd

E a.s., (6.54)

where DimsE is the packing dimension profile of E defined by Falconer and Howroyd (1997).
However, the analogous problem for general anisotropic Gaussian random fields has not been settled.

7 Hausdorff dimension of the level sets and hitting probabilities

Under Conditions (C1) and (C2), we can study fractal properties of the level set Lx =
{
t ∈ I :

X(t) = x
}

(x ∈ Rd) and the hitting probabilities of Gaussian random field X.
The following result determines the Hausdorff and packing dimensions of the level set.

Theorem 7.1 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field satisfying Conditions
(C1) and (C2) on I = [ε, 1]N .

(i) If
∑N

j=1
1

Hj
< d, then for every x ∈ Rd, Lx = ∅ a.s.

(ii) If
∑N

j=1
1

Hj
> d, then for every x ∈ Rd,

dimHLx = dimPLx

= min
{ k∑

j=1

Hk

Hj
+ N − k −Hkd, 1 ≤ k ≤ N

}

=
k∑

j=1

Hk

Hj
+ N − k −Hkd, if

k−1∑

j=1

1
Hj

≤ d <
k∑

j=1

1
Hj

(7.1)

holds with positive probability.
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Remark 7.2 In the critical case when
∑N

j=1
1

Hj
= d, it is believed that Lx = ∅ a.s. In the

Brownian sheet case, this was proved by Orey and Pruitt (1973, Theorem 3.4). It also follows
from a potential theoretic result of Khoshnevisan and Shi (1999). If X is a fractional Brownian
motion of index α ∈ (0, 1), then an argument of Talagrand (1998) can be modified to show Lx = ∅
a.s. However, the problem whether Lx = ∅ a.s. for more general Gaussian random fields remains
open. A proof would require Condition (C3) or (C3′) and some extra conditions on the function
E

(
X1(t)−X1(s)

)2.

Proof of Theorem 7.1. Similar to the proof of Theorem 5 in Ayache and Xiao (2005), we divide
the proof of Theorem 7.1 into two steps. In Step one, we prove (i) and the upper bound for dimPLx

in (7.1); and in Step two we prove the lower bound for dimHLx by constructing a random measure
on Lx and using a capacity argument. Moreover, the last equality in (7.1) follows from Lemma 6.2.

First we prove

dimBLx ≤ min
{ k∑

j=1

Hk

Hj
+ N − k −Hkd, 1 ≤ k ≤ N

}
a.s. (7.2)

and Lx = ∅ a.s. whenever the right hand side of (7.2) is negative. It can be verified that the latter
is equivalent to

∑N
j=1

1
Hj

< d.
For an integer n ≥ 1, divide the interval [ε, 1]N into mn sub-rectangles Rn,` of side lengths

n−1/Hj (j = 1, · · · , N). Then mn ≤ c n
PN

j=1 H−1
j . Let 0 < δ < 1 be fixed and let τn,` be the

lower-left vertex of Rn,`. Then

P
{
x ∈ X(Rn,`)

} ≤ P
{

max
s,t∈Rn,`

|X(s)−X(t)| ≤ n−(1−δ); x ∈ X(Rn,`)
}

+ P
{

max
s,t∈Rn,`

|X(s)−X(t)| > n−(1−δ)

}

≤ P
{
|X(τn,`)− x| ≤ n−(1−δ)

}
+ e−c n2δ

≤ c n−(1−δ)d.

(7.3)

In the above we have applied Lemma 2.1 in Talagrand (1995) to get the second inequality. If∑N
j=1

1
Hj

< d, we choose δ > 0 such that (1− δ)d >
∑N

j=1
1

Hj
. Let Nn be the number of rectangles

Rn,` such that x ∈ X(Rn,`). It follows from (7.3) that

E(Nn) ≤ c n
PN

j=1 H−1
j n−(1−δ)d → 0 as n →∞. (7.4)

Since the random variables Nn are integer-valued, (7.4) and Fatou’s lemma imply that a.s. Nn = 0
for infinitely many integers n ≥ 1. Therefore Lx = ∅ almost surely.

Now we assume
∑N

j=1
1

Hj
> d and define a covering {R′

n,`} of Lx by R′
n,` = Rn,` if x ∈ X(Rn,`)

and R′
n,` = ∅ otherwise. We will show that there are N different ways to cover Lx by using cubes

of the same side-lengths and each of these ways leads to an upper bound for dimBLx.
For every 1 ≤ k ≤ N , the rectangle R′

n,` can be covered by n
PN

j=k+1(H
−1
k −H−1

j ) cubes of side-

length n−H−1
k . Thus we can cover the level set Lx by a sequence of cubes of side-length n−H−1

k .
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Denote the number of such cubes by Mn,k. Using (7.3) again, we have

E(Mn,k) ≤ c7,1 n
PN

j=1 H−1
j n−(1−δ)d · n

PN
j=k+1(H

−1
k −H−1

j )

= c7,1 n(N−k)H−1
k +

Pk
j=1 H−1

j −(1−δ)d.
(7.5)

Now let η be the constant defined by

η = (N − k)H−1
k +

k∑

j=1

H−1
j − (1− 2δ)d.

We consider the sequence of integers ni = 2i (i ≥ 1). Then by (7.5), the Markov inequality and the
Borel-Cantelli lemma we see that almost surely Mni,k ≤ c nη

i for all i large enough. This implies
that dimBLx ≤ Hk η almost surely. Letting δ ↓ 0 along rational numbers, we have

dimBLx ≤
k∑

j=1

Hk

Hj
+ N − k −Hkd a.s. (7.6)

Optimizing (7.6) over k = 1, . . . , N yields (7.2).
To prove the lower bound for dimHLx in (7.1), we assume

∑k−1
j=1

1
Hj

≤ d <
∑k

j=1
1

Hj
for some

1 ≤ k ≤ N . Let δ > 0 be a small constant such that

γ :=
k∑

j=1

Hk

Hj
+ N − k −Hk(1 + δ)d > N − k. (7.7)

This is possible by Lemma 6.2. Note that if we can prove that there is a constant c7,2 > 0,
independent of δ, such that

P
{
dimHLx ≥ γ

} ≥ c7,2 , (7.8)

then the lower bound in (7.1) will follow by letting δ ↓ 0.
Our proof of (7.8) is based on the capacity argument due to Kahane [see Kahane (1985)].

Similar methods have been used by Adler (1981), Testard (1986), Xiao (1995) to certain Gaussian
and stable random fields.

Let M+
γ be the space of all non-negative measures on RN with finite γ-energy. It is known [cf.

Adler (1981)] that M+
γ is a complete metric space under the metric

‖µ‖γ =
∫

RN

∫

RN

µ(dt)µ(ds)
|t− s|γ . (7.9)

We define a sequence of random positive measures µn := µn(x, •) on the Borel sets C of [ε, 1]N by

µn(C) =
∫

C
(2πn)d/2 exp

(
− n |X(t)− x|2

2

)
dt

=
∫

C

∫

Rd

exp
(
− |ξ|2

2n
+ i〈ξ, X(t)− x〉

)
dξ dt.

(7.10)
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It follows from Kahane (1985, p. 206) or Testard (1986, p.17) that if there exist positive and
finite constants c7,3 , c7,4 and c7,5 such that

E
(‖µn‖

) ≥ c7,3 , E
(‖µn‖2

) ≤ c7,4 , (7.11)
E

(‖µn‖γ

) ≤ c7,5 , (7.12)

where ‖µn‖ = µn

(
[ε, 1]N

)
denotes the total mass of µn, then there is a subsequence of {µn}, say

{µnk
}, such that µnk

→ µ in M+
γ and µ is strictly positive with probability ≥ c2

7,3
/(2c7,4). In this

case, it follows from (7.10) that µ has its support in Lx almost surely. Moreover, (7.12) and the
monotone convergence theorem together imply that the γ-energy of µ is finite. Hence Frostman’s
theorem yields (7.8) with c7,2 = c2

7,3
/(2c7,4).

It remains to verify (7.11) and (7.12). By Fubini’s theorem we have

E
(‖µn‖

)
=

∫

[ε,1]N

∫

Rd

e−i〈ξ, x〉 exp
(
− |ξ|2

2n

)
E exp

(
i〈ξ, X(t)〉

)
dξ dt

=
∫

[ε,1]N

∫

Rd

e−i〈ξ, x〉 exp
(
− 1

2
(n−1 + σ2(t))|ξ|2

)
dξ dt

=
∫

[ε,1]N

(
2π

n−1 + σ2(t)

)d/2

exp
(
− |x|2

2(n−1 + σ2(t))

)
dt

≥
∫

[ε,1]N

(
2π

1 + σ2(t)

)d/2

exp
(
− |x|2

2σ2(t)

)
dt := c7,3 .

(7.13)

Denote by I2d the identity matrix of order 2d and Cov
(
X(s), X(t)

)
the covariance matrix of the

random vector (X(s), X(t)). Let Γ = n−1I2d + Cov
(
X(s), X(t)

)
and (ξ, η)′ be the transpose of the

row vector (ξ, η). Then

E
(‖µn‖2

)
=

∫

[ε,1]N

∫

[ε,1]N

∫

Rd

∫

Rd

e−i〈ξ+η, x〉 exp
(
− 1

2
(ξ, η) Γ (ξ, η)′

)
dξdη dsdt

=
∫

[ε,1]N

∫

[ε,1]N

(2π)d

√
detΓ

exp
(
− 1

2
(x, x) Γ−1 (x, x)′

)
ds dt

≤
∫

[ε,1]N

∫

[ε,1]N

(2π)d

[
detCov(X0(s), X0(t))

]d/2
ds dt.

(7.14)

It follows from Conditions (C1), (C2) and (3.11) that for all s, t ∈ [ε, 1]N ,

detCov
(
X0(s), X0(t)

) ≥ c7,6

N∑

j=1

|sj − tj |2Hj . (7.15)

Combining (7.14), (7.15) and applying Lemma 6.3 repeatedly, we obtain

E(‖µn‖2) ≤ c7,7

∫

[ε,1]N

∫

[ε,1]N

1
[∑N

j=1 |sj − tj |2Hj
]d/2

ds dt := c7,4 < ∞. (7.16)

This is similar to (6.25)–(6.28) in the proof of Theorem 6.1. Thus we have shown (7.11) holds.
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Similar to (7.14), we have

E
(‖µn‖γ

)
=

∫

[ε,1]N

∫

[ε,1]N

ds dt

|s− t|γ
∫

Rd

∫

Rd

e−i〈ξ+η, x〉 exp
(
− 1

2
(ξ, η) Γ (ξ, η)′

)
dξdη

≤ c7,8

∫

[ε,1]N

∫

[ε,1]N

ds dt
( ∑N

j=1 |sj − tj |
)γ( ∑N

j=1 |sj − tj |2Hj
)d/2

≤ c7,9

∫ 1

0
dtN · · ·

∫ 1

0

dt1( ∑N
j=1 t

Hj

j

)d ( ∑N
j=1 tj

)γ
,

(7.17)

where the two inequalities follow from (7.15) and a change of variables. Note that the last integral
in (7.17) is similar to (6.32) and can be estimated by using Lemma 6.4 in the same way as in the
proof of (6.33) – (6.36). Moreover, we can take δ small enough, say δ < δ0, so that the γ defined
in (7.7) is bounded away from N − k and N − k + 1. This implies that E

(‖µn‖γ

) ≤ c7,9 which is
independent of δ. This proves (7.12) and hence Theorem 7.1. ¤

In light of Theorem 7.1, it is of interest to further study the following question about fractal
properties of the level sets.

Question 7.3 Determine the exact Hausdorff and packing measure functions for the level set Lx.

Questions 7.3 is closely related to the regularity properties such as the laws of the iterated
logarithm of the local times of X. The latter will be considered in Section 8. When X is an (N, d)-
fractional Brownian motion with index α, Xiao (1997b) proved that ϕ7(r) = rN−αd(log log 1/r)αd/N

is an exact Hausdorff measure function for Lx. In Theorem 8.11 we give a partial result [i.e., lower
bound] for the exact Hausdorff measure of the level set Lx. It seems that the method in Xiao
(1997b) may be modified to determine an exact Hausdorff measure function for the level sets of
Gaussian random fields satisfying (C3) or (C3′).

So far no exact packing measure results have been proved for the level sets of fractional Brownian
motion or the Brownian sheet. These problems are related to the liminf behavior of the local times
of X which are more difficult to study.

More general than level sets, one can consider the following questions:

Question 7.4 Given a Borel set F ⊆ Rd, when do we have P
{
X(I) ∩ F 6= ∅}

> 0?

Question 7.5 If P
{
X(I) ∩ F 6= ∅

}
> 0, what are the Hausdorff and packing dimensions of the

inverse image X−1(F ) ∩ I?
Question 7.4 is an important question in potential theory of random fields. Complete answer

has only been known for a few types of random fields with certain Markov structures. We mention
that Khoshnevisan and Shi (1999) proved that if X is an (N, d)-Brownian sheet, then for every
Borel set F ⊆ Rd,

P
{
X(I) ∩ F 6= ∅}

> 0 ⇐⇒ Cd−2N (F ) > 0. (7.18)

Recall that Cα denotes the Bessel-Riesz capacity of order α. Dalang and Nualart (2004) have
recently extended the methods of Khoshnevisan and Shi (1999) and proved similar results for
the solution of a system of d nonlinear hyperbolic stochastic partial differential equations with
two variables. In this context, we also mention that Khoshnevisan and Xiao (2002, 2003, 2005,
2007b) and Khoshnevisan, Xiao and Zhong (2003) have established systematic potential theoretical
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results for additive Lévy processes in Rd. The arguments in the aforementioned work rely on the
multiparameter martingale theory; we refer to Khoshnevisan (2002) for more information on the
latter as well as on potential theory of random fields.

For random fields with general dependence structures, it is more difficult to solve Question 7.4
completely. Instead, one can look for sufficient conditions and necessary conditions on F so that
P
{
X(I) ∩ F 6= ∅

}
> 0. For example, when X is an (N, d)-fractional Brownian motion, Testard

(1986) and Xiao (1999) proved the following results:

Cd−N/α(F ) > 0 ⇒ P
{
X(I) ∩ F 6= ∅}

> 0 ⇒ Hd−N/α(F ) > 0. (7.19)

Similar results for the solution to a non-linear stochastic heat equation with multiplicative noise
have been proved recently by Dalang, Khoshnevisan and Nualart (2007a).

The following theorem is an analogue of (7.19) for all Gaussian random fields X satisfying
Conditions (C1) and (C2).

Theorem 7.6 Assume that an (N, d)-Gaussian random field X = {X(t), t ∈ RN} satisfies Condi-
tions (C1) and (C2) on I and d > Q. Then for every Borel set F ⊆ Rd,

c7,10 Cd−Q(F ) ≤ P
{

X(I) ∩ F 6= ∅
}
≤ c7,11 Hd−Q(F ), (7.20)

where Q =
∑N

j=1
1

Hj
, c7,10 and c7,11 are positive constants depending on I, F and H only.

Remark 7.7 When d < Q, Theorem 7.1 tells us that X hits points, hence (7.20) holds auto-
matically. When d = Q, our proof below shows that the lower bound in (7.20) remains to be true
and C0 means the logarithmic capacity [see (6.1)]. This can be seen by estimating the integral in
(7.26) when d = Q. However, if C0(F ) > 0, then the upper bound in (7.20) becomes ∞, thus not
informative.

Proof of Theorem 7.6 The lower bound in (7.20) can be proved by using a second moment
argument. In fact one can follow the method in Khoshnevisan and Shi (1999) and Dalang and
Nualart (2004) to prove the lower bound in (7.20).

In the following, we provide an alternative proof for the lower bound which is similar to that
of Theorem 7.1. For any Borel probability measure κ on F with Ed−Q(κ) < ∞ and for all integers
n ≥ 1, we consider a family of random measures νn on I defined by

∫

I
f(t) νn(dt) =

∫

I

∫

Rd

(2πn)d/2 exp
(− n |X(t)− x|2) f(t)κ(dx) dt

=
∫

I

∫

Rd

∫

Rd

exp
(
− |ξ|2

2n
+ i〈ξ, X(t)− x〉

)
f(t) dξ κ(dx) dt,

(7.21)

where f is an arbitrary measurable function on I. We claim that the following two inequalities
hold:

E
(‖νn‖

) ≥ c7,12 , E
(‖νn‖2

) ≤ c7,13Ed−Q(κ), (7.22)

where the constants c7,12 and c7,13 are independent of κ and n.
Since the proof of the first inequality in (7.22) is very similar to (7.13) in the proof of Theorem

7.1, we only prove the second inequality in (7.22).
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Denote by I2d the identity matrix of order 2d and Cov
(
X(s), X(t)

)
the covariance matrix of

the random vector (X(s), X(t)). Let Γn = n−1I2d + Cov
(
X(s), X(t)

)
and (ξ, η)′ be the transpose

of the row vector (ξ, η). Since Γn is positive definite, we have

E
(‖νn‖2

)
=

∫

I

∫

I

∫

R2d

∫

R2d

e−i(〈ξ, x〉+〈η, y〉)

× exp
(
− 1

2
(ξ, η) Γn (ξ, η)′

)
dξdη κ(dx)κ(dy) dsdt

=
∫

I

∫

I

∫

R2d

(2π)d

√
detΓn

exp
(
− 1

2
(x, y) Γ−1

n (x, y)′
)

κ(dx)κ(dy) dsdt.

(7.23)

By modifying an argument from Testard (1986), we can prove that, under conditions (C1) and
(C2), we have

(2π)d

√
detΓn

exp
(
− 1

2
(x, y) Γ−1

n (x, y)′
)
≤ c7,14

max{ρd(s, t), |x− y|d} (7.24)

for all s, t ∈ I and x, y ∈ Rd. See Biermé, Laucaux and Xiao (2007) for details. Hence, it follows
from (7.23) and (7.24) that

E
(‖νn‖2

) ≤ c7,14

∫

I

∫

I

∫

R2d

1
max{ρd(s, t), |x− y|d} κ(dx)κ(dy) dsdt. (7.25)

We can verify that for all x, y ∈ Rd,
∫

I

∫

I

dsdt

max{ρd(s, t), |x− y|d} ≤ c7,15 |x− y|−(d−Q), (7.26)

where c7,15 > 0 is a constant. This can be done by breaking the integral in (7.26) over the regions
{(s, t) ∈ I×I : ρ(s, t) ≤ |x−y|} and {(s, t) ∈ I×I : ρ(s, t) > |x−y|}, and estimate them separately.
It is clear that (7.23), (7.26) and Fubini’s theorem imply the second inequality in (7.22).

By using (7.22) and the Paley-Zygmund inequality [cf. Kahane (1985), p.8], one can verify that
there is a subsequence of {νn, n ≥ 1} that converges weakly to a finite measure ν which is positive
with positive probability [depending on c7,12 and c7,13 only] and ν also satisfies (7.22). Since ν is
supported on X−1(F ) ∩ I, we use the Paley-Zygmund inequality again to derive

P
{

X(I) ∩ F 6= ∅
}
≥ P{‖ν‖ > 0

} ≥
[
E(‖ν‖)]2

E
[‖ν‖2

] ≥ c7,16

Ed−Q(κ)
, (7.27)

where c7,16 = c2
7,12

/c7,13 . This implies the lower bound in (7.20).
Our proof of the upper bound in (7.20) relies on the following lemma on the hitting probability

of X, whose proof will be deferred to the end of this section.

Lemma 7.8 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field satisfying Conditions
(C1) and (C2) on I. Then there exists a constant c7,17 > 0 such that for all x ∈ I and y ∈ Rd,

P
{

inf
t∈Bρ(x,r)

∣∣X(t)− y
∣∣ ≤ r

}
≤ c7,17 rd. (7.28)
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Now we proceed to prove the upper bound in (7.20) by using a simple covering argument.
Choose and fix an arbitrary constant γ > Hd−Q(F ). By the definition of Hd−Q(F ), there is a
sequence of balls {B(yj , rj), j ≥ 1} in Rd such that

F ⊆
∞⋃

j=1

B(yj , rj) and
∞∑

j=1

(2rj)d−Q ≤ γ. (7.29)

Clearly we have
{
F ∩X(I) 6= ∅} ⊆

∞⋃

j=1

{
B(yj , rj) ∩X(I) 6= ∅}

. (7.30)

For every j ≥ 1, we divide the interval I into c r−Q
j intervals of side-lengths r

−1/H`

j (` = 1, . . . , N).
Hence I can be covered by at most c r−Q

j many balls of radius rj in the metric ρ. It follows from
Lemma 7.8 that

P
{
B(yj , rj) ∩X(I) 6= ∅} ≤ c rd−Q

j . (7.31)

Combining (7.30) and (7.31) we derive that P
{
F ∩ X(I) 6= ∅

} ≤ cγ. Since γ > Hd−Q(F ) is
arbitrary, the upper bound in (7.20) follows. ¤

The following are some further remarks and open questions related to Theorem 7.6.

Remark 7.9 For any Borel set F ⊆ Rd, Theorem 7.6 provides a sufficient condition and a necessary
condition for P{X−1(F ) ∩ I 6= ∅} > 0. It is interesting to determine the Hausdorff and packing
dimensions of X−1(F ) when it is not empty. Recently, Biermé, Lacaux and Xiao (2007) determined
the Hausdorff dimension of X−1(F ). Namely, they proved that if dimHF > d−∑N

`=1
1

H`
, then

∥∥dimH
(
X−1(F ) ∩ I

)∥∥
L∞(P) = min

1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk

(
d− dimHF

)}
. (7.32)

Here, for any function Y : Ω → R+, ‖Y ‖L∞(P) is defined as

‖Y ‖L∞(P) = sup
{
θ : Y ≥ θ on an event E with P(E) > 0

}
.

However, except for the special case of F = {x}, there have been no results on the packing dimension
of X−1(F ) for a given Borel set F ⊆ Rd.

Remark 7.10 Note that the event on which (7.32) holds depends on F . Motivated by the results
in Monrad and Pitt (1987), we may ask the following natural question: When

∑N
`=1

1
H`

> d, is it
possible to have a single event Ω1 ⊆ Ω of positive probability such that on Ω1 (7.32) holds for all
Borel sets F ⊆ Rd?

Here are some partial answers. If in addition to Conditions (C1) and (C2), we also assume
Condition (C3) or (C3′) holds and H1 = H2 = · · · = HN , then one can modify the proofs in
Monrad and Pitt (1987) to show that the answer to the above question is affirmative. In general, it
can be proved that, when

∑N
`=1

1
H`

> d, the upper bound in (7.32) holds almost surely for all Borel
sets F ⊆ Rd. But it is likely that the lower bound may not hold uniformly due to the anisotropy
of X.
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Remark 7.11 The method for proving Theorem 7.6 may be extended to provide necessary con-
ditions and sufficient conditions for P{X(E) ∩ F 6= ∅} > 0, where E ⊆ (0,∞)N and F ⊆ Rd

are arbitrary Borel sets. Some difficulties arise when both E and F are fractal sets. Testard
(1986) obtained some partial results for fractional Brownian motion and, for every fixed Borel
set E ⊆ (0,∞)N (or F ⊆ Rd), Xiao (1999) characterized the “smallest” set F (or E) such that
P{X(E)∩F 6= ∅} > 0. No such results on anisotropic Gaussian random fields have been proved.

Finally, let us prove Lemma 7.8. There are two ways to prove (7.28). One is to use the
argument in the proof of Proposition 4.4 of Dalang, Khoshnevisan and Nualart (2007a) and the
other is reminiscent to the proof of Lemma 3.1 in Xiao (1996b). While the former method is
slightly simpler, the latter can be adapted to establish hitting probability estimates of the form
(7.42) below for anisotropic Gaussian random fields. Hence we will use an argument similar to that
in Xiao (1996b).

Proof of Lemma 7.8 For every integer n ≥ 1, let εn = r exp(−2n+1) and denote by Nn =
Nρ(Bρ(x, r), εn) the minimum number of ρ-balls of radius εn that are needed to cover Bρ(x, r).
Note that Nn ≤ c exp

(
Q2n+1

)
[recall that Q =

∑N
`=1 1/H`].

Let {t(n)
i , 1 ≤ i ≤ Nn} be a set of the centers of open balls with radius εn that cover Bρ(x, r).

Denote
rn = βεn 2

n+1
2 ,

where β ≥ c4,10 is a constant to be determined later. Here c4,10 is the constant in (4.15).
For all integers n ≥ 1, 1 ≤ j ≤ n and 1 ≤ i ≤ Nn, we consider the following events

A
(j)
i =

{∣∣X(t(j)i )− y
∣∣ ≤ r +

∞∑

k=j

rk

}
,

A(n) =
n⋃

j=1

Nj⋃

i=1

A
(j)
i = A(n−1) ∪

Nn⋃

i=1

A
(n)
i .

(7.33)

Then by a chaining argument, the triangle inequality and (4.15), we have

P
{

inf
t∈Bρ(x,r)

∣∣X(t)− y
∣∣ ≤ r

}
≤ lim

n→∞P
(
A(n)

)
. (7.34)

By (7.33), we have
P
(
A(n)

) ≤ P(A(n−1)
)

+ P
(
A(n)\A(n−1)

)
(7.35)

and

P
(
A(n)\A(n−1)

) ≤
Nn∑

i=1

P
(
A

(n)
i \A(n−1)

i′
)
, (7.36)

where i′ is chosen so that ρ(t(n)
i , t

(n−1)
i′ ) < εn−1. Note that

P
(
A

(n)
i \A(n−1)

i′
)

= P
{∣∣X(t(n)

i )− y
∣∣ < r +

∞∑

k=n

rk ,
∣∣X(t(n−1)

i′ )− y
∣∣ > r +

∞∑

k=n−1

rk

}

≤ P
{∣∣X(t(n)

i )− y
∣∣ < r +

∞∑

k=n

rk ,
∣∣X(t(n)

i )−X(t(n−1)
i′ )

∣∣ ≥ rn−1

}
.

(7.37)
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By the elementary properties of Gaussian random variables, we can write

X(t(n)
i )−X(t(n−1)

i′ )

σ(t(n)
i , t

(n−1)
i′ )

= η
X(t(n)

i )

σ(t(n)
i )

+
√

1− η2 Ξ ,

where

η =
E

[(
X1(t

(n)
i )−X1(t

(n−1)
i′ )

)
X1(t

(n)
i )

]

σ(t(n)
i , t

(n−1)
i′ )σ(t(n)

i )

and where Ξ is a centered Gaussian random vector in Rd with the identity matrix as its covariance
matrix and, moreover, Ξ is independent of X(t(n)

i ).
We observe that

r +
∞∑

k=n

rk ≤ r +
∞∑

k=0

rk

≤
(

1 + c

∫ ∞

0
exp(−αx2) dx

)
r := c7,18 r.

It follows from Condition (C1) that (7.37) is bounded by

P
{∣∣X(t(n)

i )− y
∣∣ ≤ c7,18 r , |Ξ| ≥ 1√

1− η2

[
rn−1

ρ(t(n)
i , t

(n−1)
i′ )

− η
X(t(n)

i )

σ(t(n)
i )

]}

≤ P
{
|X(t(n)

i )− y| ≤ c7,18r , |Ξ| ≥ βd

2
2

n
2

}

+ P
{
|X(t(n)

i )− y| ≤ c7,18r , η
|X(t(n)

i )|
σ(t(n)

i )
≥ βd

2
2

n
2

}

:= I1 + I2.

(7.38)

By the independence of Ξ and X(t(n)
i ), we have

I1 = P
{∣∣X(t(n)

i )− y
∣∣ ≤ c7,18 r

}
· P

{
|Ξ| ≥ βd

2
2

n
2

}

≤ c7,19 rd exp
(
−(βd)2

16
2n

)
.

(7.39)

On the other hand,

I2 ≤
∫

{|u−y|≤c7,18 r, |u|≥βd
2

2n/2σ(t
(n)
i )}

(
1
2π

) d
2 1

σd(t(n)
i )

exp
(
− |u|2

2σ2(t(n)
i )

)
du

≤ c7,20

∫

{|u−y|≤c7,18r}

1

σd(t(n)
i )

exp
(
− |u|2

4σ2(t(n)
i )

)
du · exp

(
−(βd)2

16
2n

)

≤ c7,21 rd exp
(
−(βd)2

16
2n

)
.

(7.40)
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Combining (7.35) through (7.40) and choosing β ≥ c4,10 satisfying (βd)2 > 32, we obtain

P
(
A(n)

) ≤ P(A(n−1)
)

+ c7,22 Nn rd exp
(
−(βd)2

16
2n

)

≤ c7,23

[ ∞∑

k=0

Nk exp
(
−(βd)2

16
2k

)]
rd

≤ c7,24 rd.

(7.41)

Therefore, (7.28) follows from (7.34) and (7.41). ¤

When X is an (N, d)-fractional Brownian motion of index α, Xiao (1999) proved the following
hitting probability result: If N < αd, then there exist positive and finite constants c7,25 and c7,26 ,
depending only on N , d and α, such that for any r > 0 small enough and any y ∈ Rd with |y| ≥ r,
we have

c7,25

(
r

|y|
)d−N

α

≤ P
{
∃ t ∈ RN such that

∣∣X(t)− y
∣∣ < r

}
≤ c7,26

(
r

|y|
)d−N

α

. (7.42)

It would be interesting and useful to establish analogous results for all Gaussian random fields
satisfying Conditions (C1) and (C2). Such an estimate will be useful in studying the escape rate
and exact packing measure of the sample paths of Gaussian random fields; see Xiao (2003) for the
special case of fractional Brownian motion.

8 Local times and their joint continuity

We start by briefly recalling some aspects of the theory of local times. For excellent surveys on
local times of random and deterministic vector fields, we refer to Geman and Horowitz (1980) and
Dozzi (2002).

Let X(t) be a Borel vector field on RN with values in Rd. For any Borel set T ⊆ RN , the
occupation measure of X on T is defined as the following Borel measure on Rd:

µT (•) = λN

{
t ∈ T : X(t) ∈ •}.

If µT is absolutely continuous with respect to the Lebesgue measure λd, we say that X(t) has
a local time on T , and define its local time, L(•, T ), as the Radon–Nikodým derivative of µT with
respect to λd, i.e.,

L(x, T ) =
dµT

dλd
(x), ∀x ∈ Rd.

In the above, x is the so-called space variable, and T is the time variable. Sometimes, we write
L(x, t) in place of L(x, [0, t]). It is clear that if X has local times on T , then for every Borel set
S ⊆ T , L(x, S) also exists.

By standard martingale and monotone class arguments, one can deduce that the local times of
X have a version, still denoted by L(x, T ), such that it is a kernel in the following sense:

(i). For each fixed S ⊆ T , the function x 7→ L(x, S) is Borel measurable in x ∈ Rd.
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(ii). For every x ∈ Rd, L(x, ·) is Borel measure on B(T ), the family of Borel subsets of T .

Moreover, L(x, T ) satisfies the following occupation density formula: For every Borel set T ⊆ RN

and for every measurable function f : Rd → R+,
∫

T
f(X(t)) dt =

∫

Rd

f(x)L(x, T ) dx. (8.1)

[cf. Geman and Horowitz (1980, Theorems 6.3 and 6.4)]
Suppose we fix a rectangle T =

∏N
i=1[ai, ai + hi] in A. Then, whenever we can choose a version

of the local time, still denoted by L
(
x,

∏N
i=1[ai, ai + ti]

)
, such that it is a continuous function of

(x, t1, · · · , tN ) ∈ Rd ×∏N
i=1[0, hi], X is said to have a jointly continuous local time on T . When a

local time is jointly continuous, L(x, •) can be extended to be a finite Borel measure supported on
the level set

X−1
T (x) = {t ∈ T : X(t) = x}; (8.2)

see Adler (1981) for details. In other words, local times often act as a natural measure on the level
sets of X for applying the capacity argument. As such, they are useful in studying the various
fractal properties of level sets and inverse images of the vector field X. In this regard, we refer to
Berman (1972), Ehm (1981), Rosen (1984), Monrad and Pitt (1987) and Xiao (1997b).

First we consider the existence of the local times of Gaussian random fields.

Theorem 8.1 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field defined by (2.26) and suppose
Condition (C1) is satisfied on I. Then X has a local time L(x, I) ∈ L2(P × λd) if and only if
d <

∑N
j=1 1/Hj. In the latter case, L(x, I) admits the following L2 representation:

L(x, I) = (2π)−d

∫

Rd

e−i〈y, x〉
∫

I
ei〈y, X(s)〉ds dy, ∀x ∈ Rd. (8.3)

Proof The Fourier transform of the occupation measure µI is

µ̂I(ξ) =
∫

I
ei〈ξ, X(t)〉 dt.

By applying Fubini’s theorem twice, we have

E
∫

Rd

∣∣µ̂(ξ)
∣∣2 dξ =

∫

I
ds

∫

I
dt

∫

Rd

E exp
(
i〈ξ, X(s)−X(t)〉

)
dξ. (8.4)

We denote the right hand side of (8.4) by J (I). It follows from the Plancherel theorem that X
has a local time L(·, I) ∈ L2(P × λd) if and only if J (I) < ∞; see Theorem 21.9 in Geman and
Horowitz (1980), or Kahane (1985). Hence it is sufficient to prove

J (I) < ∞ if and only if d <
N∑

j=1

1/Hj . (8.5)

For this purpose, we use the independence of the coordinate processes of X and Condition (C1)
to deduce

J (I) =
∫

I

∫

I

ds dt
[
E(X0(s)−X0(t))2

]d/2
³

∫

I

∫

I

ds dt
( ∑N

j=1 |sj − tj |2Hj
)d/2

. (8.6)
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By using Lemma 8.6 below, it is elementary to verify that the last integral in (8.6) is finite if and
only if d <

∑N
j=1 1/Hj . This proves (8.5), and hence Theorem 8.1. ¤

The following result on the joint continuity of the local times is similar to those proved by Xiao
and Zhang (2002), Ayache, Wu and Xiao (2006) for fractional Brownian sheets.

Theorem 8.2 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field defined by (2.26) and we
assume Conditions (C1) and (C3′) are satisfied on I. If d <

∑N
j=1 1/Hj, then X has a jointly

continuous local time on I.

Remark 8.3 The conclusion of Theorem 8.2 can also be proved to hold for all Gaussian random
fields satisfying Conditions (C1) and (C3). The proof follows a similar line, but some modifications
are needed in order to prove analogous estimates in Lemmas 8.4 and 8.8. This is left to the reader
as an exercise.

To prove Theorem 8.2 we will, similar to Ehm (1981), Xiao (1997b), Ayache, Wu and Xiao
(2006), first use the Fourier analytic arguments to derive estimates on the moments of the local
times [see Lemmas 8.4 and 8.8 below] and then apply a multiparameter version of Kolmogorov
continuity theorem [cf. Khoshnevisan (2002)]. It will be clear that Condition (C3′) plays an
essential role in the proofs of Lemmas 8.4 and 8.8.

Our starting points is the following identities about the moments of the local time and its
increments. It follows from (25.5) and (25.7) in Geman and Horowitz (1980) [see also Pitt (1978)]
that for all x, y ∈ Rd, T ∈ A and all integers n ≥ 1,

E
[
L(x, T )n

]
= (2π)−nd

∫

T n

∫

Rnd

exp
(
− i

n∑

j=1

〈uj , x〉
)

×E exp
(

i
n∑

j=1

〈uj , X(tj)〉
)

du dt (8.7)

and for all even integers n ≥ 2,

E
[(

L(x, T )− L(y, T )
)n

]
=(2π)−nd

∫

T n

∫

Rnd

n∏

j=1

[
e−i〈uj ,x〉 − e−i〈uj ,y〉

]

× E exp
(

i

n∑

j=1

〈uj , X(tj)〉
)

du dt,

(8.8)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ T ⊆ (0,∞)N . In the coordinate
notation we then write uj = (uj

1, . . . , u
j
d).

Lemma 8.4 Suppose the assumptions of Theorem 8.2 hold. Let τ ∈ {1, . . . , N} be the integer such
that

τ−1∑

`=1

1
H`

≤ d <

τ∑

`=1

1
H`

, (8.9)
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then there exists a positive and finite constant c8,1, depending on N, d, H and I only, such that
for all hypercubes T = [a, a + 〈r〉] ⊆ I with side-length r ∈ (0, 1), all x ∈ Rd and all integers n ≥ 1,

E
[
L(x, T )n

] ≤ cn
8,1

n! rn βτ , (8.10)

where βτ =
∑τ

`=1
Hτ
H`

+ N − τ −Hτd.

Remark 8.5

(i) It is important to note that, when (8.9) holds, βτ =
∑τ

`=1
Hτ
H`

+N − τ −Hτd is the Hausdorff
dimension of the level set Lx; see Theorem 7.1. Combining (8.10) with the upper density
theorem of Rogers and Taylor (1961), one can obtain some information on the exact Hausdorff
measure of Lx [see Corollary 8.11 below].

(ii) We point out that the upper bound in (8.10) is not sharp, and one may be able to prove the
following inequality:

E
[
L(x, T )n

] ≤ cn
8,2

(n!)N−βτ rn βτ . (8.11)

If this is indeed true, then one can conjecture that the function ϕ8(r) = rβτ
(
log log 1/r

)N−βτ

is an exact Hausdorff measure function for Lx.

For proving Lemma 8.4, we will make use of the following elementary lemma [which is stronger
than Lemma 6.3].

Lemma 8.6 Let α, β and A be positive constants. Then

∫ 1

0

1(
A + tα

)β
dt ³





A−(β− 1
α

) if αβ > 1,

log
(
1 + A−1/α

)
if αβ = 1,

1 if αβ < 1.

(8.12)

Proof of Lemma 8.4 Since X1, · · · , Xd are independent copies of X0, it follows from (8.7) that
for all integers n ≥ 1,

E
[
L(x, T )n

] ≤ (2π)−nd

∫

T n

d∏

k=1

{∫

Rn

exp
[
−1

2
Var

( n∑

j=1

uk
j X0(tj)

)]
dUk

}
dt, (8.13)

where Uk = (u1
k, · · · , un

k) ∈ Rn. It is clear that in order to bound the integral in dt it is sufficient
to consider only the integral over Tn

6= = {t ∈ Tn : t1, . . . , tn are distinct} [the set of t ∈ RNn having
ti = tj for some i 6= j has (Nn)-dimensional Lebesgue measure 0]. It follows from Lemma 3.4
that for every t ∈ Tn

6=, the covariance matrix of X0(t1), · · · , X0(tn) is invertible. We denote the
inverse matrix by R(t1, · · · , tn), and let (Z1, · · · , Zn) be the Gaussian vector with mean zero and
the covariance matrix R(t1, · · · , tn). Then the density function of (Z1, · · · , Zn) is given by

(2π)−n/2
[
detCov

(
X0(t1), . . . , X0(tn)

)]1/2 exp
(
−1

2
UCov

(
X0(t1), . . . , X0(tn)

)
U ′

)
, (8.14)
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where U = (u1, · · · , un) ∈ Rn and U ′ is the transpose of U . Hence for each 1 ≤ k ≤ d,

∫

Rn

exp
[
−1

2
Var

( n∑

j=1

uj
k X0(tj)

)]
dUk =

(2π)n/2

[
detCov

(
X0(t1), . . . , X0(tn)

)]1/2
. (8.15)

Combining (8.13) and (8.15), we derive

E
[
L(x, T )n

] ≤ (2π)−nd/2

∫

T n

1
[
detCov(X0(t1), . . . , X0(tn))

]d/2
dt. (8.16)

It follows from Condition (C3′) and (3.11) that

detCov
(
X0(t1), . . . , X0(tn)

)
=

n∏

j=1

Var
(
X0(tj)

∣∣X0(ti), j < i ≤ n
)

≥ cn
8,3

n∏

j=1

min
j<i≤n+1

ρ(tj , ti)2,

(8.17)

where tn+1 = 0. This and (8.16) together imply that

E
[
L(x, T )n

] ≤ cn
8,4

∫

T n

n∏

j=1

1[
min

j<i≤n+1
ρ(tj , ti)

]d
dt. (8.18)

We will estimate the integral in (8.18) by integrating in the order dt1, dt2, . . . , dtn. Considering
first the integral in dt1, we have

∫

T

1[
min

1<i≤n+1
ρ(tj , ti)

]d
dt1 ≤

n+1∑

i=2

∫

T

1[
ρ(tj , ti)

]d
dt1 ≤ c n

∫

[0,r]N

ds1 · · · dsN[∑N
k=1 sHk

k

]d
, (8.19)

where the last inequality follows from a change of variables. Integrating the last integral in the
order ds1, · · · , dsN and applying (8.12) in Lemma 6.3, we can show that, because of (8.9), the last
integrand in (8.19) only affects the integral in ds1, . . . , dsτ which contributes [up to a constant]

the factor r
Pτ

`=1
Hτ
H`
−Hτ d; and the integral in dsτ+1, . . . , dsN contributes the factor rN−τ . In other

words, we have ∫

[0,r]N

ds1 · · · dsN[∑N
k=1 sHk

k

]d
≤ c8,5 r

Pτ
`=1

Hτ
H`

+N−τ−Hτ d
. (8.20)

This and (8.19) imply
∫

T

1[
min

1<i≤n+1
ρ(tj , ti)

]d
dt1 ≤ c8,6 n r

Pτ
`=1

Hτ
H`

+N−τ−Hτ d
. (8.21)

Repeating the same procedure for integrating in dt2, . . . , dtn in (8.18) yields (8.10). This proves
Lemma 8.4. ¤
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Remark 8.7 In the proof of Lemma 8.4, we have assumed T is a hypercube T = [a, a+ 〈r〉]. This
is only for convenience and one can consider arbitrary closed intervals T =

∏N
`=1[a`, a` + r`] ⊆ I.

The argument is the same as above, but (8.19) becomes
∫

T

1[
min

1<i≤n+1
ρ(tj , ti)

]d
dt1 ≤ c n

∫
QN

k=1[0,rk]

ds1 · · · dsN[∑N
k=1 sHk

k

]d
. (8.22)

Choose N positive numbers p1, . . . , pN ∈ (0, 1) defined by

pk =
H−1

k∑N
i=1 H−1

i

, (k = 1, . . . , N).

Then
∑N

k=1 pk = 1. By using the following inequality

N∑

k=1

sHk
k ≥

N∑

k=1

pk sHk
k ≥

N∏

k=1

spkHk
k , ∀ s ∈ (0,∞)N , (8.23)

one can verify that ∫
QN

k=1[0,rk]

ds1 · · · dsN[∑N
k=1 sHk

k

]d
≤ c λN (T )1−ν , (8.24)

where ν = d/(
∑N

i=1 H−1
i ) ∈ (0, 1). Combining (8.18), (8.22) and (8.24) we derive that

E
[
L(x, T )n

] ≤ cn
8,7

n! λN (T )n(1−ν) (8.25)

holds for every interval T ⊆ I. We will apply this inequality in the proof of Theorem 8.2 below.
Lemma 8.4 implies that for all n ≥ 1, L(x, T ) ∈ Ln(Rd) a.s. [see Geman and Horowitz (1980,

p. 42)]. Our next lemma estimates the moments of the increments of L(x, T ) in the space variable
x.

Lemma 8.8 Assume (8.9) holds for some τ ∈ {1, . . . , N}. Then there exists a positive and finite
constant c8,8, depending on N, d, H and I only, such that for all hypercubes T = [a, a + 〈r〉] ⊆ I,
x, y ∈ Rd with |x− y| ≤ 1, all even integers n ≥ 1 and all γ ∈ (0, 1) small enough,

E
[(

L(x, T )− L(y, T )
)n

]
≤ cn

8,8
(n!)(1+γ) |x− y|nγ rn(βτ−2Hτ γ). (8.26)

In order to prove Lemma 8.8, we will make use of the following lemma essentially due to Cuzick
and DuPreez (1982) [see also Khoshnevisan and Xiao (2007a)].

Lemma 8.9 Let Z1, . . . , Zn be mean zero Gaussian variables which are linearly independent, then
for any nonnegative function g : R→ R+,

∫

Rn

g(v1) exp
[
−1

2
Var

( n∑

j=1

vjZj

)]
dv1 · · · dvn

=
(2π)(n−1)/2

[
detCov

(
Z1, · · · , Zn

)]1/2

∫ ∞

−∞
g
( v

σ1

)
e−v2/2 dv,

where σ2
1 = Var(Z1|Z2, . . . , Zn) is the conditional variance of Z1 given Z2, . . . , Zn.
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Proof of Lemma 8.8 Let γ ∈ (0, 1) be a constant whose value will be determined later. Note
that by the elementary inequalities

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R (8.27)

and |u + v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,
n∏

j=1

∣∣∣e−i〈uj , x〉 − e−i〈uj , y〉
∣∣∣ ≤ 2(1−γ)n |x− y|nγ

∑′ n∏

j=1

|uj
kj
|γ , (8.28)

where the summation
∑

´ is taken over all the sequences (k1, · · · , kn) ∈ {1, · · · , d}n.
It follows from (8.8) and (8.28) that for every even integer n ≥ 2,

E
[(

L(x, T )− L(y, T )
)n

]
≤ (2π)−nd2(1−γ)n |x− y|nγ

×
∑′ ∫

T n

∫

Rnd

n∏

m=1

|um
km
|γ E exp

(
− i

n∑

j=1

〈uj , X(tj)〉
)

du dt

≤ cn
8,9
|x− y|nγ

∑′ ∫

T n

dt

×
n∏

m=1

{∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)]

du

}1/n

,

(8.29)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, . . . , kn) ∈ {1, · · · , d}n and n distinct points t1, . . . , tn ∈ T [the set

of such points has full (nN)-dimensional Lebesgue measure]. Let M = M(k, t, γ) be defined by

M =
n∏

m=1

{∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)]

du

}1/n

. (8.30)

Note that X` (1 ≤ ` ≤ N) are independent copies of X0. By Lemma 3.4, the random variables
X`(tj) (1 ≤ ` ≤ N, 1 ≤ j ≤ n) are linearly independent. Hence Lemma 8.9 gives

∫

Rnd

|um
km
|nγ exp

[
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)]

du

=
(2π)(nd−1)/2

[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2

∫

R

(
v

σm

)nγ

e−
v2

2 dv

≤ cn
8,10

(n!)γ

[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2

1
σnγ

m
,

(8.31)

where σ2
m is the conditional variance of Xkm(tm) given Xi(tj) (i 6= km or i = km but j 6= m), and

the last inequality follows from Stirling’s formula.

Combining (8.30) and (8.31) we obtain

M ≤ cn
8,11

(n!)γ

[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2

n∏

m=1

1
σγ

m
. (8.32)
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The second product in (8.32) will be treated as a “perturbation” factor and will be shown to be
small when integrated. For this purpose, we use again the independence of the coordinate processes
of X and Condition (C3′) to derive

σ2
m = Var

(
Xkm(tm)

∣∣∣Xkm(tj), j 6= m
)

≥ c2
8,12

min
{
ρ(tm, tj)2 : j = 0 or j 6= m

}
.

(8.33)

Now we define a permutation π of {1, · · · , n} such that

ρ
(
tπ(1), 0

)
= min

{
ρ(ti, 0), j = 1, · · · , n

}

and if tπ(m−1) has been defined, we choose tπ(m) such that

ρ
(
tπ(m), tπ(m−1)

)
= min

{
ρ
(
tj , tπ(m−1)

)
, j ∈ {1, · · · , n}\{π(1), · · · , π(m− 1)}

}
.

By this definition, we see that for every m = 1, · · · , n,

min
{

ρ
(
tπ(m), tj

)
: j = 0 or j 6= π(m)

}

= min
{

ρ
(
tπ(m), tπ(m−1)

)
, ρ

(
tπ(m+1), tπ(m)

)}
.

(8.34)

It follows from (8.33), (8.34) and (3.11) that

n∏

m=1

1
σγ

m
≤ c−nγ

8,12

n∏

m=1

1
min

{
ρ
(
tπ(m), tj

)γ : j = 0 or j 6= π(m)
}

≤ cn
8,13

n∏

m=1

1
min

{
ρ
(
tπ(m), tπ(m−1)

)γ
, ρ

(
tπ(m+1), tπ(m)

)γ}

≤ cn
8,13

n∏

m=1

1

ρ
(
tπ(m), tπ(m−1)

)2γ

≤ cn
8,14

n∏

m=1

1[
Var(X0(tπ(m))|X0(tπ(i)), i = 1, · · · ,m− 1)

]γ

=
cn
8,15[

detCov(X0(t1), · · · , X0(tn))
]γ .

(8.35)

Combining (8.32) and (8.35), we obtain

M ≤ cn
8,16

(n!)γ

[
detCov(X0(t1), · · · , X0(tn))

] d
2
+γ

≤ cn
8,17

(n!)γ

∏n
j=1

[
min

j<i≤n+1
ρ(tj , ti)

]d+2γ
, (8.36)

where the last step follows from Condition (C3′) and (3.11).
It follows from (8.29), (8.30), (8.32) and (8.36) that

E
[(

L(x + y, T )− L(x, T )
)n] ≤ cn

8,18
|y|nγ (n!)γ

∫

T n

n∏

j=1

1[
min

j<i≤n+1
ρ(tj , ti)

]d+2γ
dt. (8.37)
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Note that the last integral in (8.37) is similar to that in (8.18) and can be estimated by integrating
in the order dt1, dt2, . . . , dtn. To this end, we take γ ∈ (0, 1) small such that

τ−1∑

`=1

1
H`

≤ d + 2γ <
τ∑

`=1

1
H`

. (8.38)

Then, similar to (8.19)–(8.21), we derive

∫

T n

n∏

j=1

1[
min

j<i≤n+1
ρ(tj , ti)

]d+2γ
dt ≤ cn

8,19
(n!)1+γ r

n
(Pτ

`=1
Hτ
H`

+N−τ−Hτ (d+2γ)
)
. (8.39)

It is now clear that (8.26) follows from (8.37) and (8.39). This proves Lemma 8.8. ¤

Now we are ready to prove Theorem 8.2.

Proof of Theorem 8.2 It follows from Lemma 8.8 and the multiparameter version of Kol-
mogorov’s continuity theorem [cf. Khoshnevisan (2002)] that, for every fixed interval T ∈ A such
that T ⊆ I, X has almost surely a local time L(x, T ) that is continuous for all x ∈ Rd.

To prove the joint continuity, observe that for all x, y ∈ Rd, s, t ∈ I and all even integers n ≥ 1,
we have

E
[(

L(x, [ε, s])− L(y, [ε, t])
)n

]
≤ 2n−1

{
E

[(
L(x, [ε, s])− L(x, [ε, t])

)n
]

+ E
[(

L(x, [ε, t])− L(y, [ε, t])
)n

]}
.

(8.40)

Since the difference L(x, [ε, s])−L(x, [ε, t]) can be written as a sum of finite number (only depends
on N) of terms of the form L(x, Tj), where each Tj ∈ A is a closed subinterval of I with at
least one edge length ≤ |s − t|, we can use Lemma 8.4 and Remark 8.7, to bound the first term
in (8.40). On the other hand, the second term in (8.40) can be dealt with using Lemma 8.8
as above. Consequently, for some γ ∈ (0, 1) small, the right hand side of (8.40) is bounded by
cn
8,20

(|x− y|+ |s− t|)nγ , where n ≥ 2 is an arbitrary even integer. Therefore the joint continuity of
the local times L(x, t) follows again from the multiparameter version of Kolmogorov’s continuity
theorem. This finishes the proof of Theorem 8.2. ¤

The proof of Theorem 8.2 also provides some information about the modulus of continuity
of L(x, t) as a function of x and t. It would be interesting to establish sharp local and uniform
Hölder conditions for the local time, because such results bear rich information about the irregular
properties of the sample functions of X; see Berman (1972), Geman and Horowitz (1980), Adler
(1981), Xiao (1997b).

By applying Lemma 8.4 and the Borel-Cantelli lemma, one can easily derive the following law
of the iterated logarithm for the local time L(x, ·): There exists a positive constant c8,21 such that
for every x ∈ Rd and t ∈ (0, 1)N ,

lim sup
r→0

L(x,U(t, r))
ϕ9(r)

≤ c8,21 , (8.41)
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where U(t, r) is the open or closed ball [in the Euclidean metric] centered at t with radius r and
ϕ9(r) = rβτ log log(1/r). It follows from Fubini’s theorem that, with probability one, (8.41) holds
for λN -almost all t ∈ I. Now we prove a stronger version of this result, which is useful in determining
the exact Hausdorff measure of the level set Lx.

Theorem 8.10 Let X be an (N, d)-Gaussian random field defined by (2.26). We assume Condi-
tions (C1) and (C3′) are satisfied on I and d <

∑N
j=1

1
Hj

. Let τ ∈ {1, . . . , N} be the integer so that
(8.9) holds and let L be the jointly continuous local time of X. Then, there is a finite constant c8,22

such that with probability one,

lim sup
r→0

L(x,U(t, r))
ϕ9(r)

≤ c8,22 (8.42)

holds for L(x, ·)-almost all t ∈ I.

Proof The proof is similar to that of Theorem 4.1 in Ayache, Wu and Xiao (2006) [see also Xiao
(1997b)].

For every integer k ≥ 1, we consider the random measure µk := µk(x, •) on the Borel subsets
C of I defined by (7.10) [where the integer n is replaced by k]. Then, by the occupation density
formula (8.1) and the continuity of the function y 7→ L(y, C), one can verify that almost surely
µk(C) → L(x,C) as k →∞ for every Borel set C ⊆ I.

For every integer m ≥ 1, denote fm(t) = L
(
x, U(t, 2−m)

)
. From the proof of Theorem 8.2 we

can see that almost surely the functions fm(t) are continuous and bounded. Hence we have almost
surely, for all integers m, n ≥ 1,

∫

I
[fm(t)]n L(x, dt) = lim

k→∞

∫

I
[fm(t)]n µk(dt). (8.43)

It follows from (8.43), (7.10) and the proof of Proposition 3.1 of Pitt (1978) that for every positive
integer n ≥ 1,

E
∫

I
[fm(t)]n L(x, dt) =

(
1
2π

)(n+1)d ∫

I

∫

U(t,2−m)n

∫

R(n+1)d

exp
(
− i

n+1∑

j=1

〈x, uj〉
)

× E exp
(

i
n+1∑

j=1

〈uj , X(sj)〉
)

duds,

(8.44)

where u = (u1, . . . , un+1) ∈ R(n+1)d and s = (t, s1, . . . , sn). Similar to the proof of (8.10) we have
that the right hand side of Eq. (8.44) is at most

cn
8,23

∫

I

∫

U(t,2−m)n

ds
[
detCov

(
X0(t), X0(s1), . . . , X0(sn)

)]d/2
≤ cn

8,24
n! 2−mnβτ , (8.45)

where c8,24 is a positive and finite constant depending on N, d, H, and I only.
Let γ > 0 be a constant whose value will be determined later. We consider the random set

Im(ω) =
{
t ∈ I : fm(t) ≥ γϕ9(2−m)

}
.
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Denote by νω the restriction of the random measure L(x, ·) on I, that is, νω(E) = L(x, E ∩ I) for
every Borel set E ⊆ RN

+ . Now we take n = blog mc, where byc denotes the integer part of y. Then
by applying (8.45) and Stirling’s formula, we have

E
[
νω(Im)

] ≤ E
∫
I [fm(t)]n L(x, dt)
[γϕ9(2−m)]n

≤ cn
8,25

n! 2−mn βτ

γn2−mn βτ (log m)n
≤ m−2,

(8.46)

provided γ > 0 is chosen large enough, say, γ ≥ c8,25 e2 := c8,26 . This implies that

E

( ∞∑

m=1

νω(Im)

)
< ∞.

Therefore, with probability 1 for νω almost all t ∈ I, we have

lim sup
m→∞

L(x,U(t, 2−m))
ϕ9(2−m)

≤ c8,26 . (8.47)

Finally, for any r > 0 small enough, there exists an integer m such that 2−m ≤ r < 2−m+1 and
(8.47) is applicable. Since the function ϕ9(r) is increasing near r = 0, (8.42) follows from (8.47)
and a monotonicity argument. ¤

Since L(x, ·) is a random Borel measure supported on the level set Lx = {t ∈ I : X(t) = x},
Theorem 8.10 and the upper density theorem of Rogers and Taylor (1961) imply the following
partial result on the exact Hausdorff measure of Lx.

Corollary 8.11 Assume the conditions of Theorem 8.10 are satisfied. Then there exists a positive
constant c8,27 such that for every x ∈ Rd, we have

Hϕ9 (Lx) ≥ c8,27 L(x, I), a.s. (8.48)

Proof The proof is left to the reader as an exercise. ¤

We should mention that the estimates in Lemmas 8.4 and 8.8 are not sharp and it would be
interesting to improve them. In the rest of this section, we consider the special case when H = 〈α〉
and α ∈ (0, 1). Many sample path properties of such Gaussian random fields have been studied
in Adler (1981), Khoshnevisan (2002), Shieh and Xiao (2006), Xiao (1997b, 2007a). By applying
Lemma 2.3 in Xiao (1997b) in place of (8.19), we prove the following sharp estimates.

Lemma 8.12 Let X be an (N, d)-Gaussian random field satisfying the conditions (C1) and (C3′)
with H = 〈α〉. We assume that N > αd. Then there exists a positive and finite constant c8,28,
depending on N, d, α and I only, such that for all intervals T = [a, a + 〈r〉] ⊆ I with edge length
r ∈ (0, 1), all x ∈ Rd and all integers n ≥ 1,

E
[
L(x, T )n

] ≤ cn
8,28

(n!)αd/N rn(N−αd) (8.49)

and for any 0 < γ < min{1, (N/α− d)/2}, there exists a positive and finite constant c8,29 such that

E
[(

L(x, T )− L(y, T )
)n

]
≤ cn

8,29
(n!)2γ+α(d+γ)/N |x− y|nγ rn(N−α(d+γ)). (8.50)
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Note that, for a Gaussian random field X satisfying the assumptions of Lemma 8.12, Eq. (8.49)
allows us to improve the results in Theorem 8.10 and Corollary 8.11 by replacing the Hausdorff
measure function ϕ9(r) by ϕ7(r) = rN−αd

(
log log 1/r

)αd/N .
Moreover, by combining Lemma 8.12 and the argument in Xiao (1997b), one can establish the

following sharp local and uniform Hölder conditions for the maximum local time L∗(•) of X defined
by

L∗(T ) = sup
x∈Rd

L(x, T ), ∀ T ⊆ I.

Theorem 8.13 Let X be an (N, d)-Gaussian random field satisfying the conditions (C1) and (C3′)
with H = 〈α〉 and N > αd. Then the following statements hold:

(i) There exists a positive and finite constant c8,30 such that for every t ∈ I,

lim sup
r→0

L∗(U(t, r))
ϕ7(r)

≤ c8,30 a.s., (8.51)

where U(t, r) = {s ∈ I : |s− t| ≤ r}.
(ii) There exists a positive and finite constant c8,31 such that

lim sup
r→0

sup
t∈I

L∗(U(t, r))
ϕ10(r)

≤ c8,31 a.s., (8.52)

where ϕ10(r) = rN−αd
(
log 1/r

)αd/N
.

Proof The proofs of (8.51) and (8.52) are based on Lemma 8.12 and a chaining argument, which
is the same as those of Theorems 1.1 and 1.2 in Xiao (1997b) [see also Ehm (1981)]. We leave the
details to the reader. ¤

Similar to Xiao (1997b, 2007a), one can apply Lemma 8.12 and Theorem 8.13 to derive further
results, such as the Chung-type laws of the iterated logarithm, modulus of nowhere differentiability,
tail probability of the local times, for (N, d)-Gaussian random fields satisfying the conditions (C1)
and (C3′) with H = 〈α〉. These are left to the reader as exercises.

The following is our final remark.

Remark 8.14 Both Conditions (C3) and (C3′) are useful in studying the existence and regularity
of the self-intersection local times of X which, in turn, provide information on the fractal dimensions
of the sets of multiple points and multiple times of X. When X is an (N, d)-fractional Brownian
sheet, these problems have been studied by Meerschaert, Wu and Xiao (2008). It is expected that
analogous results also hold for Gaussian random fields satisfying Conditions (C1) and (C3′).
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bilités de Saint-Flour, XIV—1984, 265–439, Lecture Notes in Math., 1180, Springer, Berlin.

[95] W. Wang (2007), Almost-sure path properties of fractional Brownian sheet. Ann. Inst. H. Poincaré
Probab. Statist. 43, 619–631.

[96] D. Wu and Y. Xiao (2006), Fractal properties of random string processes. IMS Lecture Notes-
Monograph Series–High Dimensional Probability. 51, 128–147.

[97] D. Wu and Y. Xiao (2007), Geometric properties of fractional Brownian sheets. J. Fourier Anal.
Appl. 13, 1–37.

[98] Y. Xiao (1995), Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab.
23, 273–291.

[99] Y. Xiao (1996a), Hausdorff measure of the sample paths of Gaussian random fields. Osaka J. Math.
33, 895–913.

[100] Y. Xiao (1996b), Packing measure of the sample paths of fractional Brownian motion. Trans. Amer.
Math. Soc. 348, 3193–3213.

[101] Y. Xiao (1997a), Hausdorff measure of the graph of fractional Brownian motion. Math. Proc. Camb.
Philos. Soc. 122, 565–576.
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