CORRELATED CONTINUOUS TIME RANDOM WALKS
MARK M. MEERSCHAERT, ERKAN NANE, AND YIMIN XIAO

ABSTRACT. Continuous time random walks impose a random waiting time before
each particle jump. Scaling limits of heavy tailed continuous time random walks
are governed by fractional evolution equations. Space-fractional derivatives describe
heavy tailed jumps, and the time-fractional version codes heavy tailed waiting times.
This paper develops scaling limits and governing equations in the case of correlated
jumps. For long-range dependent jumps, this leads to fractional Brownian motion or
linear fractional stable motion, with the time parameter replaced by an inverse stable
subordinator in the case of heavy tailed waiting times. These scaling limits provide
an interesting class of non-Markovian, non-Gaussian self-similar processes.

1. INTRODUCTION

Continuous time random walks (CTRW) separate IID particle jumps {Y,} by I1ID
waiting times {J,}. CTRW models are important in applications to geology, physics
and finance; see, for example, Berkowitz, et al. (2006), Metzler and Klafter (2004)
and Scalas (2004) for more information. If {Y,} and {J,} are independent, then the
CTRW is called decoupled. Otherwise it is called coupled. Throughout this paper we
will only consider decoupled CTRWs with values in R.

In the case of heavy tailed waiting times, Meerschaert and Scheffler (2004) proved
that CTRW scaling limits are subordinated processes that are self-similar but non-
Markovian, and their transition densities are governed by fractional diffusion equations
(see also Meerschaert et al., 2002). Fractional diffusion equations replace the usual
integer order derivatives in the diffusion equation by their fractional-order analogues
(Miller and Ross, 1993; Samko, et al.,1993). Just as the diffusion equation dyu = ad?u
governs the scaling limit of a simple random walk, the fractional diffusion equation
87u = ad®u governs the scaling limit of a CTRW with heavy tail jumps P(Y,, > r) ~
r=@ for 0 < a < 2 and waiting times P(.J,, > t) ~t P for 0 < 3 < 1.

This paper develops limit theorems and governing equations for CTRW with cor-
related (or dependent) jumps Y, = > 7 ¢;Z, ;, where {Z,} are IID and {c,} are
real numbers (see Section 2 for precise conditions). These CTRW models are useful
for correlated observations separated by random waiting times, which are common, for
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example, in finance (Scalas, et al., 2000). Scaling limits of the partial sum process
S(t) = Y1 4 -+ + Yy in the case of long range dependence include fractional Brow-
nian motion (FBM) for light-tailed jumps (Davydov, 1970; Whitt, 2002) and linear
fractional stable motion (LFSM) for heavy-tailed jumps (Astrauskus, 1983; Kasahara
and Maejima, 1988; Whitt, 2002). Letting Ty = 0, T,, = J; + --- + J,, the time of
the nth jump, and N; = max{n : T,, < t} the number of jumps by time ¢ > 0, the
scaling limit of the CTRW S(N;) is a FBM or LFSM subordinated to an inverse stable
subordinator, which is connected to the local time of a strictly stable Lévy process
(Meerschaert, et al., 2008), or the supremum process of a spectrally negative stable
Lévy process (Bingham, 1973). This extends the results of Meerschaert and Schef-
fler (2004) and Becker-Kern, et al. (2004) to the case of dependent jumps. We also
discuss some interesting properties of these self-similar limit processes, and governing
equations for their probability densities.

2. RESuULTS

Let {Z,,—00 < n < oo} denote IID random variables that belong to the strict
domain of attraction of some strictly stable law A with index 0 < o < 2. This means
that the sequence of partial sums P(n) = Z; + - - - + Z,, satisfies a,,P(n) = A for some
a, > 0, see Feller (1971, p.312-313) or Whitt (2002, p.114-115). Here = denotes
convergence in distribution.

The particle jumps that we consider in this paper are given by the stationary linear
process {Y;,, —00 < n < oo} defined by Y, = > ¢;Z,;, where ¢; are real constants
such that > 77 |c;[? < oo for some p € (0,a). This condition ensures that the se-
ries Z;io ¢jZn—j converges in LP(P) and almost surely (see Avram and Taqqu, 1992).
The dependence structure of the linear process {Y,,, —oo < n < oo} relies on the se-
quence {¢;}. For example, if E(Z,) = 0 and E(Z?) < oo, then it can be verified that
> omet [E(YOY,)] < o0 if 3072 [ej] < ooy and Y77 | [E(YpY,)| = oo if the real numbers
c¢; eventually have the same sign and 2;’;0 |cj| = oco. In the literature, a second order
stationary process {Y,,, —0o < n < oo} with mean 0 is said to be short-range depen-
dent if 7 | |E(Y;Y},)| < co and long-range dependent otherwise. Even though in this
paper we are primarily interested in particle jumps with heavy-tailed distributions and
typically E(Y,?) = co, we will, by analogy, call the linear process {Y,, —0o < n < oo}
short-range dependent if » % [¢;| < oo, and long-range dependent if 3 ™7 |c;| = oc.

Let J, > 0 be IID waiting times that are independent of {Z,}, T,, = J; +- - -+ J,, the
time of the nth particle jump, and N; = max{n : T,, < t} the number of jumps by time
t > 0. Let S(0) =0 and S(n) =Y; +--- + Y, denote the location of the particle after
n jumps, so that the continuous time random walk (CTRW) S(V;) gives the location
of the particle at time ¢t > 0. Suppose that J, belongs to the domain of attraction of
some stable law D with index 0 < < 1and D > 0 almost~ surely. Hence b,T,, = D
for some norming constants b, > 0. Let b(t) = by and take b(t) an asymptotic inverse
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of the regularly varying function 1/b(t), so that tb(b(t)) — 1 as t — oo (Meerschaert
and Scheffler, 2004).

Let {A(t),t > 0} and {D(t),t > 0} be strictly stable Lévy processes with A(1) =
A, D(1) = D, respectively. Note that {D(t),t > 0} is a stable subordinator of index £,
hence its sample functions are almost surely strictly increasing (Bertoin, 1996, p.75).
Therefore, the inverse or hitting time process of {D(t),t > 0},

Ey =inf{zx > 0: D(x) > t}, vVt >0

is well defined and the sample function ¢ — E} is strictly increasing almost surely.

Our first result shows that the CTRW scaling limit in the case of short-range de-
pendence is quite similar to the case of independent jumps studied by Meerschaert and
Scheffler (2004).

Theorem 2 1. Under the conditions of this section, suppose that 0 < a < 2, ¢; > 0
and Z] “o ¢ < 00 for some p € (0,a) with p < 1, and that one of the followmg holds:

(a) 0 <a<1;or

(b) ¢; =0 for all but finitely many j; or

(¢) 1 <a <2, ¢ is monotone and Y-
Then we have

(2.1) WS (Net) = A(Ey)
as ¢ — 00 in the My topology on D([0,00),R), where w =}, c;.

=0 J<oof0rsomep<1

In view of Theorem 1 in Avram and Taqqu (1992), the convergence in (2.1) cannot be
strengthened to the J; topology. Note that the processes {A(t),t > 0} and {E;,t > 0}
are independent and self-similar. The latter means that, for every constant ¢ > 0

{A(ct),t >0} L {2 A1), t > 0}

and
{Eayt >0} £ {°E, t > 0},

where < means equality in all finite dimensional distributions. It follows immediately
that the scaling limit {A(E;),t > 0} in (2.1) is self-similar with index §/a. When
0 < B < 1/2, the inner process F; in (2.1) is also the local time at zero of a strictly
stable Lévy motion (Meerschaert, et al., 2008). When 1/2 < 8 < 1, the inner process
E, is also the supremum process of a stable Lévy motion with index 1/ and no negative
jumps (Bingham, 1973).

Let 8{3 g(t) denote the Caputo fractional derivative the inverse Laplace transform
of s°g(s) — s°~1g(0) where g(s fo ~stg(t) dt is the usual Laplace transform of g.
Let 0%,f(x) denote the L10uv1lle fractlonal derlvatlve, the inverse Fourier transform

of (ik)*f(k), where f(k) = [*_ e ™ f(x)ds is the usual Fourier transform. The
stable random variable A(t) has a smooth density with Fourier transform e **®*) where

Y(k) = alp(ik)® 4 q(—ik)*] with 0 < p,q < 1 and p+¢q = 1 (Meerschaert and Scheffler,
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2001). Then the limit A(E;) in (2.1) has a density h(z,t) that solves the fractional
diffusion equation 85 h = apd%h + aqd®  h, see (Meerschaert and Scheffler, 2004).

Next we consider the CTRW scaling limit for heavy-tailed particle jumps with long-
range dependence. To simplify the presentation, we assume a, = n~*/% (domain of
normal attraction) and power-law weights; namely c¢; ~ coj =11 as j — oo, for
some cg > 0. Consequently, we have > |c;] < oo if and only if 0 < H < 1/a.
Hence, the case 0 < H < 1/a means the stationary sequence {Y,,} has short-range
dependence, while the case 1/a < H < 1 means {Y,,} has long-range dependence.
The scaling limit of CTRW with short-range dependence has been partially covered by
Theorem 2.1. The rest of the cases are treated in Theorems 2.2 and 2.3 below.

We will make use of the following definition. Given constants o € (0,2) and H €
(0,1), the a-stable process {Lq m(t),t € R} defined by

(2.2 Lot = [ [(6= 57 = ()77%] a(as)

is called a linear fractional stable motion (LFSM) with indices ae and H. In the above,
a, = max{0,a} for all @ € R, 0F=Y* = 0 and {A(t),t € R} is a two-sided strictly
stable Lévy process of index o with A(1) = A given at the beginning of Section 2
(namely, n=Y/*P(n) = A as n — o0). Because of this, {L, x(t),t € R} defined by
(2.2) differs from the LFSM in Theorem 4.7.2 in Whitt (2002) by a constant factor.
Note that, when H = 1/a, L, g (t) = A(t) for all t > 0. When H # 1/a, the stochastic
integral in (2.2) is well-defined because

/ )(t — ) () e " ds < oo.
R

See Example 3.6.5 or Section 7.4 in Samorodnitsky and Taqqu (1994).

By (2.2), it can be verified that {L, g (t),t € R} is H-self-similar with stationary in-
crements (Samorodnitsky and Taqqu, 1994, Proposition 7.4.2). However, for H # 1/a,
it does not have independent increments. LFSM is an a-stable analogue of fractional
Brownian motion and its probabilistic and statistical properties have been investigated
by several authors. In particular, it is known that

(i) If 1/a < H <1 (this is possible only when 1 < o < 2), then the sample paths
of {La nu(t),t € R} are almost surely continuous.

(ii) If 0 < H < 1/a, then the sample paths of {L, (t),t € R} are almost surely
unbounded on every interval of positive length.

We refer to Theorem 12.4.1 and Example 10.2.5 in Samorodnitsky and Taqqu (1994)
for more information.

Theorem 2.2. We assume the setting of this section. If 1 < a <2, 1/a < H < 1,
and c; ~ cojT1Ye as j — oo for some ¢y > 0, then as ¢ — oo

(2.3) [5(c)]HS(th)4:> Ky Lo u(EY)



in the Jy topology on D(]0,00),R), where K = coa/ (Haw — 1).

The topology on D([0,00),R) in Theorem 2.2 is stronger than that in Theorem 2.1,
thanks to the fact that L, g(t) is a.s. continuous whenever 1/a < H < 1.

Observe that the case when 0 < H < 1/a and the constants ¢; (j > 0) are not
all nonnegative is left uncovered by Theorems 2.1 and 2.2. Because of Property
(ii) of {Lam(t),t € R}, the limiting process does not belong to the function space
D([0,00),R). Nevertheless, we have the following theorem.

Theorem 2.3. We assume the setting of this section. If 0 < a < 2,0 < H < 1/a,

cj ~ coj =11 as j — oo for some cy > 0, and Zj‘io c; = 0, then
TN— d.
(2.4) [B(c)] " S(Nu) L5 Ky Lo u(E)

as ¢ — 00, where 14 means convergence of all finite-dimensional distributions and
K1 = Coa/<HC¥ — 1)

It is interesting to note that the constants in Theorems 2.2 and 2.3 are determined
by co, a and H in the same way. But K is positive when 1/a < H < 1, and is negative
when 0 < H < 1/a.

It follows from the self-similarity and the independence of {L, g (t),t € R} and
{E(t),t > 0} that the scaling limits in (2.3) and (2.4) are self-similar with index Hf.
When 1/a < H < 1, it can be seen that {L, y(E:),t > 0} has continuous sample
functions almost surely. However, if 0 < H < 1/, then {L, g (E:),t > 0} is almost
surely unbounded on every interval of positive length. It would be interesting to further
study the properties of the process { L, g (E:),t > 0}.

We mention that both Theorems 2.2 and 2.3 can be extended to {Z,} in the strict
domain of attraction of A and {c¢;} regularly varying at oo with index H — 1 — 1/a,
using a slightly different normalization in (2.3) depending on a,, and the probability
tail of Z,,, compare Astrauskus (1983).

Finally we consider the case aw = 2. If {A(t),t € R} in (2.2) is replaced by ordinary
two-sided Brownian motion, then (2.2) defines a fractional Brownian motion Wy =
{Wg(t),t € R} on R of index H, which is a Gaussian process with mean zero and
covariance function

Wi (Wi (s)] = 5 [ + s — |t — 5],

Theorem 2.4 gives the CTRW scaling limit for light-tailed particle jumps with long-
range dependence.

Theorem 2.4. We assume the setting of this section. If a = 2, E(Z,) =0, E(Z?) <
00, Y 220¢ < oo, Var(S(n)) = o} waries reqularly at oo with index 2H for some
0< H <1, and E(S(n)*) < K, [E(S(n)?)]” for some constants Ko > 0 and p > 1/H,
then as ¢ — 00
(2.5) a[g(lcﬂswct) = Wy (E;)
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in the Jy topology on D(]0,00),R).

Note that it is not difficult to provide examples of sequences of IID random variables
{Z,} and real numbers {c¢;} that satisfy the conditions of Theorem 2.4, see Davydov
(1970) and Giriatis et al. (2003). It follows from the results of Taqqu (1975) that
the conclusion of Theorem 2.4 still holds if the linear process {Y,,} is replaced by the
stationary sequence {g(&,)}, where {£,} is a stationary Gaussian sequence with mean
0, variance 1 and long-range dependence, and ¢ € L2(e~**/2dz) is a function with
Hermite rank 1.

Theorem 2.4 contains the case H = 1/2 where Wy (t) = A(?) is a standard Brownian
motion. This includes the situation of mean zero finite variance particle jumps, and
heavy tailed waiting times between jumps. In this case, the CTRW scaling limit A(E;)
has a density h(z,t) that solves the time-fractional diffusion equation 8? h = ad?h,

see Meerschaert and Scheffler (2004). Since {Wg(ct),t > 0} < {cWg(t),t > 0}, the
scaling limit in (2.5) is self-similar with index H (3. Some results on large deviation and
sample path regularity have recently been obtained for {WWy (E;),t > 0} in Meerschaert,
Nane and Xiao (2008).

In the case of finite mean waiting times, the CTRW scaling limit is essentially the
same as for the underlying random walk. If u = E(J,) < oo, then uN;/t — 1 almost
surely as t — 0o, and a simple argument along the lines of the proof of Theorem 2.1
shows that w™'a;yS(Ne) = A(t/p) in the M; topology on D([0,00),R). Theorems
2.2, 2.3 and 2.4 can be extended similarly.

An easy argument with Fourier transforms shows that the density h(z,t) of L, m(t)
solves O;h = aHt*HHapd®h + aqd®,h]. A similar argument shows that the density
of Wg(t) solves ;h = 2Ht*~1ad?h. An interesting open question is to establish the
governing equation for the CTRW scaling limit in (2.3) and (2.5). This is not as simple
as replacing the first time derivative by a fractional derivative in the governing equation
for the outer process, since the t variable also appears on the right-hand side, so that
Theorem 3.1 of Baeumer and Meerschaert (2001) does not apply.

3. PROOFS

The proofs in this section are based on invariance principles for stationary sequences
with short or long-range dependence (see, for example, Whitt, 2002) and the CTRW
limit theory developed in Meerschaert and Scheffler (2004). Due to the non-Markovian
nature of the CTRW scaling limits in this paper, standard subordination methods
can not be applied directly. Instead we apply continuous mapping-type arguments to
prove Theorems 2.1, 2.2 and 2.4. The proof of Theorem 2.3 is quite different and relies
on a criterion for the convergence of all finite-dimensional distributions of composite
processes established by Becker-Kern, Meerschaert and Scheffler (2004).

Recall that J, > 0 are IID waiting times, T,, = J; + - - - + J,, the time of the nth

particle jump, and Ny = max{n : T,, < t} the number of jumps by time ¢ > 0. Since
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Jp, belongs to the domain of attraction of some stable law D with index 0 < 3 < 1 and
D > 0 almost surely, with b,7,, = D for some norming constants b,, > 0, the sequence
b, varies regularly with index —1/3 (see, e.g., Feller, 1971). Then the asymptotic
inverse b(t) of 1/b varies regularly with index 3, see Seneta (1976). Recall that the
stable Lévy motion {D(z),z > 0} with D(1) = D is a stable subordinator of index [
and thus is almost surely strictly increasing (Bertoin, 1996, p.75). Its inverse or hitting
time process F; = inf{z > 0 : D(x) > t} is almost surely strictly increasing with
continuous sample paths, has moments of all orders, and its increments are neither
stationary nor independent (Meerschaert and Scheffler, 2004). Bingham (1971) shows
that F; has a Mittag-Leffler distribution, and gives a differential equation that governs
its finite dimensional distributions.

Proof of Theorem 2.1. Corollary 3.4 in Meerschaert and Scheffler (2004) shows that
b(c)"'N, = E, as ¢ — oo in the J; topology on D([0,00), [0, 00)). Note that b(c) — oo
as ¢ — oo since this function is regularly varying at oo with index § > 0. Theorem
4.7.1 in Whitt (2002) shows that a,S(nt) = wA(t) in the M; topology on D([0, c0), R).
Since the J; topology is stronger, and since the waiting times {.J,,} are independent of
{Y,.}, we have

(a[B(c)]S(b(C)t)v b(c)ilth) = (A(t>7 Et)
in the M; topology of the product space D(]0,00),R x [0,00)). Note that this last
statement also follows from Theorem 3.2 in Billingsley (1968).

Since the process {F;,t > 0} is almost surely strictly increasing and continuous,
Theorem 13.2.4 in Whitt (2002) yields

ey S (b(0) - b(e) ' Nut) = A(E,)
in the M; topology on D([0,00),R), which completes the proof. 0

Proof of Theorem 2.2. Recall that b(c) N, = E, in the J; topology on D([0, 00),
[0,00)) (Meerschaert and Scheffler, 2004, Corollary 3.4). Theorem 4.7.2 in Whitt
(2002), originally due to Astrauskas (1983), shows that n=#S(nt) = K; L, u(t) in
the J; topology on D([0,00),R), where K| = coo/ (Har — 1).

Since {N;,t > 0} is independent of {S(n),n > 1}, we have

([())~S(b(e)t), b(c) ™" Nex) = (K1 La,u(t), Ey)

in the product space. Combining this with Theorem 13.2.4 in Whitt (2002) yields
(2.5) in the M; topology. Since both processes {L, g (t),t > 0} and {E;,t > 0}
are continuous, and the latter is strictly increasing, one can apply Theorem 13.3.1 in

Whitt (2002) to strengthen the conclusion to convergence in the J; topology. This
proves Theorem 2.2. 0

Proof of Theorem 2.3. 1t is sufficient to show that for all integers m > 1, 0 < t; <
oo < t,, we have

(3.1) b(c) *(S(Nuy), -+ -, S(Net,,)) :7 K\ (Lau(Ey), -, Lau(Es,))



as ¢ — 0o. For this purpose, we will make use of Proposition 4.1 in Becker-Kern, Meer-
schaert and Scheffler (2004), which provides a useful criterion for the convergence of
all finite-dimensional distributions of composite processes, and Corollary 3.3 in Kasa-
hara and Maejima (1988) which is concerned with convergence of finite dimensional
distributions of weighted partial sums of IID random variables.

We will adopt some notation from Becker-Kern, Meerschaert and Scheffler (2004).
Fort = (t1,...,ty,) and ¢ > 0, let p,. := pt denote the distribution of the random vector
b(c)™' (Nu,,..., Ny, ), and let p := pt be the distribution of (E,,,...,E, ). Since
b(¢c)"*Ny = F, in the J; topology on D([0,00), [0,00)) (Meerschaert and Scheffler,
2004, Corollary 3.4), we have p. = p as ¢ — 0.

It follows from the definition of {Y},} that, for every x > 0, S(nz) can be rewritten
as

2 st = 3 (352,

where ¢, = ¢, if k> 0 and ¢, = 0 if £ < 0. Under the assumptions of Theorem 2.3, we
have Y2 |cx] < o0, Y ope . G =0 and

- CoX
0
E CE ~ ¢ E kH 1/a—1 ~ nH 1/«
HO{ - 1
k=n k=n

as n — oo. Thus, the conditions of Theorem 5.2 in Kasahara and Maejima (1988) are
satisfied with ¢(n) = nfI=* a = —K; (recall that K; = coa/(Ha — 1)), b = 0 and
A = 0. It follows that

(3.3) n~ " S(nx) e K, Loy(z) as n— oo.

For any x = (71,...,%,) € RT, let p.(x) be the distribution of b(c)~ (S(i)(c)xl),

. ,S(l;(c)xm)) and let v(x) be the distribution of K; (La,H(azl), . La,H(wm)). Then

for every ¢ > 0, the mapping x — p.(x) is weakly measurable. Since the linear

fractional stable motion {L, g (t),t > 0} is stochastically continuous, the mapping

x — v(x) is weakly continuous. Moreover, it follows from (3.3) that, for every x € R},
pe(x) = v(x) as ¢ — oo.

As in Becker-Kern, Meerschaert and Scheffler (2004), we apply a conditioning ar-
gument and the independence between the sequences {Y,,} and {.J,} to derive that
the distribution of b(c) 7 (S(Nu,), ..., S(Ne,)) can be written as fRT pe(x) dpe(x),
which is a probability measure on R™. Similarly, the distribution of the random vector
Ki(La,u(Ey,), ..., Lau(E,)) can be written as fRT v(x) dp(x).

Therefore, (3.1) follows from Proposition 4.1 in Becker-Kern, Meerschaert and Schef-
fler (2004) once we verify that, for every x € (0,00)™, u.(x\9) = v(x) for every

sequence {x(©} C (0,00)™ that satisfies x(¢) — x as ¢ — oo.
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The last statement is equivalent to

(3.4) T (S(eat?), .., S(exD)) = Ky (Lo (1), -, Lap (@)
whenever x(® — x as ¢ — oo. This is stronger than (3.3), where the fixed time-instants
0 <z <x9 < -+ < 2y, on the left-hand side are replaced now by xgc), e ,xq(fl). Our
proof of (3.4) is a modification of the proof of Theorem 5.2 in Kasahara and Maejima
(1988).

To this end, we define the step function r — A.(r) on R by

Vel 7. if >0

(3.5) Ar) = e , ’

In the above, we use the convention 22:1 Z; = 0. Then it is known that, as ¢ — oo,
A.(r) = A(r) in the J; topology on D(R,R). This follows, for example, from Theorem
4.5.3 in Whitt (2002). For any function g on R, as in Kasahara and Maejima (1988,
p.88), we define

o0

(3.6) /OO g(r)dA.(r) == cl% Z g(l) Z;.

— 0 j=—o0

By using (3.2), (3.5) and (3.6) we can rewrite ¢ ¥ S(cx) (x > 0 and ¢ > 0) as

00 [ca]—j
1 1
—H ~
S = 57 D CH—l/a( 2 Ck)Za‘
(3.7) j=—00 k=1-j
:/gc(x,r) dA.(r),
R

where the integrand g.(x,r) (x > 0,r € R) is given by

| el
gc(fﬂar):m Ck
k=1—[cr]
(3:8) 1 SN =
= UDVILEED VY
k=—[cr]+1 k=[cx]—[cr]+1

= 3:(0,7) — ge(z, 7).

In the above, we have used the fact that > 72 |¢j| < oo to derive the second equality.
It follows from (3.7) that (3.4) can be rewritten as

(3.9) { /R 0e(z9, 1) dAc(r)}:l N {K1 /R o) dA(r)}iﬂ,

where g(z,r) = (x —r)77* — (=) is the function in (2.2).
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Now let us fix x = (x1,...,7,,) € (0,00)™ and an arbitrary sequence {x©} C
(0,00)™ that satisfies x(® — x as ¢ — oo. Without loss of generality, we assume

|z; — atgc)| is sufficiently small. By Corollary 3.3 in Kasahara and Maejima (1988) (with

(c)

fi() being taken as g.(x;”,-)), the convergence in (3.9) will follow once we verify that

for every 1 < i < m the following conditions are satisfied:

(A1) for dr-almost every r € R,

(310) gc(x(C) Tc) B— Kl g(xiﬂn)

7

whenever r. — r as ¢ — 0.
(A2)" for every T > 0, there exists a constant v > « such that

(3.11) sup/ ‘gc(xgc),r)‘vd)\c(r) < 00,
c2l J|r|l<T
where \.(r) = [er]/e, and
(A3)" there exists a constant € > 0 such that

(3.12) lim lim sup/ {‘gc(:cgc),r)“"_s n \gc(:cf»c),r)\"‘“} dXe(r) = 0.
|r|>T

T—00 ¢moo

For simplicity of notation, we will from now on omit the subscript i. To verify
Condition (A1)’, note that by the property of {cx}, we have

. 1 N —Kyrt=Ve  if r >0,
(3.13) lim ——— Z k= { 0 ifr <0,
k=[cr]+1
and the convergence is uniform in r on every compact set in R\{0}. For any = € R,
and r € R, we may distinguish three cases r < 0, 0 < r < z and r > z. By applying
(3.13) to (3.8) we derive that, as ¢ — 00, g.(x,r) — g(x,r) uniformly in (x,r) on every
compact set in {(z,7) : z € R;,r € R\{0,2}}. This implies that g.(2?,r.) — g(z,7)
whenever r ¢ {0,z} and r. — r as ¢ — oco. Hence (A1)’ is satisfied.
To verify Condition (A2)’, we choose and fix a constant v > « such that v(H—1/«) >
—1, say, o« <y <min{2, a/(1 — Ha)}. For any x > 0, consider the integral

_ 1 =~ _|
/ [Ge(,m)[" dAe(r) = / T DL G| dA()
RE < | €7 AT
(3 14) k=[cx]—[er]+1
. X ~
- Z o (H-1ja)+1 Z Ch
l71<eT k=[cx]—j+1

Let N > 1 be a constant such that |c;| < 2cok™ =21 for all k > N. We split the

summation on the right-hand side of (3.14) according to whether [cx] — j < N or
10



[cx] — j > N. Thanks to the fact that ), ¢, = 0 we have

o

T Ky

1
(3.15) ) A 1oy i1

Cr
ljI<eT [ea]—j<N '

k=[cx]—j+1
for some finite constant K5 > 0 which is independent of x and ¢. In the above we have

also used the fact that there are at most N 4 1 non-zero terms in the summation in j.
On the other hand, we have

1 = _|
Z cV(H-1/a)+1 Z o
|7|1LcT[ex]—5>N k=[cz]—j+1
] = /el
(3.16) <Ke oY S

C
|7|1<LeT[ex]—j>N

< K5/ |z — |7 H=/) gy
|r|<T

for some finite constants Ky, K5 > 0 which are independent of  and c¢. Note that the
last integral is convergent because v(H — 1/a) > —1. Combining (3.15) and (3.16)
yields that for all x > 0

K.
J ! — 0 _ pptH=1/0)
(3.17) A«|<T }gc(x,r)| dX.(r) < iy + K /|T<T lz— 7|7 dr.
Thanks to (3.8) and the c,-inequality [(a + b)" < max(1,27')(a” + b7)], we have

(3.18) [ge, )| < max{1, 277} (|5u(0,1)]" + |Gl )| ")
It follows from (3.17) and (3.18) that for every constant R > 0, all z € [0, R] and all
c>1

4K,
Y 3 (H-1/a)
ge(x, )| dX(r <—+4K/ x—r| dr
AE | ( )| ( ) cY(H—-1/a)+1 5 < ‘ |

< 4K3 + K,

(3.19)

where we have use the fact that v < 2 and where K¢ > 0 is a finite constant which
depends only on H,a, v, R and T'. Hence (A2)" follows from (3.19).

The verification of (A3)’ is similar to the above, but we will not consider g.(0,r) and
ge(z,7) in (3.8) separately. We choose and fix a constant € > 0 such that (H — 1 —
1/a)(ov — €) < —1. This is possible because 0 < H < 1. Let > 0 be fixed. Then for

all T" and c sufficiently large (say, 7' > x), we use (3.8) and our assumption on {c;} to
11



derive that

[cz]—j ate
ate 1 ~
/|>T |gc($,7’)| d)\c(r) < Z clate)(H—-1/a)+1 Z Ch
T || >cT k=1—j
[cx]—j ate
3.20 (2co) aie H-1-1/a
( ) = Z clate)(H-1/a)+ k /
I1<— cT k=1—j
-T azte
< K / [($ . ’I“)H_l/a _ (—’I“)H_l/a:| d?“,

where K7 > 0 is a finite constant that is independent of x and ¢. In the above we have
used the fact that ¢, = 0 for all k£ < 0. Thanks to our choice of € > 0, we can verify
directly that

-T ate
(3.21) Tlgrolo [(x — ) (—T)H_l/a] dr = 0.
Therefore, condition (A3)" follows from (3.20) and (3.21). This finishes the proof of
Theorem 2.3. 0

Finally we prove Theorem 2.4.

Proof of Theorem 2.4. Recall that l;(c)_lth = F, in the J; topology (Meerschaert and
Scheffler, 2004, Corollary 3.4). Theorem 4.6.1 in Whitt (2002) shows that, as n — oo,
o, 15(nt) = Wg(t) in the J; topology on D(]0,00),R). This result is originally due
to Davydov (1970), see also Giriatis et al. (2003, p. 276). Since the sequence {.J,} is
independent of {Y,,}, we have (O’ ! S( (c)t),b(c) ' Net) = (Wy(t), E;) in the product

space, and then continuous mapplng along with Theorem 13.3.1 in Whitt (2002) yields
(2.5) in the J; topology. O

4. DISCUSSION

Self-similar processes arise naturally in limit theorems of random walks and other
stochastic processes, and they have been applied to model various phenomena in a
wide range of scientific areas including telecommunications, turbulence, image pro-
cessing and finance (see, e.g., Embrechts and Maejima, 2002). The most prominent
example is fractional Brownian motion (FBM). However, many real data sets are non-
Gaussian, which motivates the development of alternative models. Many authors have
constructed and investigated various classes of non-Gaussian self-similar processes.
Samorodnitsky and Taqqu (1994) provide a systematic account on self-similar stable
processes with stationary increments. Burdzy (1993, 1994) introduced iterated Brown-
ian motion (IBM) which replaces the time parameter of a two-sided Brownian motion

by an independent one-dimensional Brownian motion B = {B;,t > 0}. In this paper
12



we have shown that the limit processes of CTRWs with dependent jumps form a wide
class of self-similar processes which are different from the existing ones.

When 0 < § < 1/2, the inner process E; in (2.1) or (2.5) is also the local time at
zero L; of a stable Lévy process, and the iterated process {Wy(L;),t > 0} is called
a local time fractional Brownian motion (LTFBM) in Meerschaert, Nane and Xiao
(2008), a self-similar process with index SH and continuous sample paths. Large
deviation and modulus of continuity results for LTFBM are developed in a companion
paper Meerschaert, Nane and Xiao (2008). Strassen-type law of the iterated logarithm
has been proved by Cséki, Foldes and Révész (1997) for local time Brownian motion
(LTBM, the case H = 1/2). It is interesting to note that our Theorem 2.4 shows that
the “randomly-stopped stationary sequence” {(Y, : n < N;),t > 0} belongs to the
“domain of attraction” of {Wg(L;),t > 0} for all H € (0,1). This theorem provides a
physical interpretation of the process {Wg(L;),t > 0}.

One interesting property of LTBM is that its increments are uncorrelated (this follows
by a simple conditioning argument), but not independent. It has long been recognized
that price returns are essentially uncorrelated, but not independent (Baillie, et al.,
1996; Mandelbrot, 1963). Hence LTBM, the scaling limit of a CTRW with (weakly)
correlated price jumps, may be useful to model financial price returns. This approach
could provide an interesting alternative to the subordinated variance-Gamma model of
Madan and Seneta (1990), Carr, et al. (2002) or the FATGBM model of Heyde (2002).

LTBM has a close connection to fractional partial differential equations. Meerschaert
and Scheffler (2004) and Baeumer and Meerschaert (2001) showed that the probability
density u(zx,t) of LTBM solves the fractional Cauchy problem

(4.1) Olu(t, ) = O*ul(t, z).

Baeumer, Meerschaert and Nane (2009) further showed that the density of the iterated
Brownian motion solves the same equation (4.1). As we mentioned at the end of
Section 2, the connection between the limit processes in this paper and fractional
partial differential equations remains to be investigated.
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