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ABSTRACT

With respect to the multiple-tests problem, recently an increasing amount of attention has been paid to
control the false discovery rate (FDR), the positive false discovery rate (pFDR), and the proportion of false
positives (PFP). The new approaches are generally believed to be more powerful than the classical
Bonferroni one. This article focuses on the PFP approach. It demonstrates via examples in genetic
association studies that the Bonferroni procedure can be more powerful than the PFP-control one and
also shows the intrinsic connection between controlling the PFP and controlling the overall type I error
rate. Since controlling the PFP does not necessarily lead to a desired power level, this article addresses the
design issue and recommends the sample sizes that can attain the desired power levels when the PFP is
controlled. The results in this article also provide rough guidance for the sample sizes to achieve the
desired power levels when the FDR and especially the pFDR are controlled.

FOR multiple tests, the classical approach is to con-
trol the overall type I error rate [i.e., the familywise

error rate (FWER)]. Bonferroni correction is often
used to this end. The method, however, often leads to a
very stringent significance level for each test. As a reme-
dial measure, the false discovery rate (FDR) was thus
introduced recently and controlled in many investiga-
tions. Benjamini and Hochberg (1995) define the
(unconditional) FDR as

FDR ¼ E
V

R

����R . 0

� �
PrðR . 0Þ;

where R is the number of positives, and V is the number
of false positives. In practice, FDR will be controlled by
a if the hypotheses corresponding to the k smallest
P-values are rejected, where k is the largest j such that
the jth smallest P-value pð jÞ # ja=m, and m is the number
of the hypotheses tested. Some numerical results show
that controlling FDR can lead to higher powers (see, for
example, Benjamini and Hochberg 1995; Sabatti
et al. 2003). However, it should be pointed out that
these power comparisons are not based on the same
FWER level and hence do not necessarily imply that
using FDR is more powerful than using Bonferroni
correction at the same overall type I error level, because
controlling the former has a different meaning from

controlling the latter. Recently, the positive (or condi-
tional) false discovery rate (pFDR) was discussed by
Storey (2002) with

pFDR ¼ E
V

R

����R . 0

� �
:

Storey (2002) also argues that it is more suitable than
FDR in practice. Another related concept, the propor-
tion of false positives (PFP), is suggested by Southey
and Fernando (1998) and Fernando et al. (2004). They
define the PFP as

PFP ¼ EðV Þ
EðRÞ:

These authors show through simulation studies that PFP
is often close to FDR and pFDR. In general, PFP is closer
to pFDR than to FDR. In fact, Storey (2003) shows that
pFDR ¼ PFP when the tests are independent and follow
a mixture distribution. Clearly, when most null hypoth-
eses are true, the discrepancy between FDR and either
pFDR or PFP will increase. The connections and differ-
ences of these various measures have been discussed in
Zaykin et al. (2000), Storey (2003), and Fernando
et al. (2004). In practice, Benjamini and Hochberg’s
FDR is the easiest to estimate whereas pFDR is most
difficult to control (although very important). Noting
that PFP is closer to pFDR, we focus on PFP below.

In genetic association studies, it is usually very likely
that a marker tested is not associated with the disease of
interest; that is, most null hypotheses are true. This
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means that a very stringent significance level may be
sometimes appropriate in these settings. Otherwise, the
false positive rate will be very high, a situation the
applied researchers often want to avoid. On the basis of
this observation, we present some examples that com-
pare the power of the classical FWER controlling pro-
cedure with the PFP controlling one when the levels of
FWER and PFP are set to be the same. It turns out that
the Bonferroni approach can outperform the PFP ap-
proach in the aforementioned settings. Furthermore, we
demonstrate that for a specified problem, controlling
PFP is in fact approximately equivalent to Bonferroni
correction by setting corresponding (different) levels
of PFP and FWER. In this regard, Westfall et al. (1997)
consider the conditions under which the Bonferroni
correction behaves as the posterior probability (i.e.,
essentially pFDR or PFP).

On the other hand, if we control only the PFP level,
then a low power may result; that is, controlling only PFP
is not sufficient to achieve a desired power level in
multiple tests. An intuitive explanation is that PFP
considers only the tests that are rejected. When the
power is low, most (often even all) true alternatives will
not be rejected. Therefore, simultaneous consideration
of both PFP and power is very relevant and important.
This article considers mainly the design issue for
multiple case-control association tests when PFP is
controlled. The sample sizes that can lead to the desired
PFP and power levels are recommended.

METHODS

Genetic model and power calculation: We first give
the formula for calculating the power under various
genetic models (cf., Zou and Zhao 2004). We consider
two alleles, A and a, at a candidate marker, whose
frequencies are p and q ¼ 1 � p in the population,
respectively. For simplicity, we consider a case-control
study with n cases and n controls. Let Xi denote the
number of alleles A carried by the ith individual in the
case group, and Yi is defined similarly for the ith indi-
vidual in the control group. Assuming Hardy-Weinberg
equilibrium, each Xi and Yi has a value of 2, 1, 0 with
respective probabilities p2, 2pq, and q2 under the null
hypothesis of no association between the candidate
marker and disease. When the candidate marker is
associated with disease, we assume that the penetrances
are f2 for genotype AA, f1 for genotype Aa, and f0 for
genotype aa. Without loss of generality, we let f2 $ f1
$ f0. Note that the two alleles may be true functional
alleles or may be in linkage disequilibrium with true
functional alleles. Under this genetic model, the prob-
abilities of having k copies of A among the cases,
mk ¼ PðXi ¼ kÞ, and among the controls, m9k ¼ PðYi ¼
kÞ, are

m0 ¼ q2f0
p2f2 1 2pqf1 1 q2f0

;

m1 ¼ 2pqf1
p2f2 1 2pqf1 1 q2f0

;

m2 ¼ p2f2
p2f2 1 2pqf1 1 q2f0

;

m90 ¼ q2ð1 � f0Þ
p2ð1 � f2Þ1 2pqð1 � f1Þ1 q2ð1 � f0Þ

;

m91 ¼ 2pqð1 � f1Þ
p2ð1 � f2Þ1 2pqð1 � f1Þ1 q2ð1 � f0Þ

;

m92 ¼ p2ð1 � f2Þ
p2ð1 � f2Þ1 2pqð1 � f1Þ1 q2ð1 � f0Þ

:

Let nA and nU denote the observed numbers of allele A
in the case group and the control group and pA and pU

denote the population frequencies of allele A in these
two groups, respectively. Then the statistic to test the
association between the candidate marker and disease is

t ¼ ðnA � nUÞ=ð2nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ=n

p ;

where p̂ ¼ ðnA1nUÞ=ð4nÞ.
Consider a one-sided test and use a significance level

of a. The power of the test statistic t is

1 � b ¼ F
�za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ð1 � p̃Þ

p
1

ffiffiffi
n

p
m

s

� �
; ð1Þ

where F is the cumulative standard normal distribution
function, za is the upper 100ath percentile of the stan-
dard normal distribution, p̃ ¼ m=21m921m91=2 is the
expected frequency of alleleA under the genetic model,
m is the expected difference of estimated allele frequen-
cies between cases and controls, which is given by

m ¼ m2 1
1
2m1 � m92 � 1

2m91;

and s2/n is the corresponding variance with s2 being
given by

s2 ¼ 1
4½4m2 1m1 � ð2m2 1m1Þ2 1 4m92 1m91 � ð2m92 1m91Þ2�:

Thus, assuming M markers are tested, when Bonferroni
correction is used, the power that a disease-associated
marker is detected is given by

F
�za=M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ð1 � p̃Þ

p
1

ffiffiffi
n

p
m

s

 !
:

Approximate equivalence of controlling FWER and
PFP: In the genetic association test between gene and dis-
ease, for the case of testing M markers, Southey and
Fernando (1998) define the PFP as

PFP ¼
P

M
i¼1 aiPrðH ðiÞ

0 ÞP
M
i¼1½aiPrðH ðiÞ

0 Þ1 ð1 � biÞPrðH ðiÞ
1 Þ�

; ð2Þ
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where ai is the significance level, 1 � bi is the power at
the ith marker whose calculation formula for different
genetic models is provided in Equation 1, and PrðH ðiÞ

0 Þ�
½PrðH ðiÞ

1 Þ� is the prior probability of the null (alternative)
hypothesis being true for the ith test. Fernando et al.
(2004) show that if for each test the PFP is controlled by
g, then for all M tests it is controlled still by g.

We now show that for a specified scenario, i.e., for a
given number K of truly disease-associated markers, ge-
netic models, and population allele frequencies, con-
trolling FWER is substantially equivalent to controlling
PFP. In fact, for any given PFP level of g, we can find an
overall significance level of a such that this PFP level can
be obtained: First, we choose the type I error rate ai

for the ith test, which satisfies

aiPrðH ðiÞ
0 Þ

aiPrðH ðiÞ
0 Þ1 ð1 � biÞPrðH ðiÞ

1 Þ
¼ g ð3Þ

(or Equation 2). Then we take a ¼ 1 �
QM

i¼1ð1 � aiÞ.
Clearly, such a choice of the overall significance level
(correspondingly, the significance level for ith test is
taken as ai, which can be regarded as a generalized
Bonferroni correction) will lead to the PFP level of g.
On the other hand, for any given overall significance
level of a, we can find a PFP level of g such that this
overall significance level is attained: First, we calculate

aiPrðH ðiÞ
0 Þ

aiPrðH ðiÞ
0 Þ1 ð1 � biÞPrðH ðiÞ

1 Þ
¼ gi

with ai ¼ a=M . Then we take g ¼ M=
PM

i¼1 1=gið Þ [here
we assume that the prior probability PrðH ðiÞ

0 Þ ¼ 1�
K=M �. Obviously, 0, g, 1. Such a choice of the PFP
level (correspondingly, the PFP level for ith test is taken
as gi) can lead to the overall type I error rate of a.

Note that in practical genetic studies, the true number
of disease-associated markers and the genetic models are
unknown to us; the equivalence should be approximate
by using their estimates.

RESULTS

We have seen that controlling FWER is in fact equiv-
alent to controlling PFP by setting their different levels.
Here we provide examples that show that controlling
FWER can lead to higher powers than controlling PFP,
even though their levels are set to be the same.

For comparing the powers based on Bonferroni cor-
rection and based on controlling PFP, we assume that the
overall significance level a for M tests is the same as the
PFP level g (¼a) for these tests and consider M ¼ 1000.
Then for each test, the significance level ai ¼ a/M if we
use Bonferroni correction, and PFP gi ¼ g ¼ a if we con-
trol PFP. The power results are summarized in Table 1,
where the true number of disease-associated markers
K is set to be 1, 2, and 5, and the prior probability is
assumed to be PrðH ðiÞ

0 Þ ¼ 1 � K=M .
From Table 1, we observe that for a small allele fre-

quency difference (5%) between the case and control
groups, using Bonferroni correction for multiple tests
often leads to larger power, especially for the case of small
sample size (say, 200) and small number of disease-
associated markers. This is true even for larger allele
frequency difference when the sample size is smaller. On
the other hand, controlling PFP can lead to higher power
for large allele frequency difference (10%) between the
cases and controls, especially for large sample sizes
(1000) and a large number of disease-associated markers.
This is true for smaller allele frequency difference when
the sample size is larger. Note that the number of disease-
associated markers is unknown in practical genetic asso-
ciation studies. Thus, overall, to detect disease markers
with small allele frequency difference (such as 5%), using

TABLE 1

The power comparison based on Bonferroni correction and controlling PFP for M ¼ 1000 tests

PFP

Bonferroni correction K ¼ 1 K ¼ 2 K ¼ 5

pA � pU ¼ 5%
p ¼ 0:05 0.626 (0.148) 0.588 (0.053) 0.652 (0.080) 0.732 (0.131)
p ¼ 0:2 0.125 (0.018) 0.030 (0.000) 0.051 (0.000) 0.096 (0.001)
p ¼ 0:7 0.085 (0.011) 0.009 (0.000) 0.018 (0.000) 0.044 (0.000)

pA � pU ¼ 10%
p ¼ 0:05 0.999 (0.760) 0.999 (0.745) 0.999 (0.791) 1.000 (0.847)
p ¼ 0:2 0.882 (0.283) 0.878 (0.175) 0.909 (0.233) 0.941 (0.327)
p ¼ 0:7 0.892 (0.268) 0.890 (0.149) 0.919 (0.209) 0.950 (0.308)

The overall significance level and PFP level are a ¼ g ¼ 0:05. The sample size is n ¼ 500, and the values in
parentheses correspond to the case of n ¼ 200.

Sample Size Requirement When PFP Is Controlled 689



Bonferroni correction for sample sizes that are not large
(such as 500 and 200) can give a higher level of power; to
detect disease markers with large allele frequency differ-
ence (such as 10%), using PFP for sample sizes that are
not small (such as 1000 and 500) will lead to a better
result in power.

To calculate the sample size for attaining a desired PFP
level g and a desired power level 1 � b that a disease-
associated marker is detected, we assume that the prior
probability of the marker tested being truly disease
associated is 0.0001 and use Equation 3. We find that
the sample size required depends on the genetic model
and population allele frequency substantially through
the allele frequency difference pA � pU between the cases
and controls and population allele frequency p (the re-
sults for the PFP level of 0.05 under dominant, recessive,

multiplicative, and additive models with f0 ¼ 0:01 are
presented in Table 2; a similar conclusion for the power
of the two-stage design can be found in Y. Zuo, G. Zou
and H. Zhao, unpublished results). On the basis of this,
we consider a recessive genetic model and let f0 ¼ 0:01 in
our calculation for simplicity when the PFP levels of 0.20
and 0.50 are used. Tables 2–4 present the sample sizes to
attain the PFP levels g ¼ 0:05, 0.20, and 0.50 and the
power level 1� b ¼ 80% for various allele frequency
differences between the cases and controls and popula-
tion allele frequencies, respectively. Interestingly, it can
be seen from Tables 2–4 that reducing the level of PFP
will not necessarily lead to a great increase in sample size
required. Therefore, we can use the sample sizes derived
by setting PFP at a small level. This will not significantly
increase the cost of the experiment.

DISCUSSION

In multiple tests, there is an increasing trend to use
FDR, pFDR, and PFP as measures of global error instead
of using overall type I error rate. This article gives the
examples on the power comparison between controlling
FWER and PFP when their levels are set to be the same (as
is usually done in the literature), which show that using
Bonferroni correction does not necessarily lead to a
lower power. This article also shows that controlling
FWER and controlling PFP, seemingly two different
approaches, based on prior and posterior probabilities,
respectively, are actually intrinsically equivalent.

Note that controlling only PFP does not necessarily
lead to a desired level of power. We work out the sample
size to attain the desired power that a disease-associated
marker is detected under various population allele
frequencies and various allele frequency differences
between the cases and controls when PFP is controlled.
Our results reveal that lowering the PFP level alone will
not give rise to much increase in sample size required to
attain a desired power level. Therefore, taking a small
PFP level may be appropriate in general in multiple
case-control association tests. Further, as we have seen,
FDR and especially pFDR are often close to PFP. Com-
bining this and the above fact that the effect of PFP level
on the sample sizes required is not large, we see that the

TABLE 2

Sample sizes to attain the desired PFP level of 0.05 and power
of 80% for various allele frequency differences and population

allele frequencies under four genetic models

p ¼ 0:05 p ¼ 0:2 p ¼ 0:7

pA � pU ¼ 3%
Dominant 1878 5233 6303
Recessive 1949 5308 6371
Multiplicative 1884 5252 6354
Additive 1882 5250 6352

pA � pU ¼ 5%
Dominant 767 1941 2212
Recessive 809 1979 2249
Multiplicative 772 1952 2239
Additive 770 1949 2237

pA � pU ¼ 7%
Dominant 436 1017 1113
Recessive 466 1048 1123
Multiplicative 440 1025 1117
Additive 438 1023 1115

pA � pU ¼ 10%
Dominant 245 516 561
Recessive 266 538 531
Multiplicative 248 523 528
Additive 246 521 527

TABLE 3

Sample sizes to attain the desired PFP level of 0.20 and power
of 80% for various allele frequency differences and population

allele frequencies

p ¼ 0:05 p ¼ 0:2 p ¼ 0:7

pA � pU ¼ 3% 1706 4639 5565
pA � pU ¼ 5% 709 1730 1965
pA � pU ¼ 7% 409 916 981
pA � pU ¼ 10% 233 471 464

TABLE 4

Sample sizes to attain the desired PFP level of 0.50 and power
of 80% for various allele frequency differences and population

allele frequencies

p ¼ 0:05 p ¼ 0:2 p ¼ 0:7

pA � pU ¼ 3% 1488 4040 4400
pA � pU ¼ 5% 619 1507 1711
pA � pU ¼ 7% 357 799 854
pA � pU ¼ 10% 204 410 404
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sample sizes we obtained should be useful when FDR
and especially pFDR are controlled.

Finally, we remark that the sample size calculation
in this article is done for unrelated individual data.
We note that family-based data are also often used in
genetic epidemiological studies. The design issue for
such data, which is not pursued here, is no doubt an
interesting topic when PFP (or FDR or pFDR) is
controlled.
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