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PROJECTION-BASED DEPTH FUNCTIONS
AND ASSOCIATED MEDIANS1

BY YIJUN ZUO

Michigan State University

A class of projection-based depth functions is introduced and studied.
These projection-based depth functions possess desirable properties of
statistical depth functions and their sample versions possess strong and
order

√
n uniform consistency. Depth regions and contours induced from

projection-based depth functions are investigated. Structural properties of
depth regions and contours and general continuity and convergence results
of sample depth regions are obtained.

Affine equivariant multivariate medians induced from projection-based
depth functions are probed. The limiting distributions as well as the strong
and order

√
n consistency of the sample projection medians are established.

The finite sample performance of projection medians is compared with that
of a leading depth-induced median, the Tukey halfspace median (induced
from the Tukey halfspace depth function). It turns out that, with appropriate
choices of univariate location and scale estimators, the projection medians
have a very high finite sample breakdown point and relative efficiency, much
higher than those of the halfspace median.

Based on the results obtained, it is found that projection depth functions
and projection medians behave very well overall compared with their
competitors and consequently are good alternatives to statistical depth
functions and affine equivariant multivariate location estimators, respectively.

1. Introduction. Depth functions for multivariate data have been pursued in
robust and nonparametric data analysis and inference. Among existing notions
of depth are Tukey (1975) “halfspace depth,” Liu (1990) “simplicial depth” and
Rousseeuw and Hubert (1999) “regression depth.” The main idea of location depth
is to provide a center-outward ordering of points in high dimension relative to a
given data set or distribution. Broad treatments of location depth functions are
given in Liu, Parelius and Singh (1999) and Zuo and Serfling (2000a). Other
studies of depth functions and applications can be found in, for example, Donoho
and Gasko (1992), Liu (1995), Liu and Singh (1993, 1997), He and Wang (1997),
Rousseeuw and Ruts (1999), Zuo and Serfling (2000b, c, d) and Zhang (2002).

In Zuo and Serfling (2000a), a projection depth function and several other types
of depth functions are investigated. It is found that the halfspace and projection
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depth functions (both are implementations of the projection pursuit methodology)
appear to represent two very favorable choices among all those examined there.
The halfspace depth function and its associated median have received tremendous
attention in the literature, whereas not much attention has been paid to the
projection depth function. To fill the gap, this paper introduces and studies a class
of projection-based depth functions and associated medians, complementing Zuo
and Serfling (2000a).

In Section 2, projection-based depth functions and associated depth regions and
contours are defined and examples are presented. It is shown that these functions
possess the four desirable properties of statistical depth functions introduced by
Liu (1990) and Zuo and Serfling (2000a, b) and their sample versions are strongly
and

√
n uniformly consistent. Depth regions and contours induced from projection

depth functions are shown to possess nice structural properties and sample depth
contours are proved to converge to their population counterparts.

Section 3 is devoted to the study of the affine equivariant multivariate medians
induced from projection-based depth functions. Large and finite sample behavior
of sample projection medians are investigated. Strong consistency and limiting
distributions of sample projection medians are obtained. Study of the finite sample
behavior indicates that, with appropriate choices of univariate location and scale
estimators, the sample projection medians can have (simultaneously) a very high
breakdown point and relative efficiency, which are much higher than those of the
most prevalent depth-based multivariate median, the Tukey halfspace median. (In
fact, the breakdown points obtained for the sample projection medians are the
highest among all existing affine equivariant multivariate location estimators.)
These findings suggest that projection medians are good alternatives of affine
equivariant multivariate location estimators to the Tukey halfspace median.

Section 4 ends the paper with some concluding remarks. Selected proofs and
auxiliary lemmas are saved for the Appendix.

2. Projection-based depth functions and contours. In this section we study
a class of projection-based depth functions. It is a broader generalization of the
projection idea behind the Stahel–Donoho (S–D) estimator [Stahel (1981) and
Donoho (1982)]. The earlier generalizations were given in Liu (1992) and Zuo
and Serfling (2000a).

2.1. Definitions and examples. Let µ and σ be univariate location and scale
measures, respectively. Define the outlyingness of a point x ∈ R

d with respect to
(w.r.t.) a given distribution function F of X in R

d , d ≥ 1, as

O(x,F ) = sup
‖u‖=1

g(x,u,F ),(2.1)

where g(x,u,F ) = |u′x − µ(Fu)|/σ (Fu) and Fu is the distribution of u′X. Then
g(x,u,F ) is defined to be 0 if u′x − µ(Fu) = σ(Fu) = 0. The projection depth
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(PD) of a point x ∈ R
d w.r.t. the given F , PD(x,F ), is then defined as

PD(x,F ) = 1/
(
1 + O(x,F )

)
.(2.2)

Sample versions of g(x,u,F ), O(x,F ) and PD(x,F ), denoted by gn(x,u),
On(x) and PDn(x), are obtained by replacing F by its empirical version F̂n,
respectively. Throughout our discussion we assume that µ and σ exist uniquely.
We also assume that µ is translation and scale equivariant and σ is scale
equivariant and translation invariant; that is, µ(FsY+c) = sµ(FY ) + c and
σ(FsY+c) = |s|σ(FY ), respectively, for any scalars s and c and random variable
Y ∈ R

1.

REMARK 2.1. (i) A specific pair (µ,σ ) results in a specific PD. The
characteristics of PD and estimators induced from it thus depend on the choice
of (µ,σ ). (ii) With the pair median (Med) and median absolute deviation (MAD),
(2.1) has long been used as an outlyingness measure of points in R

d (d ≥ 1);
see Mosteller and Tukey (1977), Stahel (1981) and Donoho (1982). It is natural
to characterize the depth of points in terms of their outlyingnesses, as (2.2)
does. Of course any monotone decreasing function of O(x,F ) can serve the
purpose, but (2.2) ensures 0 ≤ PD(x,F ) ≤ 1. (iii) PD enjoys desirable properties
of depth functions (Section 2.2) and thus provides a center-outward ordering of
multivariate points. It induces multivariate quantiles [Serfling (2002a, b)], medians
(Section 3) and depth-weighted means including as special cases the S–D estimator
and multivariate trimmed and winsorized means [Zuo, Cui and He (2001)].
(iv) Moreover, estimators induced from PD can have a very high breakdown point
while being extremely efficient whereas those induced from “rank-based” depth
(e.g., the halfspace depth) have a relatively lower breakdown point and efficiency
[see Section 3.2 and Zuo, Cui and He (2001)]. This is yet another motivation
behind PD.

Call the set PDα(F ) = {x : PD(x,F ) ≥ α} the αth projection depth region for
0 ≤ α ≤ 1. A sample version of PDα(F ), PDα

n , is obtained by replacing PD(x,F )

by PDn(x). PDα(F ) is a multivariate analogue of the univariate αth quantile
region. Call the set {x : PD(x,F ) = α} the αth projection depth contour. Now let
us see two examples of PD(x,F ) and PDα(F ) with symmetric and asymmetric F

(in the usual sense).

EXAMPLE 2.1. Multivariate standard normal distribution F = Nd(0, I) in R
d ,

d ≥ 1. Consider (µ,σ ) = (Med, MAD). It is seen that O(x,F ) = ‖x‖/cN , with
cN = �−1(3

4) ≈ 0.6744898, and

PD(x,F ) = cN/(cN + ‖x‖),
where ‖ · ‖ denotes the Euclidean norm. The αth depth region is then given by

PDα(F ) = {x :‖x‖ ≤ cN(1 − α)/α},
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FIG. 1. Projection depth function and contours of bivariate standard normal distribution.

that is, the depth contours are circles in R
2 and spheres in R

d , d > 2. See
Figure 1. If the underlying distribution F is Nd(µ,�), then by affine invariance

(see Section 2.2) PD(x,F ) = cN/(cN + √
(x − µ)′�−1(x − µ)), and PDα(F ) =

{x : (x − µ)′�−1(x − µ) ≤ (cN(1 − α))2/α2}. The depth contours are ellipses
in R

2 and ellipsoids in R
d , d > 2.

EXAMPLE 2.2. Uniform distribution F over a triangle in R
2. Since all

triangles are affine images of a single triangle, we confine attention to the one
with vertices (0,0), (2,0) and (0,2). The distribution F in this case is asymmetric
and the “center” for a center-outward ordering is not clear (in the usual sense). If
we take the univariate mean and standard deviation as µ and σ , respectively, then
the unique deepest point is (2/3,2/3), the mean of F . To see this, just assume,
without loss of generality, that the mean of F is at the origin (see Section 2.2 for

affine invariance). It then can be shown that O(x,F ) =
√

6(x2
1 + x1x2 + x2

2) for

any x = (x1, x2)
′ ∈ R

2. Hence

PD(x,F ) = 1
/(

1 +
√

6(x2
1 + x1x2 + x2

2)
)
,

and the αth depth region is given by

PDα(F ) = {
x :x2

1 + x1x2 + x2
2 ≤ (1 − α)2/(6α2)

}
,

implying that the depth contours are ellipses. See Figure 2.

Now we explore various properties of projection based depth functions and their
induced depth regions and contours.

2.2. Projection-based depth functions. For a given distribution F in R
d , a

functional T (x,F ) is said to be affine invariant if T (Ax + b,FAX+b) = T (x,FX)
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FIG. 2. Projection depth function and contours of a uniform distribution over a triangle.

for any nonsingular d × d matrix A and vector b and x in R
d ; T (x,F ) is said

to be quasi-concave if T (λx1 + (1 − λ)x2,F ) ≥ min{T(x1,F ),T(x2,F )} for any
0 ≤ λ ≤ 1 and points x1, x2 in R

d . For a given univariate location (or “center”)
measure µ, a distribution function F is called µ-symmetric about point θ ∈ R

d if
µ(Fu) = u′θ for any unit vector u in R

d . We have the following theorem.

THEOREM 2.1. For fixed F in R
d (d ≥ 1), PD(x,F ) is:

(i) affine invariant,
(ii) quasi-concave,

(iii) vanishing at infinity: PD(x,F ) → 0 as ‖x‖ → ∞ and
(iv) maximized at the center of µ-symmetric F .

REMARK 2.2. (i) Affine invariance guarantees that PD(x,F ) does not
depend on the underlying coordinate system and measurement scales while quasi-
concavity ensures that PD(x,F ) ≤ PD(θ0 + β(x − θ0),F ) for β ∈ [0,1] and
θ0 with PD(θ0,F ) = supx PD(x,F ); that is, PD(x,F ) decreases monotonically
along any ray stemming from the deepest point θ0. Quasi-concavity also implies
the convexity of depth regions (Section 2.2). (ii) A bounded non-negative function
with the four properties: affine invariance, maximality at center, monotonicity
relative to deepest point and vanishing at infinity [see Liu (1990) and Zuo and
Serfling (2000a, b)] is called a statistical depth function in the latter paper. In
light of this, a general PD(x,F ) is a statistical depth function for µ-symmetric F .
Indeed, this was shown in Zuo and Serfling (2000a) for (µ,σ ) = (Med, MAD).

REMARK 2.3. (i) To shed light on µ-symmetry, we consider two cases of µ,
the median and mean. If µ is the median functional, then µ-symmetry is equivalent
to halfspace symmetry, a notion introduced in Zuo and Serfling (2000a, c),
broadening spherical, elliptical, antipodal (central) and angular (directional)
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symmetry. The latter four [see Liu (1990), Beran and Millar (1997), Liu, Parelius
and Singh (1999) and Randles (2000)] are increasingly less restrictive. If µ is the
mean functional, then any F is µ-symmetric about its mean provided that the mean
exists. So the choices of median and mean functionals represent two extreme cases
of symmetry. (ii) The center θ of µ-symmetry is unique and PD(x,F ) itself is
symmetric about θ in x; that is, PD(θ + x,F ) = PD(θ − x,F ) for x ∈ R

d .

Under some mild conditions, PD(x,F ) is uniformly continuous in x for fixed F

and “continuous” in F uniformly relative to x. PD(x,F ) is said to be continuous
in F for fixed x if PD(x,Fn) → PD(x,F ) when Fn converges to F in distribution
(Fn →d F ) as n → ∞. Throughout our discussion of convergence in the paper,
the measurability of underlying objects is tacitly assumed. Define:

(C0) sup‖u‖=1 |µ(Fu)| < ∞, sup‖u‖=1 σ(Fu) < ∞.
(C1) inf‖u‖=1 σ(Fu) > 0.
(C2) sup‖u‖=1 |µ(Fnu) − µ(Fu)| = oP (1), sup‖u‖=1 |σ(Fnu) − σ(Fu)| = oP (1).
(C3) sup‖u‖=1 |µ(Fnu) − µ(Fu)| = o(1) a.s., sup‖u‖=1 |σ(Fnu) − σ(Fu)| =

o(1) a.s.
(C4) sup‖u‖=1 |µ(Fnu) − µ(Fu)| = OP (1/

√
n), sup‖u‖=1 |σ(Fnu) − σ(Fu)| =

OP (1/
√

n).

Here Fn is not necessarily F̂n, the empirical version of F .

REMARK 2.4. (i) For (C0)–(C4) to hold, different choices of (µ,σ ) impose
different restrictions on F . (ii) For the pair (mean, standard deviation) and
Fn = F̂n, (C0)–(C4) hold for any F with a positive definite covariance matrix.
(iii) For the pair (Med, MAD) and Fn = F̂n, (C0)–(C4) hold for any F satisfying
the conditions in Theorem 3.3 (but not necessarily µ-symmetric about a point).
(iv) For general M-functionals (µ,σ ), conditions for (C0)–(C4) to hold are
addressed in Zuo, Cui and He (2001).

THEOREM 2.2. Under (C0) and (C1) we have:

(i) PD(x,F ) is uniformly continuous in x,
(ii) supx∈Rd |PD(x,Fn) − PD(x,F )| = oP (1) if (C2) holds,

(iii) supx∈Rd |PD(x,Fn) − PD(x,F )| = o(1) a.s. if (C3) holds and
(iv) supx∈Rd |PD(x,Fn) − PD(x,F )| = OP (1/

√
n) if (C4) holds.

REMARK 2.5. (i) (i)–(iv) in the theorem can be strengthened to (i)∗–(iv)∗:
Lipschitz continuous, supx∈Rd |PD(x,Fn)− PD(x,F )|(1 +‖x‖) = oP (1), = o(1)

a.s. and = OP (1/
√

n), respectively. (iv)∗ is crucial in establishing asymptotic
normality of PD-weighted means [see Zuo, Cui and He (2001)]. For the halfspace
and simplicial depth, (i) holds for absolutely continuous F and (ii)–(iv) hold with
no restriction on F . (i)∗–(iv)∗, however, do not hold for them in general. (ii) Zuo
and Serfling (2000b) established (iii) for (µ,σ ) = (Med, MAD) and Fn = F̂n.
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It is straightforward to verify that sample projection depth functions share many
of the above properties of their population counterparts.

2.3. Projection depth induced regions and contours. PDα(F ) is called affine
equivariant if PDα(FAX+b) = A(PDα(F ))+b for any nonsingular d ×d matrix A

and vector b ∈ R
d . Let α∗ = supx∈Rd PD(x,F ). For convenience we sometimes

drop the F in PDα(F ). Denote the interior of PDα∗
by (PDα∗

)o and the boundary
of PDα by ∂PDα .

THEOREM 2.3. Let PDα(F ) be the αth projection depth region for a
given F .

(i) PDα(F ) is affine equivariant, nested and convex,
(ii) PDα(F ) is bounded, closed, and hence compact for any α > 0 if (C0)

and (C1) hold,
(iii) PDα(F ) is symmetric about θ if F is µ-symmetric about θ ,
(iv) ∂PDα(F ) is {x : PD(x,F ) = α} if (C0) and (C1) hold and
(v) (PDα∗

)o is ∅ under (C0), PDα∗ �= ∅ if (C0) and (C1) hold.

Under the conditions given below, the projection depth regions are continuous
in both α and F . For other related discussions of the continuity of depth regions,
see Nolan (1992), Massé and Theodorescu (1994), He and Wang (1997), Kim
(2000) and Zuo and Serfling (2000b). For a sequence A1,A2, . . . of sets, define
lim supn An = ⋂∞

n=1
⋃∞

k=n Ak and lim infn An = ⋃∞
n=1

⋂∞
k=n Ak . Write An → A

as n → ∞ if lim supn An = lim infn An = A. Write An
a.s.→ A with A = lim supn An

if P ({x :x ∈ lim supn An but x /∈ lim infn An}) = 0.

THEOREM 2.4. Let PDα(F ) be the αth depth region for a given F .

(i) PDαn(F )
a.s.→ PDα(F ) if αn → α and P ({x : PD(x,F ) = α}) = 0,

(ii) PDαn(Fn)
a.s.→ PDα(F ) if αn → α, P (∂PDα) = 0, and (C0), (C1) and (C3)

hold.

We say PD(x,F ) decreases most slowly along a ray u stemming from the
deepest point θ with PD(θ,F ) = α∗ if for any xu

α1
, xu

α2
on u and xv

α1
, xv

α2
on any

other ray v from θ with PD(xu
αi

,F ) = PD(xv
αi

,F ) = αi , i = 1,2, ‖xu
α1

− xu
α2

‖ ≥
‖xv

α1
− xv

α2
‖. Such a direction exists in many cases, especially in the case that F is

elliptically distributed and µ = Med and σ = MAD. For two sets, A and B , the
Hausdorff distance between them, ρ(A,B), is inf{ε | ε > 0, A ⊆ Bε , B ⊆ Aε},
where Aε = {x | d(x,A) < ε} and d(x,A) = inf{‖x − y‖ | y ∈ A}. The depth
regions are continuous in ρ as well as in α in the following sense.

THEOREM 2.5. Let (C0) and (C1) hold and ρ be defined as above.
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(i) αn → α if ρ(PDαn,PDα) → 0 as n → ∞,
(ii) ρ(PDαn,PDα) → 0 if αn → α(< α∗) and PD(x,F ) decreases strictly

along any ray from θ with PD(θ,F ) = α∗ and most slowly along a ray u.

It is straightforward to verify that sample depth regions share many of the
properties of their population versions.

3. Projection depth-induced medians. For a given PD, define the point with
maximum depth as a multivariate analogue of the univariate median. That is,
a median induced from PD, called projection median (PM), can be defined as

PM(F ) = arg sup
x∈Rd

PD(x,F ).

Tyler (1994) also obtained PM based on a slightly different approach. The
nonuniqueness problem in the definition can be handled with a fixed rule (such
as taking average). By Theorem 2.3, PM(F ) is well defined if (C0) and (C1)
hold. In R

1, it reduces to the univariate median if µ = Med. Like its univariate
counterpart, PM(F ) is affine equivariant. That is, PM(FAX+b) = A(PM(FX)) + b

for every d ×d nonsingular matrix A and vector b ∈ R
d . PM(F ) is able to identify

the center of symmetry of any µ-symmetric F ; see Zuo and Serfling (2000c) for a
related discussion.

For a given sample Xn = {X1, . . . ,Xn} from F , a sample version of PM(F ),
PMn = PM(F̂n), is obtained (take on average if necessary to deal with the
nonuniqueness problem). PMn is affine equivariant; that is, PMn(AXn + b) =
A(PMn) + b for any sample Xn from X, nonsingular d × d matrix A and vector
b ∈ R

d . If X is centrally symmetric about a point θ ∈ R
d ; that is, X − θ and

θ − X have the same distribution, then the probability distribution of PMn itself
is also centrally symmetric about θ [see Corollary 1.3.19 of Randles and Wolfe
(1979)]. Further, if the expectation of this centrally symmetric X exists, then PMn

is an unbiased estimator of the location parameter θ . Under some mild conditions,
PMn is a consistent estimator of PM(F ) and has a limiting distribution. Now we
investigate the large and finite sample behavior of the sample projection medians.

3.1. Large sample behavior. In the following we establish first the strong and√
n consistency and then limiting distributions of the sample projection medians.

Lemma 3.3 of Bai and He (1999) turns out to be very important in establishing the
limiting distributions.

THEOREM 3.1. Assume that (C0) and (C1) hold and θ is the unique point
with θ = arg supx∈Rd PD(x,F ). Let PM(Fn) = arg supx∈Rd PD(x,Fn). Then:

(i) PM(Fn) − PM(F ) = o(1) a.s. if (C3) holds, and
(ii) PM(Fn) − PM(F ) = OP (1/

√
n ) if (C4) holds and F is µ-symmetric.
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REMARK 3.1. (i) (C4) is more than we need for part (ii) of the theorem. The
first part of (C4) and the second part of (C2) suffice. (ii) Consistency of PM(Fn)

can be established accordingly.

A natural question raised after one has the strong and
√

n consistency of
PM(Fn) is: Does PM(Fn) possess a limiting distribution? We answer the question
for a general class of µ and σ with µu = µ(Fu) and σu = σ(Fu) being the
simultaneous M-functionals of location and scale [see Huber (1981)] and defined
by λ(ηu) = EFu�((x − µu)/σu)) = 0 for x ∈ R

1, where �(·) = (ψ(·),χ(·))′ and
ηu = (µu,σu)

′; that is, ∫
ψ

(
x − µ(Fu)

σ (Fu)

)
Fu(dx) = 0,(3.1)

∫
χ

(
x − µ(Fu)

σ (Fu)

)
Fu(dx) = 0.(3.2)

It is readily seen that µu is translation and scale equivariant and σu is scale
equivariant and translation invariant. Then ψ and χ in (3.1) and (3.2) are usually
odd and even, respectively. Typical choices of them include ψ(x) = sign(x) and
χ(x) = sign(|x| − 1), which lead to the median (for µ) and the median absolute
deviation from 0 (for σ ). Another choice is ψ(x) = Med{−k, k, x} and χ(x) =
(ψ(x))2 − ∫

min(k2, x2)�(dx); see Huber (1981) for other popular choices of
ψ and χ . If λ has a nonsingular derivative matrix �u for each u, then

�u =
(

au bu

cu du

)
,

with au = − ∫
ψ ′(yu)Fu(dyu), bu = − ∫

ψ ′(yu)yuFu(dyu), cu = − ∫
χ ′(yu) ×

Fu(dyu) and du = − ∫
χ ′(yu)yuFu(dyu), where yu = (x − µu)/σu. Define for

bounded µu and σu,

F =
{

duψ(hu(·)) − buχ(hu(·))
det�u

:‖u‖ = 1
}
,

where hu(x) = (u′x − µu)/σu for any x ∈ R
d . Under mild conditions, F is a

permissible class and the graphs of functions in F form a polynomial class of sets
[see Pollard (1984)]. Define

(C5) ηun − ηu = − 1
n

∑n
i=1 �−1

u �(
u′Xi−µu

σu
) + op(1/

√
n), uniformly in u with

ηun = (µ(Fun), σ (Fun))
′.

Let Yu = (u′X − µu)/σu. Assume (w.l.o.g.) that E�(Yu) = 0.

THEOREM 3.2. Let µu = µ(Fu) and σu = σ(Fu) be determined by (3.1) and
(3.2). Assume that:
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(i) (C0) and (C1) hold, F is µ-symmetric, and the density f of F and the
gradient ḟ of f exist.

(ii) infu det�u > 0 and supu |du|, supu |bu|, E(supu |ψ(Yu)|)2 and
E(supu |χ(Yu)|)2 exist.

(iii) F is a permissible class of functions whose graphs form a polynomial
class of sets.

(iv) (C5) holds.

Then
√

n
(
PM(F̂n) − PM(F )

) d→ arg inf
t

sup
‖u‖=1

∣∣(u′t − Z(u)
)
/σ (Fu)

∣∣,
where Z(u) is a Gaussian process on the unit sphere with mean zero and
covariance structure

Cov
(
Z(u1),Z(u2)

) = E([du1ψ(Yu1) − bu1χ(Yu1)][du2ψ(Yu2) − bu2χ(Yu2)])
(au1du1 − bu1cu1)(au2du2 − bu2cu2)

.

REMARK 3.2. (i) Assume that X ∼ F is µ-symmetric about 0 and u′X =d

a(u)Y for each ‖u‖ = 1 with a(u) > 0 being continuous and even in u and Y

having a density f∗(y) continuous and even in y, where “=d” stands for “equal
in distribution.” Such F includes elliptically symmetric F with a(u) = √

u′�u for
some positive definite matrix � and α-symmetric F with a(u) = (

∑d
i=1 ai |ui|α)1/α,

α > 0 [Fang, Kotz and Ng (1990)]. The part (i) of the above theorem then holds
trivially when such F is smooth. If ψ and χ are (almost surely) continuously dif-
ferentiable, ψ has a zero at x = 0 and χ has a minimum at x = 0, and ψ ′ > 0 and
χ ′/ψ ′ is strictly monotone, then �u is nonsingular [specific examples of such ψ

and χ include ψ(·) = c2 arctan(·) for any constant c �= 0 and χ(·) = ψ(·)2 − β;
strict monotonicity of ψ can be slightly relaxed; see pages 137–139 of Huber
(1981) for the argument and other examples of ψ and χ ]. The part (ii) of the
theorem thus holds in light of continuity and compactness as long as E(ψ2(Yu))

and E(χ2(Yu)) exist. The part (iii) of the theorem holds for the given ψ and χ

[see Pollard (1984), Examples II.26 and VII.18 and Problem II.18)]. Condition (4)
[i.e., (C5)] holds for the given ψ and χ ; see Lemma 3.2 of Zuo, Cui and He (2001)
for further discussions related to (C5). The uniformity in u of the remainder term is
needed to handle stochastic processes (and supu) involved. (ii) The limiting distri-
bution in the theorem is not convenient for use in practice. However, bootstrapping
techniques can be used to approximate the distribution of

√
n(PM(F̂n) − PM(F ))

and to construct confidence regions for PM(F ).

For the special case (µ,σ ) = (Med, MAD), we have the following theorem.

THEOREM 3.3. Let (µ,σ ) = (Med,MAD). Assume that F is µ-symmetric
about θ ∈ R

d with density f , Fu is twice differentiable at µ(Fu) with the first-
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order derivative fu, inf‖u‖=1 fu(µ(Fu)) > 0, and inf‖u‖=1(fu(µ(Fu) + σ(Fu)) +
fu(µ(Fu) − σ(Fu))) > 0. Then

√
n
(
PM(F̂n) − PM(F )

) d→ arg inf
t

sup
‖u‖=1

∣∣(u′t − Z(u)
)
/σ (Fu)

∣∣,
where Z(u) is a Gaussian process on the unit sphere with mean zero and
covariance structure Cov(Z(u1),Z(u2)) = (P (u′

1X ≤ u′
1θ,u′

2X ≤ u′
2θ) − 1/4)/

(fu1(u
′
1θ)fu2(u

′
2θ)).

REMARK 3.3. (i) The conditions in the theorem are satisfied if F is a
smooth elliptically symmetric distribution. When F is spherically symmetric
about the origin, the covariance structure becomes Cov(Z(u1),Z(u2)) = (1/4 −
arccos(u′

1u2)/(2π))/(f∗(0))2 with f∗ being any marginal density. (ii) Tyler (1994)
stated, based on a heuristic argument, the limiting distribution of PM(F̂n) for
spherically symmetric F . The above theorem includes his result as a special case.

REMARK 3.4. By Theorems 3.2 and 3.3, it is seen that the limiting
distribution of PMn does not depend on the choice of σ as long as σ(·) is Fisher
consistent (up to a fixed scalar) w.r.t. a given scale parameter of Fu for each u. For
example, consider the µ-symmetric F in (i) of Remark 3.2. Suppose η is the scale
parameter of Y . Then any σ with σ(Fu) = κσa(u)η for a constant κσ leads to the
same limiting distribution of PMn.

3.2. Finite sample breakdown point. For an appropriate choice of (µ,σ ),
PMn is a robust location estimator in the sense that it possesses a very high
breakdown point (in fact, its breakdown point can be higher than that of any
existing affine equivariant location estimator). The notion of a finite sample
breakdown point was introduced in Donoho and Huber (1983) and has become
the most prevalent quantitative assessment of global robustness of estimators.
Let Xn = {X1, . . . ,Xn} be a sample of size n in R

d , d ≥ 1. The replacement
breakdown point (RBP) of an estimator T at Xn is defined as

RBP(T ,Xn) = min
{

m

n
: sup

Xn
m

‖T (Xn
m) − T (Xn)‖ = ∞

}
,

where Xn
m denotes a contaminated sample from Xn by replacing m points of Xn

with arbitrary values. In other words, the RBP of an estimator is the minimum
replacement fraction that could drive the estimator beyond any bound.

In the following discussion, (µ,σ ) = (Med, MADk), where MADk is a
modified version of MAD. MADk(x

n) = Medk({|x1 − Med(xn)|, . . . , |xn −
Med(xn)|}), where

Medk(x
n) = (

x(�(n+k)/2�) + x(�(n+1+k)/2�)
)
/2, 1 ≤ k ≤ n,
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xn = {x1, . . . , xn}, x(1) ≤ · · · ≤ x(n), are ordered values of x1, . . . , xn in R
1, and

�x� is the largest integer less than or equal to x. Denote the corresponding
projection median by PM k

n . The Med–MAD combination corresponds to PM k
n

with k = 1. A random sample Xn in R
d , d ≥ 1 is said to be in general position if

there are no more than d data points of Xn contained in any (d − 1)-dimensional
subspace.

THEOREM 3.4. Let (µ,σ ) = (Med,MADk) and Xn be in general position
with n ≥ 2(d − 1)2 + k + 1, where k ≤ (d − 1) when d ≥ 2. Then

RBP(PM k
n ,Xn) =




�(n + 1)/2�
n

, for d = 1,

�(n − 2d + k + 3)/2�
n

, for d ≥ 2.

REMARK 3.5. (i) For Xn in general position, d = 1, and 1 ≤ k ≤ n, the
affine equivariant, hence necessarily translation equivariant, location estimator
PM k

n achieves the best possible RBP of any translation equivariant location
estimators [see Lopuhaä and Rousseeuw (1991)]. (ii) For Xn in general position
and d ≥ 2, when k = d − 1 and n ≥ 2(d − 1)2 + d , PM k

n achieves its
maximum RBP, �(n − d + 2)/2�/n, which is the highest among (and can be
higher than) the RBPs of any existing affine equivariant location estimator in
the literature (the best RBP in the literature is �(n − d + 1)/2�/n). (iii) The idea of
modifying the Med or the MAD to achieve a higher breakdown point for the related
estimators appeared in a personal communication of Siegel and Rousseeuw; see
Rousseeuw (1984). Tyler (1994) employed the same idea and modified the MAD
in the S–D location and scatter estimators. The above modification of MAD is
similar to that of Gather and Hilker (1997) and related to (but different from)
Tyler’s. (iv) Tyler (1994) stated the breakdown point of the projection median.
The RBP result above is general and does not follow from his. (v) The approach
to the breakdown point here is somewhat different from some existing approaches
in the literature in the sense that we define |u′x − Med(u′Xn)|/MAD(u′Xn) = 0
when |u′x −Med(u′Xn)| = MAD(u′Xn) = 0, because we think u′x is at the center
in this case (and hence has an outlyingness 0), whereas some other authors think
the estimator breaks down whenever MAD(u′Xn) = 0.

REMARK 3.6. Theorem 3.4 focuses on the choice (Med, MADk). The result
in the theorem, however, can be extended for general (µ,σ ). Call the RBP of
µ(Fnu) or σ(Fnu) over all directions u the uniform RBP of µ or σ [Tyler (1994)].
Then the RBP of PMn based on general (µ,σ ) will be no less than the minimum of
the uniform RBPs of µ and σ [Tyler (1994)]. The RBP of the projection medians
thus depends on the uniform RBPs of µ and σ .
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FIG. 3. Both halfspace and projection medians can resist six contaminating points in a data set of
20 points.

The halfspace median HMn, induced from the Tukey halfspace depth (HD),
is one of the most popular depth-based medians. HMn, however, has a relatively
lower breakdown point since “rank-based” HD focuses mainly on relative posi-
tions (not “distances”) of points to the center of data. In fact, the large sample
breakdown point of HMn was shown to be no higher than 1/3 for continuous and
angularly symmetric F [Donoho and Gasko (1992)]. PD, on the other hand, ap-
preciates the information of relative positions as well as distances of points to the
center of data. Consequently, the induced median (with robust choice of µ and σ )
is expected to have a higher breakdown point. The difference between the break-
down points of HMn and PMn (k = 1) is illustrated in Figures 3 and 4. Figure 3
shows that both HMn and PMn can resist six contaminating points in a data set of
20 standard bivariate normal points without breakdown. Figure 4 shows that con-

FIG. 4. Halfspace median can break down with seven contaminating points in a data set of
20 points, while to break down projection median, 50% of the points need to be contaminated.
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taminating 1/3 of the data points can break down HMn while to break down PMn,
50% of the original points need to be contaminated. So from the breakdown point
of view, PMn is a better alternative as an affine equivariant location estimator than
HMn. The questions now are: What is the relative efficiency of PMn? Is it less or
more efficient than HMn or is it at least comparable to HMn in efficiency?

3.3. Finite sample relative efficiency. We generate 1000 samples from the
bivariate standard normal distribution for several sample sizes. A slightly modified
version of HALFMED of Rousseeuw and Ruts (1998) is used for computing HMn.
The time complexity of the algorithm is O(n2 log2 n) for fixed d = 2. An
approximate algorithm with time complexity O(n3 + Nn2) for fixed d = 2 is
utilized for computing PMn. Here N is the iteration number in the downhill
simplex algorithm [Press, Teukolsky, Vetterling and Flannery (1996)] employed
in the computation. First we consider (µ,σ ) = (Med,MAD). We calculate for
estimator T the empirical mean squared error (EMSE): 1

m

∑m
i=1 ‖Ti − θ‖2, where

m = 1000, θ = (0,0)′ and Ti is the estimate for the ith sample. The relative
efficiency (RE) of T is then obtained by dividing the EMSE of the sample mean
by that of T . See Table 1 for the results. It turns out that the RE of HMn is
around 77%, which is consistent with what was obtained in Rousseeuw and Ruts
(1998), where they studied the finite sample relative efficiency of the halfspace
and coordinatewise medians. (The coordinatewise median is not affine equivariant
and has RE about 66%.) The RE of the projection median for the choice of (Med,
MAD) is around 78% and is slightly higher than that of the halfspace median. The
latter is also true for bivariate Cauchy distributions.

The RE of PMn with (Med, MAD), albeit slightly higher than that of HMn, is
not very high. This, in fact, is common for many high breakdown affine equivariant

TABLE 1
Empirical mean squared error and relative efficiency

PMn PMn

n HMn (Med, MAD) (PWM, MAD) Mean

10 EMSE 0.2390 0.2413 0.2077 0.1885
RE 0.79 0.78 0.91 100.00

20 EMSE 0.1290 0.1290 0.1085 0.0987
RE 0.77 0.77 0.91 100.00

30 EMSE 0.0947 0.0935 0.0790 0.0717
RE 0.76 0.77 0.91 100.00

40 EMSE 0.0698 0.0682 0.0585 0.0530
RE 0.76 0.78 0.91 100.00

50 EMSE 0.0579 0.0570 0.0477 0.0433
RE 0.75 0.76 0.91 100.00

60 EMSE 0.0457 0.0445 0.0386 0.0355
RE 0.78 0.80 0.92 100.00
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location estimators. Note that the choice µ = mean can lead to the best possible
RE of PMn, 100%, but PMn in this case is no longer robust (see Remark 3.6).
A natural question raised here is: Can we improve the efficiency of PMn without
sacrificing its robustness? The answer is positive. With a robust M-functional µ,
the RE of PMn can lie between 76% and 100%. Take µ to be the projection depth
weighted mean (PWM) in R

1,

PWM(xn) =
n∑

i=1

w
(
PDn(xi)

)
(xi)

/ n∑
i=1

w
(
PDn(xi)

)
,

where w(r) = I (r < c)(exp(−k(1−r/c)2)−exp(−k))/(1−exp(−k))+I (r ≥ c),
PDn(xi) = 1/(1+|xi −Med(xn)|/MAD(xn)) and xn = {x1, . . . , xn} with xi ∈ R

1.
The RE of PMn can be higher than 90% in two dimensions (and yet higher in
higher dimensions) while keeping its RBP in Theorem 3.4. For discussions of w

and parameters k and c, see Zuo, Cui and He (2001). The RE of PMn, with k = 2
and c = Med{PDn(x1), . . . ,PDn(xn)}, is listed in Table 1.

REMARK 3.7. The RE of PMn depends on the choice of µ. It, however, does
not depend on the choice of σ . This latter assertion is also confirmed by our
simulation study. For example, the RE of PMn is almost the same with σ = MAD
or standard deviation (SD) and µ = Med. The same is true with σ = MAD or
SD and µ = mean. The phenomenon here is not surprising because the limiting
distribution of PMn depends on the choice of µ but not σ (see Remark 3.4).

4. Concluding remarks. This paper introduces and studies a class of
projection-based depth functions and their associated medians. The depth func-
tions enjoy desirable properties and their sample versions possess strong and

√
n

uniform consistency. Depth regions and contours induced from these functions
have nice structural properties. Multivariate medians associated with these func-
tions share many desirable properties. For example, they are affine equivariant and
can identify the center of any µ-symmetric distribution. Sample projection medi-
ans are unbiased for the center of centrally symmetric distributions and strongly
and

√
n consistent and possess a very high breakdown point (which can be higher

than that of any existing affine equivariant location estimators) with robust choices
of univariate location and scale estimators. Furthermore, under mild conditions
limiting distributions of the sample projection medians exist. The limiting distri-
butions are nonnormal in general, which makes them difficult to be used in prac-
tical inference; nevertheless, bootstrapping techniques can be employed for this
end. The complex and non-Gaussian limiting distributions also make it difficult to
obtain clear insight into the asymptotic relative efficiency of projection medians.
Instead, finite sample relative efficiency of the medians is investigated. Compared
with the leading depth-based median, the Tukey halfspace median, the projection
medians are favored in the sense that with appropriate univariate location and scale



PROJECTION DEPTH AND MEDIANS 1475

estimators they have a much higher finite sample breakdown point as well as rel-
ative efficiency. (In view of the high breakdown point and relative efficiency, the
projection medians remain highly competitive among leading affine equivariant
location estimators.)

Like other high breakdown estimators, projection medians (and depth) are
computationally intensive. Algorithms for projection medians for the moment take
longer time than those for the halfspace median; faster ones for projection medians
are expected to be developed, though. Computing issues of projection medians will
be addressed elsewhere. For the computing of halfspace median, see Rousseeuw
and Ruts (1998) and Struyf and Rousseeuw (2000).

APPENDIX:
SELECTED PROOFS AND AUXILIARY LEMMAS

PROOF OF REMARK 2.4. The proof for (ii) is straightforward and thus
skipped. We now show (iii). By the continuity of µ(Fu) and σ(Fu) in u

(see Lemma A.1) and the compactness of {u :‖u‖ = 1}, (C0) and (C1) follow
immediately. The given conditions permit the uniform asymptotic representations

µ(Fnu) − µ(Fu) =
∫

f1(x,u)(Fn − F)(dx) + R1n,

σ (Fnu) − σ(Fu) =
∫

f2(x,u)(Fn − F)(dx) + R2n,

with supu |Rin| = O(n−3/4 logn)), i = 1,2 and

f1(·, u) ∈ F1 =
{
− Iu′·≤µ(Fu)

fu(µ(Fu))
:‖u‖ = 1

}
,

f2(·, u) ∈ F2 =
{
− I|u′·−µ(Fu)|≤σ(Fu)

fu(µ(Fu) + σ(Fu)) + fu(µ(Fu) − σ(Fu))
:‖u‖ = 1

}
.

Note that the graphs of both F1 and F2 form a polynomial class of sets
[see Example II.26 of Pollard (1984)]. (C2)–(C4) follow immediately from
Theorem II.24 and Lemma VII.15 and Theorem VII.21 of Pollard (1984). �

LEMMA A.1. Let f (u) = Med(Fu) and g(u) = MAD(Fu) for any unit
vector u. If Fu and F|u′X−f (u)| are not flat in a right-neighborhood of f (u) and
g(u), respectively, then f (u) and g(u) are continuous.

Invoking Slutsky’s theorem and Lemma A.2, we obtain the desired result.

LEMMA A.2. If Fn →d F as n → ∞ and F(F−1(p) + ε) > p for any ε > 0
and 0 < p < 1, then F−1

n (p)→F−1(p) as n → ∞.
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By mimicking the proof of Theorem 2.3.1 of Serfling (1980), the desired result
follows.

REMARK A.1. The nonflatness condition in Lemmas A.1 and A.2 cannot be
dropped. For example, consider X in R

2 such that (1) the mass on point (1,0)

is 1/2, (2) the mass on {(0, y) :y ≥ a} and {(0, y) :y ≤ −a} is positive for any
a > 0 and (3) Med((1,0)X) = 0. Then as unit vectors un(�= u0) → u0 = (1,0),
Med(u′

nX) − Med((1,0)X) > 1/2 as n → ∞.

PROOF OF THEOREM 2.2. Since for any x, y ∈ R
d ,

|PD(x,F ) − PD(y,F )| = |O(x,F ) − O(y,F )|
(1 + O(x,F ))(1 + O(y,F ))

≤ |O(x,F ) − O(y,F )|,

most parts of the following proof thus are focused on the outlyingness functions.
The corresponding results for projection depth functions follow immediately from
the above inequality.

For any given ε > 0, let x, y ∈ R
d such that ‖x − y‖ ≤ inf‖u‖=1 σ(Fu)ε. We

have

|O(x,F ) − O(y,F )| ≤ sup
‖u‖=1

‖u′x − µ(Fu)| − |u′y − µ(Fu)‖
σ(Fu)

≤ sup
‖u‖=1

‖x − y‖
σ(Fu)

.

The uniform (and Lipschitz) continuity of O(x,F ) in x follows. This gives part (i).
Now we show part (iii); the proof for part (ii) is similar and is omitted. Let

Ln(u) = |µ(Fnu) − µ(Fu)| and Sn(u) = |σ(Fnu) − σ(Fu)| for fixed F . Then they
approach 0 uniformly w.r.t. u as n → ∞. Note that

|O(x,Fn) − O(x,F )| ≤ sup
‖u‖=1

|u′x|Sn(u) + |µ(Fu)|Sn(u) + σ(Fu)Ln(u)

σ (Fnu)σ (Fu)
.

By (C0) and (C1), µ(Fu) and σ(Fu) are uniformly bounded above and σ(Fu)

is uniformly bounded below from 0 w.r.t. u. Thus if we can show that σ(Fnu) is
uniformly bounded below from 0 w.r.t. u for sufficiently large n, then O(x,Fn) →
O(x,F ) as n → ∞ for a fixed x. Since∣∣∣∣ inf‖u‖=1

σ(Fnu) − inf‖u‖=1
σ(Fu)

∣∣∣∣ ≤ sup
‖u‖=1

|σ(Fnu) − σ(Fu)|,

thus inf‖u‖=1 σ(Fnu) → inf‖u‖=1 σ(Fu) as n → ∞ and consequently σ(Fnu) is
uniformly bounded below from 0 w.r.t. u for sufficiently large n. It follows that for
any fixed M > 0 and bounded x with ‖x‖ ≤ M ,

sup
‖x‖≤M

|PD(x,Fn) − PD(x,F )| → 0 as n → ∞.
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Part (iii) follows if we can show that the above is also true for ‖x‖ > M .
By Theorem 2.1, PD(x,F ) → 0 as ‖x‖ → ∞. So we need only show that
PD(x,Fn) → 0 as ‖x‖ and n → ∞. However, this follows from the fact that

O(x,Fn) ≥ ‖x‖ − sup‖u‖=1 µ(Fnu)

sup‖u‖=1 σ(Fnu)

and the conditions given. Part (iii) now follows.
From the proof for part (iii), we see that√

n|O(x,Fn) − O(x,F )|
≤ √

n sup
‖u‖=1

|u′x|Sn(u) + |µ(Fu)|Sn(u) + σ(Fu)Ln(u)

σ (Fnu)σ (Fu)

≤ ‖x‖Qn + Rn,

where

Qn =
√

n sup‖u‖=1 Sn(u)

inf‖u‖=1(σ (Fnu)σ (Fu))

and

Rn = sup‖u‖=1 |µ(Fu)|√n sup‖u‖=1 Sn(u) + sup‖u‖=1 σ(Fu)
√

n sup‖u‖=1 Ln(u)

inf‖u‖=1(σ (Fnu)σ (Fu))
.

By the given conditions and the proof above, it is readily seen that Qn and Rn are
bounded in probability. Thus for any fixed M > 0,√

n sup
‖x‖≤M

|PD(x,Fn) − PD(x,F )| = OP (1).

For any ‖x‖ > M (M sufficiently large), we see that for sufficiently large n,√
n|PD(x,Fn) − PD(x,F )|

≤ sup‖u‖=1 σ(Fnu) sup‖u‖=1 σ(Fu)(‖x‖Qn + Rn)

(‖x‖ − sup‖u‖=1 µ(Fnu))(‖x‖ − sup‖u‖=1 µ(Fu))
.

Part (iv) now follows immediately. �

PROOF OF REMARK 2.5. We show that (iv)∗ does not hold for the halfspace
depth in general. Consider a spherically symmetric Cauchy distribution with
marginal p.d.f. f (x) = π−1(1 + x2)−1. In light of Massé (1999), it is readily seen
that Hn(x) ≡ √

n(HD(x,Fn) − HD(x,F )) = ∫
h(x, y)νn(dy) + op(1) uniformly

for x over any closed set Sn with 0 /∈ Sn, where h(x, y) = I (y ∈ H(x)) and H(x)

is the unique closed hyperplane with x on its boundary such that HD(x,F ) =
P (H(x)). Now for any fixed M > 0,

P

(
sup
x∈Rd

‖x‖|Hn(x)| > M

)
≥ P

(∫
h(x0, y)νn(dy) >

2M

‖x0‖
)

≥ 1

4
,
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for large ‖x0‖ and n, since var(h(x0,X)) = P (H(x0))(1 − P (H(x0))) with
P (H(x0)) = (1/2 − π−1 arctan(‖x0‖)) and r2(1/2 − π−1 arctan(r)) → ∞ as
r → ∞. The proof is complete. �

PROOF OF THEOREM 2.3. Parts (i)–(iii) are trivial. We now show the rest.
Part (iv). We show first that {x : PD(x,F ) = α} ⊆ ∂PDα(F ) under (C0). Let

PD(x,F ) = α. Assume that x /∈ ∂PDα(F ). Then there is a ball (centered at x with
radius r) contained in the interior of PDα(F ). Since O(x,F ) = sup‖u‖=1 |u′x −
µ(Fu)|/σ (Fu), then there exists a unit vector a such that

g(x, a;F) = |a′x − µ(Fa)|
σ(Fa)

> O(x,F ) − r

sup‖u‖=1 σ(Fu)
.

On the other hand, it can be seen that there exists a point y′ ∈ PDα(F ) such that

g(y′, a;F) ≥ g(x, a;F) + r

sup‖u‖=1 σ(Fu)
> O(x,F ).

This leads to the contradiction that PD(y′,F ) < PD(x,F ).
Now we show that ∂PDα(F ) ⊆ {x : PD(x,F ) = α} under (C0) and (C1). Let

x ∈ ∂PDα(F ). By the closedness of PDα(F ), PD(x,F ) ≥ α. If PD(x,F ) > α,
then by Theorem 2.2 there exists a neighborhood of x such that PD(y,F ) > α for
any y in that neighborhood, which contradicts the assumption that x ∈ ∂PDα(F ).
Thus part (iv) follows.

Part (v). We first show that PDα∗ �= ∅. It is readily seen that for any 0 <

α < α∗ = supx PD(x,F ), PDα(F ) is nonempty. By part (ii), PDα(F ) is also
closed and bounded. Since ∀ 0 ≤ β < α, PDα(F ) ⊆ PDβ(F ), thus PDα∗ =⋂

α<α∗ PDα(F ) �= ∅ [see Theorem 2.6 on page 37 of Rudin (1987)].
Now we show the emptiness of the interior of PDα∗

. Assume that there are a
point y and a ball (centered at y with radius r) contained in the interior of PDα∗

.
Following the same argument in the proof of part (iv), there is a point y′ ∈ PDα∗

such that PD(y′,F ) < PD(y,F ) = α. This is a contradiction. Part (v) follows. �

PROOF OF THEOREM 2.4. Define for any 0 ≤ α < α∗ PDα− = ⋃
α0>α PDα0

and PDα+ = ⋂
α0<α PDα0 . Then it is readily seen that PDα− ⊆ PDα ⊆ PDα+

.
Furthermore, it is easy to see that PDα = PDα+

. Now we show that

PDα− ⊆ lim inf
n→∞ PDαn ⊆ lim sup

n→∞
PDαn ⊆ PDα+

,

if αn → α as n → ∞. For any α0 < α, it can be seen that there exists some m such
that when n ≥ m, αn > α0 and consequently PDαn ⊆ PDα0 . Hence

lim sup
n→∞

PDαn =
∞⋂

m=1

∞⋃
n=m

PDαn ⊆ PDα0 .



PROJECTION DEPTH AND MEDIANS 1479

Therefore, lim supn→∞ PDαn ⊆ ⋂
α0<α PDα0 = PDα+

. Likewise, we can show
that

⋃
α0>α PDα0 = PDα− ⊆ lim infn→∞ PDαn . This, in conjunction with the fact

that Dα+ = {x : PD(x,F ) ≥ α} and Dα− = {x : PD(x,F ) > α}, gives part (i).
For part (ii), following the proof of Theorem 4.1 of Zuo and Serfling (2000b)

and utilizing the results in our Theorems 2.1 and 2.2, the desired result can be
obtained. �

PROOF OF THEOREM 2.5. For any ε > 0, by Theorem 2.2 there exists a
δ > 0 such that when ‖x1 − x2‖ < δ, |PD(x1) − PD(x2)| < ε. Assume that
ρ(PDα,PDαn) → 0 as n → ∞. Then there exists an N such that when n ≥ N ,
ρ(PDα,PDαn) < δ/2. We now show that |α −αn| < ε when n ≥ N . Assume there
is a point belonging to the set (∂PDα − ∂PDαn) ∪ (∂PDαn − ∂PDα) (if no such
point exists then, by Theorem 2.3, α = αn) and, without loss of generality, assume
that it belongs to ∂PDα − ∂PDαn . Denote it by xα . Since ρ(PDα,PDαn) < δ/2
when n ≥ N , thus d(xα,PDαn) < δ/2 and there is a point xαn ∈ ∂PDαn such that
‖xα − xαn‖ < δ/2 when n ≥ N . By Theorem 2.3, PD(xα) = α and PD(xαn) = αn.
Since now ‖xα − xαn‖ < δ/2, then |PD(xα) − PD(xαn)| = |α − αn| < ε when
n ≥ N . Part (i) follows.

Now we prove part (ii). By the given conditions and Theorem 2.2, PD(x,F )

has an inverse function along any ray stemming from θ and the inverse function
is continuous along the ray. For any given ε > 0, consider the inverse function of
PD(x,F ) along the ray u. Since it is continuous at α, then there exists a δ such that
when |α − α0| < δ, ‖xu

α − xu
α0

‖ < ε, where PD(xu
α,F ) = α and PD(xu

α0
,F ) = α0.

Since αn → α, then there exists an N such that when n ≥ N , |α − αn| < δ. Now
we have that for any given ε > 0, there exists an N such that when n ≥ N ,
‖xu

α − xu
αn

‖ < ε, where PD(xu
αn

,F ) = αn. For xv
α and xv

αn
on any other ray v

stemming from θ with PD(xv
αn

,F ) = αn and PD(xv
α,F ) = α, by the condition

given, ‖xv
α − xv

αn
‖ ≤ ‖xu

α − xu
αn

‖ < ε. From the definition of ρ, it is seen that
ρ(PDα,PDαn) < ε. Part (ii) follows. �

LEMMA A.3. Let D(x, ·) be any given general depth function satisfying:

(i) D(x, ·) is upper semicontinuous in x and → 0 as ‖x‖ → ∞,
(ii) θ = arg supx∈Rd D(x,F ) is unique and D(θ,F ) > 0,

(iii) supx∈Rd |D(x,Fn) − D(x,F )| → 0 a.s. as n → ∞.

Define M(Fn) = arg supx∈Rd D(x,Fn). Then M(Fn) − M(F ) → 0 a.s.

PROOF. For any ε > 0, by Lemma A.4 it is seen that D(θ,F ) >

supx∈Nε
D(x,F ) for Nε = {y ∈ R

d :‖y − θ‖ ≥ ε}. Set α0 = D(θ,F ), α1 =
supx∈Nε

D(x,F ) and αε = (α0 + α1)/2. Then α0 > αε . By the conditions given,
there exists an N such that for any n ≥ N ,

sup
x∈Rd

|D(x,F ) − D(x,Fn)| a.s.
< α0 − αε ∀n > N.
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Hence

D(θ,F ) − D(θ,Fn) ≤ sup
x∈Rd

|D(x,F ) − D(x,Fn)| a.s.
< α0 − αε ∀n > N,

which implies D(θ,Fn)
a.s.
> αε ∀n > N . On the other hand, we have that

αε − sup
x∈Nε

D(x,Fn)

= α0 − α1

2
+ sup

x∈Nε

D(x,F ) − sup
x∈Nε

D(x,Fn)

a.s.
> (α0 − αε) + (αε − α0) ∀n > N.

That is, almost surely D(θ,Fn) > αε > supx∈Nε
D(x,Fn) ∀n > N . This implies

that |M(Fn) − θ | a.s.
< ε ∀n > N . The desired result now follows. �

REMARK A.2. Applying Lemma A.3 to simplicial and halfspace depth
functions, we obtain, as special cases, Theorem 5(b) of Liu (1990), Theorem 6.9
of Arcones and Giné (1993) and Lemma 1 of Nolan (1999).

LEMMA A.4. Let the depth function D(x,F ) be upper semicontinuous in x

and D(x,F ) → 0 as ‖x‖ → ∞. Let θ be a unique point in R
d such that

θ = arg supx∈Rd D(x,F ) and D(θ,F ) > 0. Then for any ε > 0, D(θ,F ) >

supx∈Nε
D(x,F ) with Nε = {y ∈ R

d :‖y − θ‖ ≥ ε}.
PROOF. If supx∈Nε

D(x,F ) = D(θ,F ), then there exists a sequence {xn} with
‖xn − θ‖ ≥ ε such that D(xn,F ) → D(θ,F ) as n → ∞. Since D(x,F ) → 0 as
‖x‖ → ∞, then {xn} is bounded. Consequently there is a subsequence {xnk

} of
{xn} such that xnk

→ x0 as k → ∞ for some x0 ∈ R
d with ‖x0 − θ‖ ≥ ε. Since

D(θ,F ) > D(x0,F ), the upper semicontinuity of D(x,F ) implies that

D(xnk
,F ) < D(x0,F ) + (

D(θ,F ) − D(x0,F )
)
/2

= (
D(θ,F ) + D(x0,F )

)
/2

< D(θ,F ).

This, however, contradicts the fact that D(xnk
,F ) → D(θ,F ). The proof is

complete. �

PROOF OF THEOREM 3.1. Part (i) follows in a straightforward fashion from
Lemma A.3 and Theorem 2.2. We now show part (ii). Without loss of generality,
assume that θ = 0. Write Tn for PM(Fn). Observe that

O(Tn,Fn) = sup
‖u‖=1

|u′Tn − µ(Fnu)|
σ(Fnu)

≤ O(0,Fn) ≤ sup‖u‖=1 |µ(Fnu)|
inf‖u‖=1 σ(Fnu)
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and

O(Tn,Fn) ≥ sup
‖u‖=1

|u′Tn|
σ(Fnu)

− sup‖u‖=1 |µ(Fnu)|
inf‖u‖=1 σ(Fnu)

,

which implies that

sup‖u‖=1 |u′√nTn|
sup‖u‖=1 σ(Fnu)

≤ sup
‖u‖=1

|u′√nTn|
σ(Fnu)

≤ 2
sup‖u‖=1 |√nµ(Fnu)|

inf‖u‖=1 σ(Fnu)
.

From the given conditions and results in the proof of Theorem 2.2, the desired
result follows. �

LEMMA A.5. Let {√n(µ(F̂nu) − µ(Fu)) :‖u‖ = 1} →d {Z(u) :‖u‖ = 1},
where Z(u) is a Gaussian process with uniformly continuous sample paths
in L∞(U) (the space of real bounded functions on the unit sphere that is
equipped with the supremum norm) and E(Z(u)) = 0 and cov(Z(u1),Z(u2)) =
E(Z(u1)Z(u2)). Let (C0) and (C1) hold and σn(F̂nu) − σ(Fu) = op(1) uniformly
in u. Then for F µ-symmetric about θ ∈ R

d ,
√

n
(
PM(F̂n) − PM(F )

) ⇒ arg inf
t

sup
‖u‖=1

∣∣(u′t − Z(u)
)
/σ (Fu)

∣∣,
provided that the arg inf is unique almost surely.

PROOF. For simplicity, assume that θ = 0. Write, for t ∈ R
d ,

Qn(t) = sup
‖u‖=1

u′t − √
nµ(F̂nu)

σ (F̂nu)
and Q(t) = sup

‖u‖=1

u′t − Z(u)

σ (Fu)
.

Then for each finite subset S of R
d , {Qn(t) : t ∈ S} →d {Q(t) : t ∈ S} by virtue of

the given conditions and the continuous mapping theorem. On the other hand, it
is straightforward to verify that (ii) of Theorem 2.3 of Kim and Pollard (1990)
holds. In light of Theorem 2.3 of Kim and Pollard (1990), we conclude that
(i) of Theorem 2.7 of Kim and Pollard (1990) holds (Zn there equals Qn here).
Write Tn for PM(F̂n). By Remark 3.1 and Theorem 3.1, tn = √

nTn = Op(1).
Note that

Qn(tn) = √
n sup

‖u‖=1

u′Tn − µ(F̂nu)

σ (F̂nu)
≤ inf

t
Qn(t).

Invoking Theorem 2.7 of Kim and Pollard (1990), we obtain the desired result.
�

PROOF OF THEOREM 3.2. By condition (iv), we have

√
n(µnu − µu) = − 1√

n

∑n
i=1(duψ(Yiu) − buχ(Yiu))

audu − bucu

+ op(1),
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almost surely and uniformly in u, where Yiu = (u′Xi − µu)/σu. By the conditions
in (ii), F has an envelope

G = supu |du| supu |ψ(hu)| + supu |bu| supu |χ(hu)|
infu det�u

and E(G2) < ∞. By condition (iii), the equicontinuity lemma of VII.15 and
Theorem VII. 21 of Pollard (1984), we deduce that {√n(µnu − µu) :‖u‖ = 1}
converges in distribution to {Z(u) :‖u‖ = 1}, a F -Brownian bridge [see page 149
of Pollard (1984) or page 82 of van der Vaart and Wellner (1996)], a zero-mean
Gaussian process satisfying the conditions in Lemma A.5. By condition (iv) and
the strong law of large numbers, we have that σn(F̂nu)− σ(Fu) → 0 almost surely
and uniformly in u. Note that Z(u) = −Z(−u).

By Lemma A.5, the desired result follows if we can show that the arg inf in the
theorem is unique. Without loss of generality, assume that F is µ-symmetric about
θ = 0 in R

d . We now employ Lemma 3.3 of Bai and He (1999), a powerful result
for checking the uniqueness of this sort of projection-based estimator. Note that
u′t − Z(u) in the theorem is odd in u. So we can drop the absolute value symbols
in the theorem. Corresponding to µ(u) in Lemma 3.3 of Bai and He (1999) for
unit vector u, we have here −u/σu. Condition (W1) in Bai and He (1999) holds
trivially and (W3) also holds since otherwise Z(u) would equal constant 0 for a
unit vector u. So we need only verify (W2). Following the proof of Theorem 4.1
of Bai and He (1999), we now find Du by calculating the derivative of µ(u) with
respect to u. First, consider directional derivatives of u and σu with respect to
a direction l. The product rule is utilized. Write ut = (u + tl)/‖u + tl‖ for any
t ∈ R

1. Consider the derivative of ut with respect to t and let t approach 0. We
obtain the derivative (I − uu′)l, which then contributes −(I − uu′)/σu to Du.
The contribution from σu to Du will be −ub′

u. We now derive bu from the two
equations defining µu and σu.

Denote by fu the density of Fu. First we express fut in terms of f , the density
of F . Write

P (u′
tX ≤ a) =

∫
u′x+tl′x≤a‖u+tl‖

f (x) dx,

where x ∈ R
d . Take an orthogonal transformation to the underlying coordinate

system with the orthogonal matrix B = (u,C) and x = (x1, . . . , xd)
′ = By with

y′ = (v, z′) where y ∈ R
d and z ∈ R

d−1. Thus, x = uv + Cz. It follows that

P (u′
tX ≤ a) =

∫ [∫
v≤(a‖u+tl‖−tl′Cz)/(1+tl′u)

f (uv + Cz)dv

]
dz.

Taking the derivative with respect to a on both sides yields

fut (a) =
∫

f

((
u(a‖u + tl‖ − tl′Cz)

1 + tl′u

)
+ Cz

)‖u + tl‖
1 + tl′u

dz.
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Now taking the derivative with respect to t in the two equations defining
µut and σut , using the above relation between fut and f , and letting t → 0, we
have∫ [∫

ψ ′
(

v − µu

σu

)−σu(∂µu/∂l) − (v − µu)(∂σu/∂l)

σ 2
u

f (uv + Cz)dz

]
dv

=
∫ [∫

ψ

(
v − µu

σu

)
u′ḟ (uv + Cz)l′Czdz

]
dv,

∫ [∫
χ ′

(
v − µu

σu

)−σu(∂µu/∂l) − (v − µu)(∂σu/∂l)

σ 2
u

f (uv + Cz)dz

]
dv

=
∫ [∫

χ

(
v − µu

σu

)
u′ḟ (uv + Cz)l′Czdz

]
dv.

Note that
∫

f (uv + Cz)dz = fu(v), hence

−
(

au bu

cu du

)(
∂µu/∂l

∂σu/∂l

)
=

(∫ [∫ ψ((v − µu)/σu)u
′ḟ (uv + Cz)l′Czdz]dv∫ [∫ χ((v − µu)/σu)u
′ḟ (uv + Cz)l′Czdz]dv

)
.

Therefore,

∂σu

∂l
= −au

∫ [∫ χ((v − µu)/σu)u
′ḟ (uv + Cz)l′Czdz]dv

audu − bucu

− cu

∫ [∫ ψ((v − µu)/σu)u
′ḟ (uv + Cz)l′Czdz]dv

audu − bucu

;

that is,

bu = −au

∫ [∫ χ((v − µu)/σu)u
′ḟ (uv + Cz)Czdz]dv

audu − bucu

− cu

∫ [∫ ψ((v − µu)/σu)u
′ḟ (uv + Cz)Czdz]dv

audu − bucu

.

Now we have shown that Du = −(I − uu′)/σu − ub′
u. It is readily seen that

b′
uu = 0 and consequently Duu = 0 for any unit vector u. Thus, {Dua :‖a‖ =

1} = {Dua :u′a = 0}, which has the same dimension as {a′Du :a′u = 0} =
{−a′/σu :a′u = 0}. This implies that the rank of Du is d − 1. Thus Du is well
defined with rank d − 1 and Duu = 0 for all u, implying that (W2) holds with no
exceptional direction α. The proof is complete. �

PROOF OF THEOREM 3.3. Condition (C0) automatically holds. By virtue
of Remark 2.4, Lemma A.1, and the given conditions, (C1) holds. By the given
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conditions and Theorem 1 of Hall and Welsh (1985), we can show that σn(F̂nu) −
σ(Fu) = op(1) uniformly in u. In light of the Bahadur type representation of the
sample median [Serfling (1980) or Jurečková and Sen (1996)], we can show that

√
n
(
Medn(F̂nu) − Med(Fu)

)
= √

n

(
1

n

n∑
i=1

1/2 − I(u′Xi ≤ u′θ)

fu(u
′θ)

)
+ Rn(u)

with sup‖u‖=1 |Rn(u)| = O(n−3/4 logn) almost surely; see also Cui (1994). Write

F =
{
−I(u′· ≤ u′θ)

fu(u
′θ)

:‖u‖ = 1
}
.

Then it is seen that F is a permissible class with envelope 1/ inf‖a‖=1 fu(u
′θ)

and the graphs of functions in F form a polynomial class of sets. [Assume
(w.l.o.g.) that θ = 0. The points {(x, t)} contained by the graphs of functions
in F can be written as ({t = 0} ∩ {u′x > 0}) ∪ ({−1/fu(0) ≤ t < 0} ∩ {u′x ≤ 0}).
Now invoking Lemmas II.15 and 18 and Examples II.26 and VII.18 of Pollard
(1984) gives the desired result.] By Lemma VII.15 and Theorem VII.21 of
Pollard (1984), {√n(Medn(F̂nu) − Med(Fu)) :‖u‖ = 1} converges in distribution
to {Z(u) :‖u‖ = 1}, a Gaussian process with bounded and uniformly continuous
sample paths in L∞(F ) with mean and covariance matrix specified in the theorem.
Note that Z(u) = −Z(−u).

Following the proof of Theorem 3.2, we now calculate bu. Write

1/2 = P
(−σut ‖u + tl‖ ≤ (u + tl)′X ≤ σut ‖u + tl‖)

.

With the orthogonal transformation in Theorem 3.2, we have that

1/2 =
∫ [∫ (σut ‖u+tl‖−tl′CZ)/(1+tl′u)

(−σut ‖u+tl‖−tl′CZ)/(1+tl′u)
f (uv + Cz)dv

]
dz.

Taking the derivative with respect to t on both sides above and considering t → 0,
we have

0 =
∫ (

f (Cz + σuu)

(
−l′Cz + ∂σu

∂l

)
+ f (Cz − σuu)

(
l′Cz + ∂σu

∂l

))
dz,

where ∂σu/∂l is the directional derivative of σu with respect to l. Thus

∂σu

∂l

∫ (
f (Cz + σuu) + f (Cz − σuu)

)
dz

=
∫ (

f (Cz + σuu) − f (Cz − σuu)
)
l′Czdz.
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Note that Cz ± σuu = By with y1 = v = ±σu. By the relationship between
f and fu established in the proof of Theorem 3.2, we have∫ (

f (Cz + σuu) + f (Cz − σuu)
)
dz = fu(σu) + fu(−σu) > 0.

Therefore

bu =
∫

(f (Cz + σuu) − f (Cz − σuu))Czdz

fu(σu) + fu(−σu)
.

Since b′
uu = 0, the same argument in the proof of Theorem 3.2 now gives the

desired result. �

PROOF OF THEOREM 3.4. Denote by Z = {Z1, . . . ,Zn} the contaminated
data set Xn

m (with m points in Xn contaminated) and u′Z = {u′Z1, . . . , u
′Zn}

for unit vector u. Let µ(u′Z) and σ(u′Z) be, respectively, the univariate location
and scale estimators based on the sample u′Z. Recall the convention that |u′x −
Med(u′Z)|/MADk(u

′Z) = 0 if |u′x − Med(u′Z)| = MADk(u
′Z) = 0.

(a) d = 1. (i) m = �(n + 1)/2� points are sufficient to break down PM k
n . This

follows from the upper bound of RBP of translation equivariant location estimators
[Lopuhaä and Rousseeuw (1991)].

(ii) m = �(n + 1)/2� − 1 points are insufficient to break down PM k
n . It is

readily seen that in this case µ(u′Z) is uniformly bounded w.r.t. u and Z. Hence,
|u′x − µ(u′Z)| is uniformly bounded w.r.t. u and Z for any x in the range R

formed by Xn. If more than (n + k − 1)/2 points in Z lie at (or approach to) the
same point, say y, then σ(u′Z) is (or approaches) zero. (For simplicity, we skip
the “approaching” case in the following discussion unless otherwise stated.) Note
that for Zi ’s at y, On(Zi,Z) = 0 by the convention. Thus there always exists some
Zi of Z in R such that O(Zi,Z) is bounded above for any Z and k ≥ 1. When
k = 1, it is not difficult to see that O(x,Z) → ∞ as ‖x‖ → ∞ [since σ(u′Z) is
bounded] for any Z. This is also true when k > 1 but σ(u′Z) is bounded. When
k > 1, σ(u′Z) may approach infinity, but in such a case O(Zi,Z) approaches zero
for any Zi inside the range R. In any case, infx∈R O(x,Z) is less than O(x,Z)

for x outside the range R. Therefore, m ≤ �(n + 1)/2� − 1 points never break
down PM k

n .

(b) d = 2. (i) m = �(n − 2d + k + 3)/2� points are sufficient to break down
PM k

n . Let l(Xn) be a line determined by two points in Xn and Xj be a point in Xn

and not on line l. Move m points from Xn (not from Xj ) to the same site y far away
from the origin and outside the original convex hull of Xn and on the line l, leaving
at least one untouched original point on l. Choose u0 and u1 to be the two unit
vectors perpendicular to the line l and the line connecting y and Xj , respectively.
Since m+d −1 is greater than (n+k−1)/2, then σ(u′

0Z) and σ(u′
1Z) equal zero.



1486 Y. ZUO

Thus O(x,Z) = ∞ for any x ∈ R
d except y. Hence ‖PM k

n(Z)‖ = ‖y‖ → ∞ as
‖y‖ → ∞.

(ii) m = �(n − 2d + k + 3)/2� − 1 points are insufficient to break down PM k
n .

Since k ≤ d − 1, then n − m > (n + k − 1)/2. Thus µ(u′Z) and σ(u′Z)

are uniformly bounded above w.r.t. u and Z. Consequently, O(x,Z) → ∞ as
‖x‖ → ∞ uniformly w.r.t. Z. The desired result follows if we can show that
for fixed large M > 0 and ‖x‖ ≤ M , inf‖x‖≤M O(x,Z) < M0 uniformly w.r.t. Z

for some M0 > 0. Let M > 0 be a fixed value large enough so that ‖y‖ < M for
any y that is an intersecting point of two lines determined by points of Xn. Suppose
there is no M0 for this fixed M . Then there are a sequence of contaminated data
sets {Zt } and ut such that σ(u′

tZt ) → 0 and inf‖x‖≤M O(x,Zt ) → ∞ as t → ∞.
Since m + d − 1 < (n + k)/2, there must be a sequence of lines lt (lt ⊥ ut ) such
that there are d original points from Xn, Xti1, . . . ,Xtid on lt , and m contaminating
points on (or approaching) lt . Since lt contains Xti1 , . . . ,Xtid , O(Xtij ,Zt ) → ∞
for 1 ≤ j ≤ d only if there exists another sequence of unit vectors u∗

t perpendicular
to lines l∗t which contain no Xtij , 1 ≤ j ≤ d and there are more than (n + k − 1)/2
points from Zt approaching or on l∗t . Since m + d − 1 < (n + k)/2, l∗t must
contain d original points of Xn and intersect with lt with all m contaminating
points at (or approaching) the intersecting point. Let the intersecting point be yt .
Then ‖yt‖ ≤ M . Since {ut} is a sequence of unit vectors on the unit sphere,
then there is a subsequence {uts } of {ut} which converges to a unit vector v.
Then we have the corresponding subsequences {Zts }, {lts }, {u∗

ts
}, {l∗ts } and {yts }

such that lts → l with l ⊥ v, l∗ts → l∗, u∗
ts

→ v∗ with l∗ ⊥ v∗, σ(u′
ts
Zts ) → 0,

σ(u∗ ′
ts

Zts ) → 0, and inf‖x‖≤M O(x,Zts ) → ∞ as ts → ∞. Note that there are
only finitely many different y′

t s [indeed no more than
(n

4

)
], and we then may

assume w.l.o.g. that for sufficiently large ts , yts = y, lts = l, uts = v, l∗ts = l∗,
u∗

ts
= v∗ and y is the intersecting point of l and l∗ (this can always be achieved by

taking subsequences of subsequences if necessary). We now show that O(y,Zts )

is uniformly bounded w.r.t. Zts for sufficiently large ts , which contradicts the
assertion that inf‖x‖≤M O(x,Zts ) → ∞ as ts → ∞.

For simplicity, assume that n is odd. Since µ(u′Z) and σ(u′Z) are continuous
in unit vector u for any fixed Z, assume, without loss of generality, that

O(y,Zts ) = |a′
ts
y − µ(a′

ts
Zts )|

σ(a′
ts
Zts )

.

Since ats is a unit vector on the unit sphere, there is a subsequence of {ats } which
converges to a unit vector a. For simplicity, just assume that ats → a as ts → ∞.
If a is v, v∗ or any other unit vector v∗∗ which is perpendicular to a line through y

determined by d points of Xn which also belong to infinitely many Zts ’s, then
for sufficiently large ts , |a′y − µ(a′Zts )|/σ (a′Zts ) ≤ 1 for any Zts or infinitely
many Zts ’s. Since |u′y − µ(u′Z)|/σ (u′Z) is continuous in u, then the unit vector a

cannot be v, v∗ or the v∗∗ in order to have inf‖x‖≤M O(x,Zts ) → ∞ as ts → ∞.
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Consider the axis through y with the same direction as ats . Denote by Rts

the smallest closed interval on the axis containing all the projections of m

contaminating points and the projection of y on to the axis. For simplicity, also
use Rts to denote the length of Rts . Then Rts → 0 as ts → ∞.

Assume that Xi1, . . . ,Xin−m are original points from Xn but also belonging
to Zts such that |µ(a′

ts
Zts ) − a′

ts
Xi1 | ≤ |µ(a′

ts
Zts ) − a′

ts
Xi2 | ≤ · · · ≤ |µ(a′

ts
Zts ) −

a′
ts
Xin−m |. Assume that Xi1, . . . ,Xid are on a line Lts . Then Lts can not be

a line through y and perpendicular to a for sufficiently large ts . Assume that
Zts1, . . . ,Ztsn are points of Zts such that |µ(a′

ts
Zts )−a′

ts
Zts1| ≤ · · · ≤ |µ(a′

ts
Zts )−

a′
ts
Ztsn|. Now we consider two cases.
(1) Assume there is at least one point Ztsj /∈ Xn such that |µ(a′

ts
Zts ) −

a′
ts
Ztsj | ≤ σ(a′

ts
Zts ). Write D(Lts ) = max1≤q≤d |a′Xiq −a′y|/8. Then D(Lts ) > 0.

For sufficiently large ts and all possible Zts , there are only finitely many Lts ’s. Thus
D = minLts

D(Lts ) > 0. For sufficiently large ts ,

σ(a′
ts
Zts ) ≥ max

1≤q≤d

∣∣a′
ts
Xiq − a′

ts
Zts j

∣∣/2

≥ max
1≤q≤d

∣∣a′
ts
Xiq − a′

ts
y
∣∣/2 − ∣∣a′

ts
y − a′

ts
Ztsj

∣∣/2

≥ max
1≤q≤d

∣∣a′Xiq − a′y
∣∣/4 − D

≥ D.

Therefore σ(a′
ts
Zts ) ≥ D > 0 for any sufficiently large ts .

(2) Assume there is no point Ztsj /∈ Xn such that |µ(a′
ts
Zts ) − a′

ts
Ztsj | ≤

σ(a′
ts
Zts ). Write D = infi1,...,id+1 max1≤j1,j2≤d+1 |a′Xij1 − a′Xij2 |/4, where

i1, . . . , id+1 are distinct numbers from 1, . . . , n. Since Xn is in the general po-
sition, D > 0. For sufficiently large ts , we have

σ(a′
ts
Zts ) ≥ max

1≤j1,j2≤d+1

∣∣a′
ts
Xij1 − a′

ts
Xij2

∣∣/2

≥ max
1≤j1,j2≤d+1

∣∣a′Xij1 − a′Xij2

∣∣/4

≥ inf
i1,...,id+1

max
1≤j1,j2≤d+1

∣∣a′Xij1 − a′Xij2

∣∣/4.

Therefore σ(a′
ts
Zts ) ≥ D > 0.

In both cases, O(y,Zts ) is uniformly bounded w.r.t. Zts for sufficiently large ts ,
contradicting the assertion that inf‖x‖≤M O(x,Zts ) → ∞ as ts → ∞.

(c) d > 2. The proof for d = 2 can be extended in a straightforward fashion
for this case. �
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