
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computational Statistics and Data Analysis 55 (2011) 1173–1179

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Exact computation of bivariate projection depth and the
Stahel–Donoho estimator✩

Yijun Zuo a,b,∗, Shaoyong Lai a
a School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan 610074, China
b Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA

a r t i c l e i n f o

Article history:
Received 12 May 2009
Received in revised form 1 September 2010
Accepted 7 September 2010
Available online 29 September 2010

Keywords:
Projection depth
Exact computation
Stahel–Donoho estimator

a b s t r a c t

The idea of data depth provides a new and promising methodology for multivariate non-
parametric analysis. Nevertheless, the computation of data depth and the depth function
has remained as a very challenging problem which has hindered the methodology from
becoming more prevailing in practice. The same is true for the powerful Stahel–Donoho
(S–D) estimator. Here, we present an exact algorithm for the computation of the bivariate
projection depth (PD) of data points and consequently of the S–D estimator.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Data depth for multivariate data has triggered the interest of researchers in multivariate nonparametric analysis and
robust statistics. Among many proposed notions of data depth, projection depth (Liu, 1992; Zuo and Serfling, 2000a,b; Zuo
et al., 2004) is a favorite one among its competitors. Projection depth weighted mean (Zuo et al., 2004) as a very robust
alternative to the regular mean also leads to the famous S–D estimator (Stahel, 1981; Donoho, 1982; Tyler, 1994; Maronna
and Yohai, 1995; Zuo et al., 2004) as a special case. The latter was the first constructed in high dimension that enjoys very
high breakdown point robustness and affine equivalence (see Tyler (1994), Maronna and Yohai (1995) and Zuo et al. (2004)).
The computation of data depth and the S–D estimator (seemingly intractable, involving the supremum over infinitely many
directions) has remained an open problem in practice for the past two decades. This has hindered the methodology from
becoming more prevailing in practice and has prohibited practical inference procedures from developing.

Approximating algorithms for computing projection depth and the S–D estimators have been proposed. Without exact
computation results, no one knows how good (accurate) the approximate results are. In this paper we present an algorithm
for exact computation of projection depth (subsequently the S–D estimator) for bivariate data.

The paper is organized as follows. Section 2 introduces projection depth and the S–D estimator. Section 3 is devoted to
an exact computing algorithm. Section 4 examines the performance of the exact and approximate algorithms in terms of
their accuracy and computation times.

2. Projection depth and S–D estimator

2.1. Outlyingness

Let µ(F) and σ(F) be some robust location and scale measures of a distribution F of r.v. X in Rd (d = 1), respectively. For
simplicity, we consider the most popular robust choice of µ and σ : the median (Med) and the median absolute deviations

✩ This research was partially supported by NSF grants DMS-0234078 and DMS-0501174.
∗ Corresponding author at: School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan 610074, China.

E-mail addresses: zuo@msu.edu, yijun.zuo@gmail.com (Y. Zuo), laishaoy@swufe.edu.cn (S. Lai).

0167-9473/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2010.09.010

Author's personal copy

1174 Y. Zuo, S. Lai / Computational Statistics and Data Analysis 55 (2011) 1173–1179

(MAD) throughout the paper. Assume that σ(F) > 0, namely, F is not degenerate. For a given point x, we define in R1, the
one-dimensional outlyingness (the standardized absolute deviation of x to center µ of X) of xwith respect to (w.r.t.) X as

O1(x, X) = |x − µ(X)|/σ(X) (1)

and in Rd, d > 1, the high-dimensional outlyingness of xw.r.t. X is (see Stahel (1981) and Donoho (1982))

Od(x, X) = sup
‖u‖=1

O1(u′x, u′X) (2)

i.e., theworst case projected one-dimensional outlyingness,where u′x and u′X are projections of point x and randomvariable
X to unit direction u. In the sample case, replacing X by the sample data set, we can define the sample versions of (1) and
(2) by using the sample versions of µ and σ , respectively.

2.2. Projection depth

With the outlyingness function defined above, we can then define any non-increasing function of it, as follows, which is
called projection depth (PD) of xw.r.t. X in Rd (see Liu (1992), Zuo and Serfling (2000a,b) and Zuo (2003))

PD(x, X) = 1/(1 + Od(x, X)). (3)

See Remark 2.1 of Zuo (2003) for the reasoning and the logic behind this definition. For concrete examples of PD and its
sample version, see also Zuo (2003).

2.3. Stahel–Donoho estimator

A general depth weighted mean is defined and studied in Zuo et al. (2004) for a general depth function D(·, ·) (see Zuo
and Serfling (2000a,b)), a distribution F in Rd, and a weight function w on [0, 1]

L(F) =


xw(D(x, F))F(dx)
w(D(x, F))F(dx)

. (4)

To ensure a well-defined L(F), we imposed the following conditions:∫
w(D(x, F))F(dx) > 0;

∫
‖x‖w(D(x, F))F(dx) < ∞.

With a strategically selected w, the first part holds trivially. The second part holds straightforwardly if E‖X‖ < ∞ or if
w(D(X, F)) is 0 outside some bounded set, which is true for typical depth functions.

For a given random sample Xn
= {X1, . . . , Xn} from F or X , let Fn be the empirical distribution that assigns a mass 1/n to

each point Xi, i = 1, . . . , n. If we replace F in the definition above with Fn, we obtain the sample versions.
If the depth function in the general depth weighted mean (4) is the projection function PD, then the weighted mean is

called the Stahel–Donoho (S–D) estimator (see Stahel (1981), Donoho (1982) and Zuo et al. (2004)).

3. Exact algorithm for computing outlyingness

Given a sample Xn
= {x1, . . . , xn}, the task is to compute the outlyingness. So we first confine our attention to this

computing problem. First recall:

O1(x, Xn) = |x − Med(Xn)|

MAD(Xn), Od(x, Xn) = sup

‖u‖=1
O1(u′x, u′Xn)

where u′x is the projection of x to unit direction u and u′Xn
= {u′X1, . . . , u′Xn}. Let Y(1) ≤ Y(2) ≤ · · · Y(n) be order statistics

based on Y n
= {Y1, . . . , Yn} in R1, then we have (where ⌊·⌋ is the floor function)

Med(Y n) =
Y(⌊(n+1)/2⌋) + Y(⌊(n+2)/2⌋)

2
,

MAD(Y n) = Med{|Yi − Med(Y n)|, i = 1, . . . , n}.

To facilitate our discussion of the algorithm,we first discuss the idea of a circular sequence (see, e.g. Edelsbrunner (1987)),
which has already been employed in the calculation of data depth, depth contours, and trimmed regions by several authors
(e.g., Rousseeuw and Ruts (1996), Dyckerhoff (2000) and Cascos and Molchanov (2007)). Here it also plays a key role in our
algorithm.

Let a bivariate data set be in general position (such that any two straight lines, each of which connects two data points of
the given data set, are not parallel). Here it implies that there are no more than two points of the data set on any line. A data
set from an absolutely continuous distribution will be in general position with probability 1.

Author's personal copy

Y. Zuo, S. Lai / Computational Statistics and Data Analysis 55 (2011) 1173–1179 1175

Fig. 1. L is the direction perpendicular to the line segment connecting Xi and Yj . Project the two points to u1 and u2 . Then on u1, i precedes j; this is reversed
on u2 .

Now consider an arbitrary direction u that is not perpendicular to any line segment connecting two data points of Xn.
Then the projection of Xn on u (u′Xn) constitutes a permutation of {1, 2, . . . , n} in terms of their subscripts from left to right
(assume that u′Xi1 ≤ u′Xi2 ≤ · · · ≤ u′Xin , then {i1, . . . , in} forms a permutation of {1, 2, . . . , n}).

We can obtain a sequence of permutations by rotating u counterclockwise. This periodic sequence of permutations is
called a circular sequence. We note that the permutation obtained from the projection of Xn on u is exactly the reverse of the
permutation obtained from the projection of Xn on−u. Also observe that two successive permutations of a circular sequence
differ only by switching two integers in the sequence. The permutation changes whenever the rotation of u passes through
a direction perpendicular to a line segment connecting two data points in a given data set Xn; see Fig. 1.

The idea of the algorithm is to divide and conquer. We utilize a circular sequence to partition just the halfplane containing
the origin on its boundary (it is sufficient). Given a bivariate data set, we connect any two data points out of the n data
points, and get f (n) = n(n − 1)/2 directions. Take the directions perpendicular to these directions, and determine their
polar coordinate angles. We can use these angles (plus −π/2 and π/2) to partition the halfplane into f (n) + 1 angular
regions, and within each region we will have a fixed permutation (circular sequence) when projecting the n data points.
This implies that the median of projected data in this region will be the projection of a fixed data point (when n is odd) or
the middle point of a line segment connecting two data points (when n is even).

Write O(u; x) = O1(u′x; u′Xn). It is easy to evaluate O(u; Xj), j = 1, . . . , n along the f (n) directions that we use to
partition the halfplane into angular regions. If we can find the local maxima of O(u; Xj) in each of these regions, then we
can find the global maximum of O(u; Xj) in the halfplane (hence in the entire plane). Now the immediate question is when
could O(u; Xj) achieve a local maximum? Let us restrict our attention to one of the regions in the following discussion. We
can actually show that we do not need to consider all the f (n) + 1 but at most O(n) angular regions. Now call the directions
that divide the halfplane into O(n) angular regionsMed sequence.

Here is the description which leads to an algorithm for finding these directions: Let α(i, j) be the (polar coordinate) angle
of the direction perpendicular to the line segment connecting Xi and Xj, and let αk, k = 1, . . . , f (n) be the sorted sequence
of these angles, and α0 = 0. Let uk be the corresponding directions. Let rk be the permutation that sorts the projections of
the data onto u for αk−1 < u < αk. Each angular region is now characterized by its lower limit αk−1, its upper limit αk,
and its permutation rk. Let mk be the middle index in permutation rk if n is odd, while if n is even, let mk and m′

k be the two
middle indices. The algorithm works as follows:
Initial: Let ℓ = 0, k(0) = 1 and determine the middle index m1 (or pair (m1,m′

1)) of the permutation r1. Set m(0) =

mk(0)(or = (mk(0),m′

k(0))).
Loop: For ℓ = 1, 2, . . . , f (n) do the following: Find the first k > k(ℓ − 1) for whichmk changes if n is odd, or for which the
pair (mk;m′

k) changes if n is even. Set this k as k(ℓ) andm(ℓ) = mk(ℓ)(or (mk(ℓ),m′

k(ℓ))). Find the MAD sequence (see below)
within the angular region from αk(ℓ)−1 to αk(ℓ) (see below). Store this sequence and αk(ℓ). It will be sufficient to determine
the outlyingness values along all the stored directions.

Corresponding to each angular region, we have a fixed point, say Yκ (either an original data point or the middle point
of a line segment connecting two data points) whose projection will be the median of the projected data u′Xn for any u
within the region. TheMAD(u′Xn) for uwithin this angular region could change only if the projections of two line segments
(both of themwith Yκ as one of the end points) become equal to each other. We have to find and include these directions in
our search for the maximum of outlyingness. We call these directions asMAD sequence.

Here is the description which will lead to the algorithm to find these directions: Let Zi = Xi − Yκ , i = 1, 2, . . . , n.
Then there are at most f (n) direction u’s such that |u′Zi| = |u′Zj|, for i (≠j), j ∈ {1, 2, . . . , n} (see Fig. 2 as to how to find
these directions) (we actually need to consider at most O(n) directions). These directions further divide the angular region
(αk(ℓ)−1, αk(ℓ)) into at most f (n) sub-angular regions. Set α∗

0 = αk(ℓ)−1. Now sort the polar angles of these directions within
(αk(ℓ)−1, αk(ℓ)), call themα∗

p , p = 1, . . . , f (n). Let u∗
p be the corresponding directions and r∗

p be the permutation that sorts the
absolute deviations {|u′Zi|, i = 1, . . . , n} of projected data points to the projected median (u′Yκ) onto u for α∗

k−1 < u < α∗

k .
Now each of the (at most) f (n) sub-angular regions is characterized by the lower and upper bounds α∗

p−1 and α∗
p and the

permutation r∗
p . Let np be themiddle index of r∗

p (or (np, n′
p) its middle two indices if n is even). As in theMed sequence case,

there are actually at most O(n) sub-angular regions with which we need to be concerned.

Author's personal copy

1176 Y. Zuo, S. Lai / Computational Statistics and Data Analysis 55 (2011) 1173–1179

Fig. 2. PointM is the median point of the projected data along u and i and j are two data points. The direction u1 beyond which the MAD of projected data
starts to change.

Initial: Let ℓ = 0, p∗(0) = 1 and determine the middle index n1 (or middle two indices (n1, n′

1)) of the permutation r∗

1 .
Loop: For ℓ = 1, 2, . . . , f (n) do the following: Find the first p > p∗(ℓ − 1) for which np changes if n is odd, or for which the
pair (np; n′

p) changes if n is even. Set this p as p∗(ℓ) and n(ℓ) = np∗(ℓ) (or = (np∗(ℓ); n′

p∗(ℓ)) if n is even). Store all directions
u∗

p∗(ℓ).
Next we present an example to demonstrate the way to find directions u∗

p (p = 1, . . . , f (n)) on a practical way (of course
one could find analytical expressions for these directions). See Fig. 2. Here pointM(Yκ) is the fixed point whose projection is
the median of the projected data along the direction u; i and j are two other original data points corresponding to Xi and Xj
(for convenience wewrite i and j for them). First we find the image point j′ of jw.r.t. pointM (i.e. we extend the direction jM
to point j′ such thatM is the middle point of jj′). Now simply connect the points i and j′ then the direction u1 perpendicular
to ij′ is the direction we sought, i.e. along which line segmentsMi andMj will have the same absolute projected value.

With these directionsu∗
p , we further divide each angular region into sub-angular regions such thatwithin each of them the

MAD of the projected data u′Xn is the absolute value of the projection of some fixed line segment (connecting two original
data points) (in the odd n case) (or the average of the absolute values of the projection of some fixed two line segments
(in the even n case)) to this sub-region. Note that within each angular region, the circular sequence and the median point of
the projected data are fixed. Therefore the number of these directions will be at most O(n).

With theMed andMAD sequences (essentially directions beyondwhichmedian orMAD of the projected datawill change
immediately), we partition the halfplane into totally O(n2) sub-angular regions. Now within each of these sub-angular
regions, it is easily seen that

O1(u′x; u′Xn) = 2|u′(x − Xj)|/(|u′(Xi − Xj)| + |u′(Xk − Xj)|) (5)

for some i, j ∈ {1; . . . ; n} and for any u in the sub-angular region, where j is determined by the Med sequence and i and k
by the MAD sequence. i and k are the same as in the odd n case.

Note that (5) is a continuous function of u, reaching its maximum at the boundary of the sub-angular region (one can
show that the derivative ofO1 w.r.t. u is always positive or negative within the region). So to get the sup|u|=1 in the definition
of (2) we do not have to consider infinitely many u’s, we actually only need to consider all the boundary directions of the
O(n2) sub-angular regions which are formed by the Med and MAD sequences.

We announce that there is an R package (called ExPD2D) for the exact computation of projection depth of bivariate
data already developed by Zuo and Ye (2009). It is part of CRAN now. You can just download the package in R and get
the function to compute the projection depth exactly for any set of bivariate data points and any arbitrary points w.r.t.
the given data set. This package is based on Fortran code. But now a direct R code program has also been developed (see
http://www.stt.msu.edu/~zuo/ExPDdatanew.txt).

4. Comparison

In this section, we first examine the accuracy of the approximate algorithms and directions they used in the computation,
then we compare the time approximate and exact algorithms consumed and themean squared error w.r.t. the exact results.

4.1. Accuracy and depth induced ranking

We start with a concrete data set (Table 1), which was collected as part of a search for new diagnostic techniques at the
University of Wisconsin Medical School. Perspiration from 19 healthy females were measured w.r.t. sweat rate and sodium
content and analyzed. The two variables are X1 (sweat rate) and X2 (sodium). In Fig. 3, larger size of the dot corresponds to
the larger depth of the point.

The projection depth in Fig. 3(b) is the exact depth. Before the development of the exact algorithm in this paper,
there were several approximate algorithms. They are sub-sampling (Stahel, 1981), resampling design (Rousseeuw, 1993)
and fixed/random direction procedures. Stahel (1981) proposed an algorithm based on sub-sampling for approximate
computation of the outlyingness. It sub-samples two data points and determines the perpendicular direction to the line
segment connecting the two data points, and using these directions replace infinitely many directions in the definition of
the outlyingness. The fixed direction procedure uses fixed directions which cut the upper halfplane into equally spaced
pieces (angular regions), while the random direction procedure randomly picks some directions.

Author's personal copy

Y. Zuo, S. Lai / Computational Statistics and Data Analysis 55 (2011) 1173–1179 1177

Fig. 3. (a) Left is a scatter plot of sweat rate and sodium of the sweat data. (b) Right is a projection depth-size plot of the sweat data.

Table 1
Sweat data (Johnson and Wichern, 2007, Example 5.1).

Individual X1 (sweat rate) X2 (sodium)

1 3.7 48.5
2 5.7 65.1
3 3.8 47.2
4 3.2 53.2
5 3.1 55.5
6 4.6 36.1
7 2.4 24.8
8 7.2 33.1
9 6.7 47.4

10 5.4 54.1
11 3.9 36.9
12 4.5 58.8
13 3.5 27.8
14 4.5 40.2
15 1.5 13.5
16 8.5 56.4
17 4.5 40.2
18 6.5 52.8
19 4.1 44.1

Here we compare the exact PD values with approximate ones obtained from the sub-sampling, and fixed direction
procedures. We also compare the number of projection directions used by different algorithms and the difference in the
depth results and in the ranking induced by the depth of the data points. Note that we can rank multivariate data points
based on their depth with large depth corresponding to high rank and small depth corresponding to low rank.

See Table 2 (the last column lists the rank of points induced by the exact depth), where ‘‘–’’ means the same depth as
the exact one and the ‘‘∗’’ means that the depth rank of the corresponding point is different from the rank induced by the
exact algorithm, and ‘‘0000’’ means that the first 4 digits are the same as the exact one. Note that all the table entries are
nonnegative. This is what we expect from the exact computation since we like to get the real supremum. The smaller the
PD, the more accurate is the result. The exact algorithm uses 342 u’s for projection, while the sub-sampling procedure only
uses half the number of u’s and gets the results which are very close to the exact ones (only 5 points with slightly different
depths), but if one uses some fixed u’s, the depth of all points are different even if one uses 100,000 u’s (there is still one
point with different depth).

4.2. Computation times

Now we examine the average (CPU) time consumed by different algorithms (including the exact (1st), fixed (2nd), and
sub-sampling (3rd)) for different sample sizes n based on 3000 replications and simulated normal data sets, we utilize the

Author's personal copy

1178 Y. Zuo, S. Lai / Computational Statistics and Data Analysis 55 (2011) 1173–1179

Table 2
Comparison of PD (and rank induced) by different algorithms 1st col.: exact PD; the 2nd–6th col.: PD (approximate)− PD (exact); 7th col.: the rank induced
by exact PD.

Method # of u’s Exact SubS Fixed Fixed Fixed Fixed Rank
342 171 171 342 1400 105

0.568047337 – 0219 0123 0011 0000 1
0.568047337 – 0280 0055 0010 0000 2
0.449288256 – 0002∗ 0001 0000 0000 3
0.414516295 –∗ 0194∗ 0142∗ 0013 0000 4
0.413690236 0303∗ 0382∗ 0251∗ 0002 0001 5
0.393545029 – 0221 0044 0008 0000 6
0.375349097 – 0185 0140 0013 0000 7
0.305747126 0036 0036∗ 0019 0000 0000 8
0.303121248 – 0002 0001∗ 0000 0000 9
0.30121022 – 0168∗ 0108∗ 0010 0000 10
0.276771606 – 0079∗ 0083 0001 0000 11
0.270949533 – 0148∗ 0121 0011 0000 12
0.262133297 0073 0004 0006 0000 0000 13
0.245614035 – 0139 0113 0011 0000 14
0.234636872 – 0076 0078 0010 0000 15
0.201177527 – 0129 0071 0008 0000 16
0.191923191 0061 0003 0004 0000 0000 17
0.164594729 – 0088 0028 0004 0000 18
0.154569618 – 0057 0027 0006 0000 19

Table 3
Average CPU time of different algorithms and the empirical mean squared error.

Sample size Method Average time (s) EMSE

30 Exact 2.640693 0
SubS 0.3868 2.692856
Fixed 0.6355567 0.316625

50 Exact 19.65004 0
SubS 1.396973 4.025056
Fixed 0.8760467 0.5469273

70 Exact 58.57117 0
SubS 3.150667 5.374985
Fixed 1.0485 0.794681

system.time() in R to capture the CPU time, but due to the garbage collection time involved, the execution order of the
algorithmsmakes difference. So we start with the 1st algorithm followed by the 2nd algorithm in the first 1000 replications,
and the 2nd algorithm first and followed by the 1st algorithm in the second 1000 replications, and the 3rd algorithm first
followed by the 1st algorithm in the third 1000 replications; at the same timewe compute the empirical mean squared error
for different algorithms: EMSE =

1
R

∑R
i=1 ESE i and ESE i =

∑n
j=1 ‖approx(PD)j − exact(PD)j‖

2, where R = 3000.
The results in Table 3 were obtained on a Dell Precision M6400 laptop with R 2.9.1. Inspecting the table immediately

reveals that the exact algorithm is the slowest (as we expect), followed by the fixed direction algorithm in the small sample
size case. The sub-sampling one is the fastest for small sample size, though with the worst accuracy. The fixed direction
algorithm keeps a good balance between speed and accuracy, it quite fast, yet quite accurate at all sample sizes.

About the slow exact algorithm, there is a favorable comment from the practitioners. That is, people wait for several
months (sometimes years) to gather data. They, of course, are willing to wait for several seconds (or minutes) to get exact
results. With that said, we are working on a much faster exact algorithm which should be available any time soon. Our
previous version ExPDdatanew has been dramatically improved by cutting the computing time in half at sample size 50.

The sub-sampling algorithm is the fastest one (in the small sample size case) because it only restricts to the directions
perpendicular to the line segments connecting two data points, totally n(n − 1)/2 such directions. Of course its results are
the least accurate. Fixed direction algorithm could be faster if one reduces the number of searching directions. One could also
improve the accuracy of the fixed direction algorithm by increasing the number of searching directions. In our simulation,
we used 1000 directions that equally divide the 0 to π upper halfplanes.

So overall, our suggestion for the approximate computation of PD in two or high dimensions is to use the fixed direction
algorithm. The results here, in fact, are consistent with the basic idea of approximate computing of outlyingness in higher
dimensions. In higher dimensions, the key idea to compute the outlyingness approximately is to utilize an increasing
sequence of outlyingness obtained from different iterations, this sequence theoretically will converge to the exact value
with the more and more refined partitions of the upper halfspace (or halfplane in the two dimension case). The idea was
first proposed in Dyckerhoff (2004).

Author's personal copy

Y. Zuo, S. Lai / Computational Statistics and Data Analysis 55 (2011) 1173–1179 1179

Acknowledgements

The author thanks Professor James Stapleton and the referees for their helpful comments and constructive suggestions
and the AE and the Editor Stanley Azen for their constant support during the entire process. He is also grateful to Xiangyang
Ye for his great assistance in graphs and programming. The research was partially supported by NSF grants DMS-0234078
and DMS-0501174.

References

Cascos, I., Molchanov, I., 2007. Multivariate risks and depth-trimmed regions. Finance Stoch. 11, 373–397.
Donoho, D.L., 1982. Breakdown properties of multivariate location estimators. Ph.D. Qualifying Paper. Dept. Statistics, Harvard University.
Dyckerhoff, R., 2000. Computing zonoid trimmed regions of bivariate data sets. In: Bethlehem, J., van der Heijden, P. (Eds.), COMPSTAT 2000. Proceedings

in Computational Statistics. Physica-Verlag, Heidelberg, pp. 295–300.
Dyckerhoff, R., 2004. Data depths satisfying the projection property. Allg. Stat. Arch. 88, 163–190.
Edelsbrunner, H., 1987. Algorithms in Combinatorial Geometry. Springer, Heidelberg.
Johnson, R.A., Wichern, D.W., 2007. Applied Multivariate Statistical Analysis. Prentice Hall.
Liu, R.Y., 1992. Data depth and multivariate rank tests. In: Dodge, Y. (Ed.), L1-Statistical Analysis and Related Methods. pp. 279–294.
Maronna, R.A., Yohai, V.J., 1995. The behavior of the Stahel–Donoho robust multivariate estimator. J. Amer. Statist. Assoc. 90, 330–341.
Rousseeuw, P.J., 1993. A resampling design for computing high-breakdown point regression. Statist. Probab. Lett. 18, 125–128.
Rousseeuw, P., Ruts, I., 1996. Bivariate location depth. Appl. Statist. 45, 516–526.
Stahel, W.A., 1981. Breakdown of covariance estimators. Research Report 31. Fachgruppe für Statistik. ETH, Zürich.
Tyler, D.E., 1994. Finite sample breakdown points of projection based multivariate location and scatter statistics. Ann. Statist. 22, 1024–1044.
Zuo, Y., 2003. Projection based depth functions and associated medians. Ann. Statist. 31 (5), 1460–1490.
Zuo, Y., Cui, H., He, X., 2004. On the Stahel–Donoho estimators and depth-weighted means for multivariate data. Ann. Statist. 32 (1), 167–188.
Zuo, Y., Serfling, R., 2000a. General notions of statistical depth function. Ann. Statist. 28 (2), 461–482.
Zuo, Y., Serfling, R., 2000b. Structural properties and convergence results for contours of sample statistical depth functions. Ann. Statist. 28 (2), 483–499.
Zuo, Y., Ye, X., 2009. ExPD2D: exact computation of bivariate projection depth based on fortran code. R Package Version 1.0.1. http://CRAN.R-

project.org/package=ExPD2D.

