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Abstract. Among their competitors, projection depth and its induced estimators are
very favorable because they can enjoy very high breakdown point robustness without
having to pay the price of low e�ciency, meanwhile providing a promising center-
outward ordering of multi-dimensional data. However, their further applications have
been severely hindered due to their computational challenge in practice. In this
paper, we derive a simple form of the projection depth function, when (�, �) = (Med,
MAD). This simple form enables us to extend the existing result of point-wise exact
computation of projection depth (PD) of Zuo and Lai (2011) to depth contours and
median for bivariate data.
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1 Introduction

To generalize order-related univariate statistical methods, depth functions have emerged as powerful
tools for nonparametric multivariate analysis with the ability to provide a center-outward ordering of the
multivariate observations. Points deep inside a data cloud obtain higher depth and those on the outskirts
receive lower depth. Such depth-induced ordering enables one to develop favorable new robust estimators
of multivariate location and scatter matrix. Since Tukey's introduction (Tukey, 1975), depth functions
have gained much attention in the last two decades. Various depth notions have been introduced. To
name a few, halfspace depth (Tukey, 1975), simplicial depth (Liu, 1990), regression depth (Rousseeuw
and Hubert, 1999), and projection depth (Liu, 1992; Zuo and Sering, 2000; Zuo, 2003).

Zuo and Sering (2000) and Zuo (2003) found that among all the examined depth notions, projection
depth is one of the favorite ones, enjoying very desirable properties. Furthermore, projection depth
induced robust estimators, such as projection depth weighted means and median, can possess a very high
breakdown point as well as high relative e�ciency with appropriate choices of univariate location and
scale estimators, serving as very favorable alternatives to the regular mean (Zuo, 2003; Zuo et al., 2004).
In fact, projection depth weighted means include as a special case the famous Stahel-Donoho estimator
(Stahel, 1981; Donoho, 1982; Tyler, 1994; Maronna et al., 1995; Zuo et al., 2004), the latter is the �rst
constructed location estimator in high dimensions enjoying high breakdown point robustness and a�ne
equivariance, while the projection depth median has the highest breakdown point among all the existing
a�ne equivariant multivariate location estimators (Zuo, 2003).

However, further prevalence of projection depth and its induced estimators is severely hindered by
their computational intensity. The computation of projection depth seems intractable since it involves
supremum over in�nitely many direction vectors. There were only approximating algorithms in the last
three decades until Zuo and Lai (2011), in which they proved that there is no need to calculate the
supremum over in�nitely many direction vectors in the bivariate data when the outlyingness function
uses the very popular choice (Med, MAD) as the univariate location and scale pair. An exact algorithm
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for projection depth and its weighted mean, i.e. the Stahel-Donoho estimator, was also constructed in
that paper.

In the current paper, we further generalize their idea to the higher dimensional cases by utilizing
linear fractional functionals programming (Swarup, 1965). That is, we �nd that, with the choice of (Med,
MAD), we only need to calculate the supremum over a �nite number of direction vectors for p � 2,
where p denotes the dimension of the data. Furthermore, these direction vectors are x-free, namely,
independent of the point x for which the depth value is being computed, and depend only on the data
cloud. Therefore, we derive a simple form of the projection depth function, and are able to compute the
bivariate projection depth contours and median very conveniently through linear programming based on
the procedure of Zuo and Lai (2011). It is found that sample projection depth contours are polyhedral
under some mild conditions. Furthermore, it is noteworthy that the computational methods discussed in
this paper have no limitation on the dimension p, and therefore may possibly be implemented to spaces
with p > 2, as well as for the modi�ed projection depth (�Siman, 2011) in a more general multidimensional
regression context.

The rest of the paper is organized as follows. Section 2 provides the de�nitions of the projection
depth contour and projection median. Section 3 presents the main idea of how to obtain a simple form of
the projection depth function. Section 4 discusses the exact computational issue of the projection depth
contour and projection median by linear programming. Some examples are given in Section 5. Both
simulated and real data are considered in this section.

2 De�nitions

For a given distribution F1 on R
1, let �(F1) be translation equivariant and scale equivariant, and �(F1)

be translation invariant and scale equivariant. De�ne the outlyingness of a point x 2 Rp (p � 1) with
respect to the distribution F of the random variable X 2 Rp as (see (Zuo, 2003) and references therein)

O(x; F ) = sup
kuk=1

jQ(u; x; F )j; (1)

where Q(u; x; F ) = (u�x� �(Fu))=�(Fu). If u
�x� �(Fu) = �(Fu) = 0, then de�ne Q(u; x; F ) = 0. Fu

is the distribution of u�X, which is the projection of X onto the unit vector u.

Throughout this paper, we select the very popular robust choice of � and �: the median (Med) and
the median absolute deviation (MAD). Based on de�nition (1), the projection depth of any given point
x with respect to F , PD(x; F ), can then be de�ned as (Liu, 1992; Zuo and Sering, 2000; Zuo, 2003)

PD(x; F ) = 1=(1 +O(x; F )):

With the outlyingness function and projection depth function de�ned above, we then de�ne the
projection depth median (PM) and contours (PC) as follows (Zuo, 2003)

PM(F ) = arg sup
x2Rp

PD(x; F );

PC(�; F ) = fx 2 Rp : PD(x; F ) = �g ;

where 0 < � � �� = supx2Rp PD(x; F ). Clearly, PC(�; F ) is the boundary of the projection depth
region (PR)

PR(�; F ) = fx 2 Rp : PD(x; F ) � �g :

For a given sample Xn = fX1; X2; � � � ; Xng from F , let Fn be the corresponding empirical distri-
bution. By simply replacing F with Fn in PM(F ) and PC(�; F ), we can obtain their sample version:
PM(Fn) and PC(�; Fn). Without confusion, we use Xn and Fn interchangeably in what follows. Fur-
thermore, by noting the fact that for the choice of (Med, MAD), Q(u; x; Xn) in (1) is odd with respect
to u, we drop the absolute value sign existing in de�nition (1), and consider

O(x; Xn) = sup
kuk=1

Q(u; x; Xn)
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instead in what follows, where

Q(u; x; Xn) =
u�x�Med(u�Xn)

MAD(u�Xn)
;

where u�x denotes the projection of x onto the unit vector u, and u�Xn = fu�X1; u
�X2; � � � ; u�Xng.

Let Z(1) � Z(2) � � � � � Z(n) be the order statistics based on the univariate random variables Zn =
fZ1; Z2; � � � ; Zng, then

Med(Zn) =
Z(b(n+1)=2c) + Z(b(n+2)=2c)

2
;

MAD(Zn) = MedfjZi �Med(Zn)j; i = 1; 2; � � � ; ng;

where b�c is the oor function.

3 The main idea

Note that, for any given sample Xn, the tasks of computing both PM(Xn) and PC(�; Xn) mainly
involve O(x; Xn), i.e.

PM(Xn) = arg inf
x2Rp

O(x; Xn);

PC(�; Xn) = fx 2 Rp : O(x; Xn) = �g ;

where � = 1=� � 1. Thus, let's �rst focus on the computation of O(x; Xn). Without loss of generality,
in what follows, we assume Xn to be in general position, which is commonly supposed in most existing
literature; see for example Donoho and Gasko (1992).

The idea of a circular sequence (Edelsbrunner, 1987) (see also Dyckerho� (2000); Cascos (2007))
implies that, for any given unit vector v 2 S = fu 2 Rp : kuk = 1g, there must exist two permutations,
say (i1; i2; � � � ; in) and (j1; j2; � � � ; jn), of (1; 2; � � � ; n) such that

v�Xi1 � v�Xi2 � � � � � v�Xin ;

Yj1 � Yj2 � � � � � Yjn ;

where Yjl = jv�Xjl �Med(v�Xn)j; (1 � l � n). There is a small non-empty set N (v) � S of v such that
these hold true for any v 2 N (v). This implies that the whole unit sphere S can be covered completely
with at most N (of order O(n4(p�1))) non-empty fragments Sk = fv 2 S: v satis�es constraint conditions
Qkg with Qk being 8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

v� (Xik;2 �Xik;1) � 0;
v� (Xik;3 �Xik;2) � 0;

...
v� (Xik;n �Xik;n�1) � 0;

Yjk;2 � Yjk;1 � 0;
Yjk;3 � Yjk;2 � 0;

...
Yjk;n � Yjk;n�1 � 0;

kvk = 1;

for some �xed permutations (ik;1; ik;2; � � � ; ik;n) and (jk;1; jk;2; � � � ; jk;n) of (1; 2; � � � ; n), where 1 �
k � N . We defer the discussion about the order of N until the Appendix; see The order of N .

Note that di�erent fragments Sk (k = 1; 2; � � � ; N) are connected and overlapped with each other
only on the boundaries. Thus, to calculate O(x; Xn), it is su�cient to calculate

O(x; Xn) = max
1�k�N

Ok(x; X
n)

with
Ok(x; X

n) = sup
u2Sk

Q(u; x; Xn): (2)
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Furthermore, from the de�nition and properties of Sk, it is easy to see that, for any u 2 Sk, the
outlyingness function Q(u; x; Xn) can be simpli�ed to

Q(u; x; Xn) =
u� (x�Xik;m)

ju�Xjk;m � u�Xik;m j
; (3)

if n is odd with m = (n+ 1)=2, otherwise

Q(u; x; Xn) =
2u� (x�Xk;�)��u� �Xjk;m �Xk;�

���+ ��u� �Xjk;m+1
�Xk;�

��� ; (4)

with m = n=2 and Xk;� = (Xik;m +Xik;m+1
)=2.

Remark 1. Based on the assumption of general position, the denominators in the above two formulas
will not be 0 for any u 2 Sk, since they are actually equal to MAD(u�Xn), and greater than 0 under
such an assumption when n � 2p; see the proof of Theorem 3.4 in Zuo (2003) for a similar discussion.

By (3) and (4), we obtain the following proposition.

Proposition 1. Assume Xn are in general position. Then for any given k (1 � k � N), the
optimization problem (2) is equivalent to

Ok(x; X
n) = sup

z

c�kz

d�kz
; (5)

subject to
Akz � 0 (6)

where ck; dk and Ak will be speci�ed in the Appendix. Here # � 0 means that # is component-wise
non-negative if # is a vector, i.e. for any component #i, we have #i � 0.

(5) with constraint conditions (6) is typically a linear fractional functionals programming problem.
By Theorem 1 of Swarup (1965) (see also �Siman (2011) (p. 950) for a more general discussion), it is easy
to show that the maximum of c�kz=d

�
kz will only occur at a basic feasible solution of (6). Note that the

number of fragments Sk is limited (at most N). Thus, we have

Theorem 1. Suppose that the choice of location and scale measures of projection depth function
is the pair (Med, MAD). Then the number of direction vectors needed to compute the projection depth
exactly is �nite. Furthermore, these direction vectors only depend on the data cloud Xn.

Remark 2. The idea of dividing the unit sphere S into fragments Sk by applying Med and MAD
sequences was �rst used in Zuo and Lai (2011) for computing the bivariate projection depth; see also
Paindaveine and �Siman (2011, 2012b) for other similar applications. Here we extend the result of Zuo
and Lai (2011) to Rp (p � 2). That is, one could compute PD in Rp exactly by only considering a
�nite number of direction vectors. Furthermore, the x-free property of these direction vectors can bring
convenience to the computation of PD(x; Xn) for any x, since we only need to search for the direction
vectors once.

4 Exact computation of PM(X n) and PC(�; X n)

From the discussion above, we can obtain two observations as follows, namely, for any given x,

� the way to divide sphere S into fragments Sk (k = 1; 2; � � � ; N) is �xed, i.e. x-free, as long as the
data cloud Xn is �xed.

� there is no need to calculate Q(u; x; Xn) over an in�nite number of direction vectors. It is su�cient
to calculate it for u1; u2; � � � ; uM , namely, the unit direction vectors corresponding to all the basic
feasible solutions of N linear fractional functionals programming problems, where M denotes the
number of such solutions. Clearly, M � N .
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Based on the discussion and two observations above, we therefore can express the outlyingness function
O(x; Xn) as follows

O(x; Xn) = max

�
u�1x�Med(u�1X

n)

MAD(u�1X
n)

;
u�2x�Med(u�2X

n)

MAD(u�2X
n)

; � � � ;
u�Mx�Med(u�MX

n)

MAD(u�MX
n)

�
;

where fuigMi=1 are some p-dimensional vectors depending only on the data cloud Xn. For the sake of
convenience, we write gi(x) = a�i x � bi (i = 1; 2; � � � ; M) hereafter, where ai = 1

MAD(u�
i
Xn)ui and

bi =
Med(u�i X

n)
MAD(u�

i
Xn) .

Obviously, O(x; Xn) = max1�i�Mfgi(x)g is in fact a piece-wise linear convex function with respect
to x for the given data cloud Xn. Therefore, its minimizers can be found by using common linear
programming methods for solving the problem

s = min
!

t

subject to
t � gi(x); i = 1; 2; � � � ; M;

where ! = (t; x� )� . This kind of problem can be solved by some common solvers such as linprog.m in
Matlab. Let !0 = (t0; x

�
0)
� be a �nal solution to this problem. Then, it is easy to show that x0 is one of

the deepest points with depth value PD(x0; Xn) = 1=(1 + t0) = ��.

Given the nature of the piecewise linear convex function max1�i�M gi(x), there is either a single
minimizer or a convex polyhedral set of minimizers. Then there naturally comes a question, namely,
after obtaining the value ��, how to get all of these vertices? Note that the projection median is a
speci�c case of the projection depth contour. Therefore, let's focus now on the computation of projection
depth contours.

By the de�nition, for any given 0 < � � ��, PC(�; Xn) is simply the boundary of

PR(�; Xn) = fx 2 Rp : PD(x; Xn) � �g

= fx 2 Rp : O(x; Xn) � �g

= fx 2 Rp : gi(x) � �; i = 1; 2; � � � ; Mg :

Typically, the regions constrained by linear inequalities such as

gi(x) � �; i = 1; 2; � � � ; M (7)

are polytopes. Then all the vertices and facets of such a polytope can be found by means of the dual
relationship between vertex and facet enumeration (Bremner et al., 1998) and the program qhull (Barber
et al., 1996); see also Paindaveine and �Siman (2012a) for a more detailed discussion. In Matlab, similar
tasks can be ful�lled by the function con2vert.m, which has been developed by Michael Kleder, and now
can be downloaded from Matlab Central File Exchange.

However, in many practical applications, the number M of the direction vectors may be very large.
WhenM is too large, it is di�cult to obtain the boundary of the region formed by (7) by using some of the
aforementioned procedures such as con2vert.m. Therefore, it is important to eliminate some redundant
constraints before computing PC(�; Xn) for a too large M .

Note that, for any given � (0 < � � ��), the number of the non-redundant constraints in (7) is much
smaller compared to M , which implies that numerous inequalities in (7) could be eliminated during the
computation of the �-contour. In fact, it is not di�cult to show that

PR(�; Xn) = C1 \ C2 \ � � � \ Cs;

where Ck = fx : gj(x) � �; j = ik; ik + 1; � � � ; ik+1g with 1 � k � s� 1, and 1 = i1 < i2 < � � � < is =M
with min1�l�s�1fil+1 � ilg � p. Then, when M is large, a procedure for exactly computing PC(�; Xn)
is: (1) to �nd the non-redundant constraints in each Ci at �rst, then (2) to use all of these non-redundant
constraints together to compute PC(�; Xn).
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With the vertices at hand, some common graphical softwares can be utilized to visualize these contours
very easily in spaces of p = 2 or 3. It is noteworthy that, although all the methods discussed above can
possibly be implemented to spaces with p � 2 theoretically, a feasible exact algorithm for computing
the projection depth exists now only for bivariate data (Zuo and Lai, 2011). Therefore, we can only
provide some exact results about the bivariate projection depth contours and projection median in the
current paper. All the direction vectors are found by using a Matlab implementation based on the
algorithm of Zuo and Lai (2011). The corresponding codes can be obtained from the authors through

email (zuo@msu.edu or csuliuxh912@gmail.com).

It is worth mentioning that, although M aforementioned seems to be very large even when p = 2 at
�rst sight, there is a possibility of �ltering a great number of direction vectors in the computation; see
Figure 1 for an illustration. The reason lies in the fact that, when u passes from one fragment Sk to
some of its adjacent fragments, Q(u; x; Xn) may still equal c�ku=d

�
ku, with both ck and dk unchanged.

Therefore, we can merge some of such fragments into a large one to �lter some direction vectors in
practice. For the bivariate case, this tactic has already been used in the algorithm of Zuo and Lai (2011),
and therefore in the corresponding Matlab implementation of the current paper.
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Figure 1: The average number (the star points) of the �nal direction vectors after being �ltered. For the
sake of comparison, we also provide two lines that correspond to n log n and 2n log n, respectively. Here
the data are generated from the bivariate standard normal distribution. The sample sizes are taken to be
n = 50; 100; � � � ; 1000. For each sample size n, we compute the average number of the direction vectors
based on 20 repeated simulations. The �gure reveals that the number of the remaining direction vectors
can be quite small relative to M , which is greater than n(n� 1) when p = 2 according to the discussion
above.

5 Examples

In order to gain more insight into the sample version of projection depth contours and projection
median, we provide some data examples in this section. Both simulated and real data are used here.

5.1 Simulation results

To illustrate the robustness and the shape of the bivariate projection depth contours and median,
we present two examples as follows. The data are mainly generated from the normal distribution, but
contain a few outliers.
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Example 1. We generate 60 points X = (X1; X2)
� from the normal distribution N(0; I2), where

I2 denotes the 2 � 2 identity matrix, and then modify these points randomly by replacing their �rst
components by 6 with probability 0.05.

Example 2. We generate 400 points X = (X1; X2)
� from the normal distribution N(0; �0), and

then modify these points randomly by replacing their �rst components by 6 with probability 0.10, where

�0 =

�
1 0:5
0:5 1

�
:
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(a) Population versions PC(�; X).
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(b) Sample versions PC(�; Xn) with n = 60. The small
points denote the observations, and the big point in the
interior of all the contours denotes the projection median.

Figure 2: Shown are the population and sample versions of contours for Example 1, where � =
0:1; 0:2; � � � ; 0:9 in Figure 2(a), and � = 0:1; 0:2; � � � ; 0:7 in Figure 2(b) from the periphery inwards,
respectively.
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(a) Population versions PC(�; X).
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(b) Sample versions PC(�; Xn) with n = 400. The small
points denote the observations, and the big point in the
interior of all the contours denotes the projection median.

Figure 3: Shown are the population and sample versions of contours for Example 2, where � =
0:1; 0:2; � � � ; 0:9 in Figure 3(a), and � = 0:1; 0:2; � � � ; 0:8 in Figure 3(b) from the periphery inwards,
respectively.
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(a) PC(�; Xn) of the uniform distribution over the triangle
formed by vertices: (0; 0), (0; 1) and (1; 1).
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(b) PC(�; Xn) of the uniform distribution over (0; 1) �
(0; 1).
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(c) PC(�; Xn) of the bivariate standard normal distribu-
tion N(0; I2).
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(d) PC(�; Xn) of the bivariate t-distribution with 4 degrees
of freedom. The components X1 and X2 are independently
distributed.

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

X
1

X
2

(e) PC(�; Xn) of the random vector �X + (1� �)Y , where X �

N(�1; I2), Y � N(�2; I2), �1 = (�2; �2), �2 = (2; 2), and
� satis�es P (� = 0) = P (� = 1) = 0:5. X, Y and � are all
independently distributed.

Figure 4: Shown are the sample contours PC(�; Xn) of di�erent distributions with n = 2500, where
� = 0:1; 0:2; � � � ; 0:7 in Figure 4(a), and � = 0:1; 0:2; � � � ; 0:9 in Figure 4(b), 4(c), 4(d), and 4(e) from
the periphery inwards, respectively. The small points denote the observations, and the big point in the
interior of all the contours denotes the projection median.
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For the sake of comparison, the population versions of PC(�; X) corresponding to these two examples
are also provided here, and plotted according to the formula

(x1; x2)� ��1 �

�
x1
x2

�
=

C2
N (1� �)2

�2
;

which was developed in Zuo (2003). Here CN = ��1( 34 ) � 0:6744898, � denotes the covariance matrix
of normally distributed X, namely, I2 in Example 1 and �0 in Example 2. The population versions
PC(�; X) of Example 1 and 2 are given in Figure 2(a) and 3(a), respectively, while the sample versions
PC(�; Xn) are plotted in Figure 2(b) and 3(b), respectively.

The comparison of sample and population contours indicates that the sample contours are really
similar to their population counterparts, resistant to the outliers (Zuo, 2004) and polyhedral like the
halfspace depth contours (Paindaveine and �Siman, 2012a).

Furthermore, to gain more information about the shape of the projection depth contours, we also
provide some other examples in the following. The sample size we used is 2500. Here Figure 4(a)
reports the projection depth contours PC(�; Xn) corresponding to the uniform distribution over the
triangle with its vertices being (0; 0), (0; 1) and (1; 1) (D1). Figure 4(b) corresponds to the uniform
distribution over the region [0; 1]� [0; 1] (D2). Figure 4(c) gives the contours of the normal distribution
N(0; I2) (D3). Figure 4(d) corresponds to the bivariate t-distribution with 4 degrees of freedom and
independently distributed components (D4). Figure 4(e) provides the contours of �X + (1 � �)Y (D5),
where X � N(�1; I2), Y � N(�2; I2), �1 = (�2; �2), �2 = (2; 2), and � is a discrete random variable
with P (� = 0) = P (� = 1) = 0:5. Here X, Y and � are all independently distributed. These �gures show
that the projection contours are also polyhedral and convex.

Note that somebody may be interested in the execution time of the proposed algorithm in practice.
Therefore, this section also presents some empirical results about the execution time based on some
simulated bivariate data. The data are generated from �ve distributions D1-D5 investigated in Figure
4. For any sample size n 2 f50; 100; 200; 300; 400; 500; 800g, we run the computation ten times for
each distribution. Table 1 reports the average execution times (in seconds), namely tC , of computing the
projection depth median and contours PC(�;Xn) for � = 0:1; 0:2; � � � ; b10���(Xn)c=10, where ��(Xn)
denotes the depth value corresponding to the projection depth median of Xn. Furthermore, in order to
illustrate the bene�ts of the x-free property, we also list the average execution times (in seconds), write
tV , of calculating all the �nal direction vectors for each combination of n and D 2 fD1, D2, � � � , D5g
in the same table. Table 1 shows that a great proportion (� 99%) of the time is spent on �nding the
�nal direction vectors on average. This con�rms that there would be a considerable improvement in time
when several contours have to be calculated for the same data set.

Table 1: Average execution times (in seconds) of the proposed algorithm
for the data from �ve di�erent distributions D1-D5.
D nn 50 100 200 300 400 500 800

D1 tV 0.2768 1.7661 13.4223 44.1912 107.7082 208.9788 851.6945

tC 0.2841 1.7738 13.4336 44.2053 107.7258 208.9983 851.7224

D2 tV 0.2536 1.8236 13.4294 44.1836 104.5274 210.2240 834.7482

tC 0.2608 1.8317 13.4410 44.1989 104.5461 210.2472 834.7816

D3 tV 0.2791 1.9218 14.4595 47.0722 113.2368 215.3458 869.2130

tC 0.2865 1.9303 14.4714 47.0879 113.2554 215.3688 869.2457

D4 tV 0.2657 1.9464 15.0405 48.4866 117.1220 224.3819 911.1383

tC 0.2727 1.9544 15.0527 48.5031 117.1418 224.4050 911.1711

D5 tV 0.2403 1.6682 12.4515 39.7955 94.3297 188.6513 756.2787

tC 0.2470 1.6757 12.4629 39.8105 94.3479 188.6730 756.3091

5.2 Real data example

Here a real data example is presented to illustrate the performance of projection depth contours.
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Table 2 here is taken from Table 7 of Rousseeuw and Leroy (1987) (p.57). Total 28 animals' brain
weight (in grams) and body weight (in kilograms) are presented in this table. Before the analysis, log-
arithmic transformation was taken for the sake of convenience. According to the results of Rousseeuw
and Leroy (1987), there are �ve cases considered as outlying, i.e. diplodocus, human, triceratops, rhesus
monkey and brachiosaurus. Among them, the most severe cases are diplodocus, triceratops and bra-
chiosaurus. In fact, these three cases are referred to as dinosaurs because they possess a small brain as
compared with a heavy body (see Table 2) and their highly negative residuals can lead to a low slope for
the least squares �t. For the remaining two cases, although their actual brain weights are higher than
those predicted by the linear model, they are not worse than the three previous cases since they do not
obey the same trend as that one followed by the majority of the data.

We plot the projection depth contours in Figure 5, where the big point in the interior of all the contours
denotes the projection median with depth value 0:73257, �ve labeled points denote the outliers mentioned
above with the points 1-3 corresponding to the case of diplodocus, triceratops and brachiosaurus and 4-5
corresponding to those of human and rhesus monkey. 8 contours are plotted there. From Figure 5, we can
see that all of these three dinosaurs lie outside the contour for � = 0:1, while points 4-5 lie between the
contours for � = 0:1 and 0.15. These results are consistent with those of Rousseeuw and Leroy (1987),
implying that projection depth contours can capture the structures of the objective data and identify
outliers.

Furthermore, it is worth mentioning that the shape of these plotted contours is not a�ected by a few
atypical points at the margin/border of the data cloud, namely, both the inner and outer depth contours
are roughly elliptical, unlike those of halfspace depth contours (see Figure 6) (Ruts and Rousseeuw, 1996).
This is the most outstanding di�erence between projection and halfspace depth contours, con�rming the
higher robustness of projection depth and its contours (see Zuo (2004)).

Table 2: Body and Brain Weight for 28 Animals (Rousseeuw and Leroy, 1987).

Index Body Weight Brain Weight

i Species Xi Yi

1 Mountain beaver 1.350 8.100

2 Cow 465.000 423.000

3 Gray wolf 36.330 119.500

4 Goat 27.660 115.000

5 Guinea pig 1.040 5.500

6 Diplodocus 11700.000 50.000

7 Asian elephant 2547.000 4603.000

8 Donkey 187.100 419.000

9 Horse 521.000 655.000

10 Potar monkey 10.000 115.000

11 Cat 3.300 25.600

12 Gira�e 529.000 680.000

13 Gorilla 207.000 406.000

14 Human 62.000 1320.000

15 African elephant 6654.000 5712.000

16 Triceratops 9400.000 70.000

17 Rhesus monkey 6.800 179.000

18 Kangaroo 35.000 56.000

19 Hamster 0.120 1.000

20 Mouse 0.023 0.400

21 Rabbit 2.500 12.100

22 Sheep 55.500 175.000

23 Jaguar 100.000 157.000

24 Chimpanzee 52.160 440.000

25 Brachiosaurus 87000.000 154.500

26 Rat 0.280 1.900

27 Mole 0.122 3.000

28 Pig 192.000 180.000

10



−15 −10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

1

2

3

4

5

0.1

0.15

0.2

0.3
0.4

0.5
0.6

0.7

logorithmic body weight

lo
go

rit
hm

ic
 b

ra
in

 w
ei

gh
t

 

 
0.73257

Figure 5: Projection depth contours with � = 0:1; 0:15; 0:2; 0:3; � � � ; 0:7 from the periphery inwards.
The big point in the interior of all the contours is the computed projection median with depth value
0.73257. The other points denote the observations, where the �ve labeled points are those considered as
outlying, and points 1-3 are the so-called dinosaurs mentioned in Rousseeuw and Leroy (1987).
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Figure 6: Halfspace depth contours; see Ruts and Rousseeuw (1996) for details.
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Appendix Proofs of main results

The order of N. Note that there is a bijection between the fragments Sk and the cones Ck = fz 2
Rp : A�kz � 0g, where Ak = (A�

k1;A
�
k2)

� . Ak1 and Ak2 will be speci�ed in the end of this Appendix.
Therefore, N is the same as the number of Ck.

Let Dk0 = fz 2 Rp : A�k1z � 0g. Obviously, (1) Ck � Dk0 , (2) all of such Dk0 together can span
the whole space Rp, (3) for any u(u 6= 0) 2 Dk0 , the permutation (ik;1; ik;2; � � � ; ik;n) is �xed. Note
that Dk0 is formed by some hyperplanes, such as (Xik;2 �Xik;1)

�z = 0, that are intersect at the origin.
In the literature, it has been shown by Winder (1966) (p. 816) that the number of such cones equals

2
Pp�1

i=1

�
k�1
i

�
for k hyperplanes, which is of order O(kp�1). Based on Xn, we can obtain at most n(n�

1)=2 hyperplanes. Therefore, the upper bound for the number of Dk0 's is about O(n
2(p�1)). That is,

we can divide Rp into up to O(n2(p�1)) cones, which are determinated by some permutations such as
(ik;1; ik;2; � � � ; ik;n). Similarly, for each given Dk0 , we can further divide it into a �nite number, with an
upper bound O(n2(p�1)), of Ck's based on some permutations such as (jk;1; jk;2; � � � ; jk;n). Therefore,
the order of N is about O(n4(p�1)). See also Bazovkin and Mosler (2012) for a similar discussion.

Proof of Proposition 1. Here, without loss of generality, we prove only the odd n case. Note that,
for any u 2 Qk, we have

uTXik;1 � uTXik;2 � � � � � uTXik;m � � � � � uTXik;n

according to the de�nition of Qk. This implies that

juT (Xi �Xik;m)j =

�
�uT (Xi �Xik;m); if i 2 fik;1; ik;2; � � � ; ik;m�1g;
uT (Xi �Xik;m); if i 2 fik;m; ik;m+1; � � � ; ik;ng:

That is, we can remove the absolute value signs of Yjl based on the order information existing in the
permutation (ik;1; ik;2; � � � ; ik;n). Therefore, for any u 2 Qk, (3) can be further simpli�ed to

Q(u; x; Xn) =
cTk u

dTk u
;

where ck = x�Xik;m and dk = sk(jk;m) � (Xjk;m �Xik;m) (1 � k � N), with

sk(i) =

�
�1; if i 2 fik;1; ik;2; � � � ; ik;m�1g;
1; if i 2 fik;m; ik;m+1; � � � ; ik;ng:

Next, note that, for any positive � and z = �u, it holds that c�kz=d
�
kz = c�ku=d

�
ku and ��z � 0 if

��u � 0. Then, (3) and constraint conditions Qk lead to

Ok(x; X
n) = sup

z

c�kz

d�kz
(8)

subject to
Akz � 0;

1 � k � N , with Ak =
�
Ak1

Ak2

�
, where

Ak1 = (Xik;2 �Xik;1 ; Xik;3 �Xik;2 ; � � � ; Xik;n �Xik;n�1)
�

and

Ak2 =

0
BBB@

sk(jk;2) � (X�
jk;2

�X�
ik;m

)� sk(jk;1) � (X�
jk;1

�X�
ik;m

)

sk(jk;3) � (X�
jk;3

�X�
ik;m

)� sk(jk;2) � (X�
jk;2

�X�
ik;m

)
...

sk(jk;n) � (X�
jk;n

�X�
ik;m

)� sk(jk;n�1) � (X�
jk;n�1

�X�
ik;m

)

1
CCCA :

This completes the proof of Proposition 1.
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