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Abstract The best breakdown point robustness is one of the most outstanding features of the

univariate median. For this robustness property, the median, however, has to pay the price of a low

efficiency at normal and other light-tailed models. Affine equivariant multivariate analogues of the

univariate median with high breakdown points were constructed in the past two decades. For the high

breakdown robustness, most of them also have to sacrifice their efficiency at normal and other models,

nevertheless. The affine equivariant maximum depth estimator proposed and studied in this paper

turns out to be an exception. Like the univariate median, it also possesses a highest breakdown point

among all its multivariate competitors. Unlike the univariate median, it is also highly efficient relative

to the sample mean at normal and various other distributions, overcoming the vital low-efficiency

shortcoming of the univariate and other multivariate generalized medians. The paper also studies the

asymptotics of the estimator and establishes its limit distribution without symmetry and other strong

assumptions that are typically imposed on the underlying distribution.
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1 Introduction

The univariate median is well known for its robustness. Indeed, it is a valid location (center)
estimator even if up to half of data points are “bad” (contaminated). It is said to have the
highest breakdown point. The notion of breakdown point, introduced by Donoho and Huber[1],
has become the most prevailing quantitative assessment of robustness of estimators. Roughly
speaking, the breakdown point of an estimator is the minimum fraction of bad points in a data
set that could render the estimator useless. Since one bad point in a data set of size n can force
the sample mean to be unbounded (hence useless), its breakdown point then is 1/n, the lowest
possible value. On the other hand, to make the univariate median useless, 50% of original data
points need to be contaminated. That is, the breakdown point of the univariate median is
b(n + 1)/2c/n, which turns out to be the best possible value for any reasonable estimators of
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location parameters. Here bxc denotes the largest integer no larger than x.

Multivariate analogues of the univariate median are desirable and the L1 (or spatial) and
the coordinate-wise medians are two that have the same breakdown point as that of the uni-
variate counterpart (see [2]). Unlike the univariate median, the two, however, lack the affine
equivariance property, which, just like robustness, is also highly desirable. Roughly speaking,
affine equivariance of an estimator implies that the estimator is coordinate system free and
measurement scale free. Constructing affine equivariant multivariate location estimators with
a high breakdown point has been one of the primary goals of researches in robust statistics for
two decades. Important results were obtained by Stahel[3], Donoho[4], Davies[5], Tyler[6], and
Hettmansperger and Randles[7], for example. Related estimators can have breakdown points
as high as (but no higher than) b(n− d + 1)/2c/n in Rd.

Recently “data depth” has been utilized to serve the above goal. The primary purpose of data
depth is to provide a center-outward order for multi-dimensional data based on their depth; see
[8–10] for example. Points deep inside a data cloud get high depth and those on the outskirts
get lower depth. The point with maximum depth is then defined as a multi-dimensional location
estimator (or median). Maximum depth estimators (or medians) are usually affine equivariant
and can have high breakdown points. Indeed, the half-space depth median (see [11]) can have
a breakdown point about 1/3 in Rd. The projection depth median[12], on the other hand, can
have an unprecedentedly high breakdown point b(n−d+2)/2c/n (d > 1) (the best result before
this one is b(n− d + 1)/2c/n in Rd).

Unfortunately, most affine equivariant multivariate estimators (medians), just like the uni-
variate median, have to pay the price of a low efficiency at normal models for their high break-
down robustness. This is also true for above depth medians. A natural question raised is: Is
there any affine equivariant multivariate median-type estimator that has the highest breakdown
point b(n− d + 2)/2c/n while enjoying a very high efficiency at normal and other models?

This paper provides a positive answer to the question by conducting a thorough study of
a maximum depth estimator defined in Section 2. It investigates the large sample properties
of the estimator, establishing its

√
n- (and strong) consistency and limiting distribution; it

examines the finite sample properties of the estimator, studying its finite sample breakdown
point robustness and finite (as well as large) sample efficiency. Developing the asymptotic
theory for the maximum depth estimator is rather challenging. Empirical process theory turns
out to be vital. In pioneer studies such as He and Portnoy[13], Nolan[14], Bai and He[15] and
Zuo[12], a symmetry as well as other strong (e.g., everywhere differentiable density and finite
moments) assumptions are imposed on the underlying distribution. Without these assumptions,
the task turns out to be much more challenging and technically demanding and is fulfilled in
this current paper. Unlike the univariate median and multivariate competitors, the maximum
depth estimator can enjoy the highest breakdown point robustness without having to pay the
price of a low efficiency. Indeed, it is highly efficient at a variety of light- and heavy-tailed
distributions in one and higher dimensions.

The rest of the paper is organized as follows: Section 2 defines a maximum depth estimator
and discusses its primary properties. Asymptotic properties of the estimator are thoroughly
investigated in Section 3. Section 4 is devoted to the study of finite sample properties of the
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estimator where its breakdown point robustness and relative efficiency are examined. Real data
examples are presented in Section 5. Selected proofs are reserved for the Appendix.

2 A maximum depth estimator and its primary properties

2.1 Outlyingness, projection depth, and maximum depth estimators
In R1, the outlyingness of a point x with respect to (w.r.t.) a univariate data set (sample)
Xn = {X1, . . . , Xn} is simply |x − µ(Xn)|/σ(Xn), the deviation of x to the center of Xn

standardized by the scale of Xn. Here µ and σ are univariate location and scale estimators
with typical choices including (mean, standard deviation), (median, median absolute deviation)
and, more generally, (M -estimator of location, M -estimator of scale). Mosteller and Tukey see
[16, p. 205] introduced and discussed an outlyingness weighted mean in the univariate setting.
Stahel[17] and Donoho[4] considered a multivariate analog and defined the outlyingness of a
point x w.r.t. Xn in Rd (d > 1) as

O(x,Xn) = sup
{u: u∈Sd−1}

u′x− µ(u′Xn)
σ(u′Xn)

, (1)

where Sd−1 = {u : ‖u‖ = 1} and u′Xn = {u′X1, . . . , u
′Xn}. If u′x− µ(u′Xn) = σ(u′Xn) = 0,

then we define (u′x− µ(u′Xn))/σ(u′Xn) = 0. Along with other notions of data depth, Liu[18],
Zuo and Serfling[10] and Zuo[12] defined and discussed “projection depth” (PD) of a point x

w.r.t. Xn in Rd

PD(x,Xn) = 1/(1 + O(x,Xn)), (2)

and treated the maximum depth (deepest) point (w.r.t. a general depth notion) as a multi-
dimensional location estimator (median). With µ and σ being general m-estimators of location
and scale, Zuo[12] defined and thoroughly studied

Tn := T (Xn) = arg sup
x∈Rd

PD(x,Xn), (3)

the maximum projection depth estimator (taking average if there is more than one maximizer).
For µ and σ being the median (Med) and the median absolute deviation (MAD), Tn is very
robust with a breakdown point highest among all competitors. It is also quite efficient with this
µ and σ. Indeed, Tn is about 78% efficient relative to the mean at bivariate normal models.
This relative efficiency, albeit higher than that of Med (64%) and comparable with those of
multivariate competitors, is still low. The low efficiency of Med seems to be the main source.
A remedial measure is to replace Med with an efficient location estimator µ. To keep the high
breakdown point robustness of Tn, µ should be as robust as Med. We introduce and study such
a µ next.

2.2 A maximum projection depth estimator and its primary properties
Though properties in this subsection hold for many general µ and σ, hereafter µ is taken to be
the special univariate “projection depth weighted mean” (PWM) for Xn in R1 (see [19] for a
multi-dimensional PWM)

µ(Xn) := PWM (Xn) =
∑n

i=1 wiXi∑n
i=1 wi

, (4)
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where wi = w(PD(Xi, X
n)), w is a weight function on [0, 1], and PD(Xi, X

n) = 1/(1 + |Xi −
Med(Xn)|/MAD(Xn)); σ is taken to be MAD (though any other robust scale estimator can
serve the same purpose). We now confine attention to the corresponding maximum projection
depth estimator with this µ and σ. Note that µ is not an M -estimator but an outlyingness
(depth) weighted mean. Hence many results in [2] are not applicable to Tn in this paper.

It is readily seen that the µ and the σ are affine equivariant, that is, µ(sXn +b) = sµ(Xn)+b

and σ(sXn + b) = |s|σ(Xn) for any Xn and scalars s and b in R1, where sXn + b = {sX1 +
b, . . . , sXn + b}. With (any) affine equivariant µ and σ, we see that O(x,Xn) is affine invariant,
that is, O(Ax + b, AXn + b) = O(x,Xn) for any nonsingular d× d matrix A and vector b ∈ Rd.
Consequently, Tn is affine equivariant, that is, T (AXn + b) = AT (Xn) + b since PD is also
affine invariant.

If the distribution of Xi is symmetric about a point θ ∈ Rd, that is, ±(Xi− θ) have the same
distribution, then it is seen that Tn is also symmetric about θ. Furthermore, if E(Xi) exists,
then Tn is unbiased for θ, that is, E(Tn) = θ.

Let Fn (Fnu) be the empirical distribution based on Xn (u′Xn) which places mass 1/n at
points Xi (u′Xi). We sometimes write Fn (Fnu) for Xn (u′Xn) for convenience. Let F (Fu)
be the distribution of Xi (u′Xi). Replacing Xn (or Fn) and u′Xn (or Fnu) with F and Fu in
the above definitions, we obtain the population versions. For example, the popular version of
PWM for F ∈ R1 is

µ(F ) := PWM (F ) =
∫

w(PD(x, F ))xdF (x)∫
w(PD(x, F ))dF (x)

. (5)

It can be seen that the above affine invariance or equivariance properties in the sample case
hold true in the population case. For example, T (F ) is affine equivariant, that is, T (FAX+b) =
AT (FX) + b for any nonsingular d × d matrix A and any b ∈ Rd, where FZ denotes the
distribution of Z. Furthermore, if F is symmetric about θ, then T (F ) = θ. That is, T (·) is
Fisher consistent.

3 Asymptotics for the maximum depth estimator

3.1 Preliminary lemmas

To ensure that µ (PWM) is well defined, we assume that w(r) > 0 on (0, 1] and w(0) = 0 (and
the derivative w(1)(r) is continuous on [0, 1] for the technical sake). Such a w is exemplified in
Subsection 4.2. To ensure the scale σ (MAD) is > 0 at Fu, we assume P (u′X = a) < 1/2 for
any u ∈ Sd−1 and a ∈ R1. Further to ensure that Med and MAD are unique at Fu for any
u ∈ Sd−1, we assume

Assumption A1. Fu′X and F|u′X−Med(Fu)| are non-flat in a small right neighborhood of
Med(Fu) and MAD(Fu), respectively, for any u ∈ Sd−1.

Assumption A1 guarantees the continuity of Med(Fu) and MAD(Fu) in u ∈ Sd−1 and hence
0 < infu∈Sd−1 MAD(Fu). Clearly, supu∈Sd−1 MAD(Fu) < ∞. This boundedness property turns
out to be true for µ as well. We have

Lemma 1. Under Assumption A1, 0 < infu∈Sd−1 σ(Fu) 6 supu∈Sd−1 σ(Fu) < ∞, and −∞ <

infu∈Sd−1 µ(Fu) 6 supu∈Sd−1 µ(Fu) < ∞.

Assumption A1 also ensures the uniform strong consistency of µ and σ.
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Lemma 2. Under Assumption A1 and assume F is continuous at Med(Fu)±σ(Fu), supu∈Sd−1

|µ(Fnu)− µ(Fu)| = o(1) and supu∈Sd−1 |σ(Fnu)− σ(Fu)| = o(1), a.s.

This lemma implies that Lemma 1 holds a.s. in the sample case for large n. The lemmas
also ensure the (Lipschitz) continuity of PD(·, G), which in turn implies the existence of T (G)
since PD(x,G) → 0 as ‖x‖ → ∞, for G = F, Fn and for large n. Further, the set of maximum
depth points for G = F has an empty interior (see Theorem 2.3 of [12]) and is a singleton in
many cases. For example, if F is symmetric about θ, or even just µ-symmetric about θ (i.e.
µ(Fu) = u′θ, ∀u ∈ Sd−1; see [12]), then T (F ) = θ is unique. Throughout we assume that T (F )
is unique. The lemmas also lead to the SLL for T (Fn).

Lemma 3. Under the conditions of Lemma 2, T (Fn)− T (F ) = o(1), a.s.

To discuss the limit distribution of Tn, we need uniform Bahadur type representations of
Med and MAD and especially of µ at Fnu. To this end, assume

Assumption A2. F
(2)
u exists at µ(Fu) with F

(1)
u = fu, infu∈Sd−1 fu(Med(Fu)) > 0, and

infu∈Sd−1(fu(Med(Fu) + MAD(Fu)) + fu(Med(Fu)−MAD(Fu))) > 0.

Remark 1. Assumption A2 is standard for the asymptotic representation of the sample Med
and MAD for a fixed u (see, for example, [20, 21]). The differentiability requirement guarantees
the expansion of the functionals near µ(Fu) and σ(Fu), and the positivity requirement guaran-
tees the existence of the variances of the functionals (with a non-zero denominators) and the
uniqueness of the functionals at µ(Fu) and σ(Fu).

Note that Assumptions A1 and A2 are nested Assumption A2 implies A1. Indeed we have

Med(Fnu)−Med(Fu) =
1
n

∑
f1(Xi, u) + op

(
1√
n

)
, (6)

MAD(Fnu)−MAD(Fu) =
1
n

∑
f2(Xi, u) + op

(
1√
n

)
, (7)

uniformly in u ∈ Sd−1. Let au = Med(Fu), bu = MAD(Fu). If F is symmetric (or if F (au+bu) =
1− F (au − bu), fu(au + bu) = fu(au − bu) only), then

f1(x, u) =
1/2− I(u′x 6 au)

fu(au)
, f2(x, u) =

1/2− I(|u′x− au| 6 bu)
2fu(au + bu)

. (8)

These representations, proved in Appendix, lead to the following result.

Lemma 4. Under Assumption A2, we have uniformly in u ∈ Sd−1,

µ(Fnu)− µ(Fu) =
∫

g(x, u)d(Fn − F )(x) + op(n−1/2), (9)

where

g(x, u) =
( ∫

(y − µ(Fu))w(1)(PD(y, Fu))h(y, u, x)dFu(y)

+
(u′x− µ(Fu))w(PD(u′x, Fu))∫

w(PD(y, Fu))dFu(y)

)
,

h(y, u, x) =
PD 2(y, Fu)
MAD(Fu)

(
sign(y − au)f1(x, u) +

1− PD(y, Fu)
PD(y, Fu)

f2(x, u)
)

,
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Remark 2. (i) When F is symmetric about a point, say 0, then g, with
∫ |y|w(1)(PD(y, Fu))

(PD2(y, Fu)f1(x, u)/bu)dFu(y) + u′xw(PD(u′x, Fu)) as its numerator, is greatly simplified. (ii)
The lemma provides a Bahadur representation of T (Fn) in R1 since T (Fn) = µ(Fn) and T (F ) =
µ(F ) (u = 1) in this case. Hence

√
n (T (Fn)− T (F )) d−→ N(0, v) with v = E(g2(x, 1)) in R1.

Equipped with results above, we now discuss the
√

n-consistency and asymptotic distribution
of the sample maximum projection depth estimator Tn in Rd.

3.2
√

n-consistency and limiting distribution
The strong consistency of Tn above raises a natural question: how fast does Tn converge to
T (F )? We answer this question with a

√
n-consistency result below. Under Assumption A1,

Med(·) and MAD(·) and consequently µ(·) at Fu are continuous in u ∈ Sd−1. Hence we have a
non-empty set defined as follows:

V (T ) = {v ∈ Sd−1 : O(T, F ) = (v′T − µ(Fv))/σ(Fv)}. (10)

It is seen that F is µ-symmetric if and only if V (T ) = Sd−1, which holds if and only if
{v,−v} ∈ V (T ) for some v ∈ Sd−1. Instead of imposing a µ-symmetry constraint on F (i.e.
requiring V (T ) = Sd−1) in the discussion below, we assume

Assumption A3. supv∈V (T ) u′v > c, for some fixed c ∈ (0, 1] and any u ∈ Sd−1.

Clearly, 1 is a choice for c if F is µ-symmetric. Assumption A3 means that any cap of Sd−1

with hight c always contains at least one member of V (T ). We have

Theorem 1. Under Assumptions A2 and A3, n1/2(T (Fn)− T (F )) = Op(1).

The theorem extends a corresponding result of Zuo[12] where the
√

n-consistency of general
maximum projection depth estimators is established under a (µ-) symmetry assumption, which
is vital in the proof there.

With a
√

n-consistency result, an immediate question raised is: does Tn possess any limit
distribution? The answer is positive. Lemma 4, in conjunction with results in empirical process
theory, implies the weak convergence of

√
n (µ(Fnu) − µ(Fu)), as a process indexed in u ∈

Sd−1, to a centered Gaussian process Z(u), u ∈ Sd−1, with Z(u) = −Z(−u) and a covariance
structure:

Cov(Z(u1), Z(u2)) = E(Z(u1)Z(u2)) = E(g(X, u1)g(X, u2)). (11)

This, in conjunction with Assumptions A2 and A3, leads to the following result:

Theorem 2. Under Assumptions A2 and A3, we have

√
n (T (Fn)− T (F )) d−→ arg inf

x∈Rd
sup

u∈V (T )

(u′x− Z(u))/σ(Fu).

The theorem is proved via an Argmax continuous mapping theorem (see, e.g., [22]). The main
idea and the key steps of the proof are as follows. First, in virtue of the uniform representation
in Lemma 4 and empirical process theory, we show that

√
n (µ(Fnu)−µ(Fu)) converges weakly

to the Gaussian process Z(u). Second, we show that the arg inf in the theorem is unique. Third,
we show that supu∈Sd−1(u′t−√n (µ(Fnu)−µ(Fu)))/σ(Fnu) converges weakly to supu∈V (T )(u′t−
Z(u))/σ(Fu) in `∞(K) for any compact K ⊂ Rd. Finally, the uniform tightness in Theorem 1
completes the proof.
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Remark 3. (i) The theorem indicates that the (standardized) sample maximum depth es-
timator converges weakly to a random variable. It is Z(1) (the same one as N(0, v) discussed
in Remark 1 in R1 and a minimizer of a random function involving a Gaussian process in Rd

(d > 2). (ii) The limiting distribution depends largely on the choice of µ (via Z(u)) less on
σ. Indeed, any Fisher consistent scale σ at Fu leads to the same result. (iii) We note that
Zuo[12] also studied the limiting distribution of maximum depth estimators. However, (µ, σ)
there are simultaneous M -estimators of location and scale, which do not cover more involved
cases such as (PWM, MAD) here. Furthermore µ-symmetry as well as many other very restric-
tive conditions are imposed on F in [12]. The theorem here is established without these strong
assumptions on F .

4 Robustness and efficiency of the maximum depth estimator

4.1 Finite sample breakdown point robustness
Following Donoho and Huber[1], we define the finite sample replacement breakdown point (BP)
of a location estimator L at Xn = {X1, . . . , Xn} in Rd as

BP(L,Xn) = min
{

m

n
: sup

Xn(m)

‖L(Xn(m))− L(X)‖ = ∞
}

, (12)

where Xn(m) denotes a contaminated sample resulting from replacing m original points of Xn

with arbitrary m points in Rd. For a scale estimator S, the same definition can be used with L

replaced by log (S) on the right hand side.
Clearly, the breakdown point of the maximum depth estimator depends on those of µ and

σ. More precisely, it depends mainly on the BP of µ and the implosion breakdown point of σ

(and less on the explosion breakdown point of σ). As a scale estimator, σ breaks down if it
becomes 0 or ∞, corresponding to implosion or explosion. It can be shown that µ (PWM), like
the univariate median, also has the best possible BP, b(n + 1)/2c/n, of any affine equivariant
location estimator. The BP of Tn thus depends essentially on that of σ (MAD). Since it is
easier to implode MAD with the projected data u′Xn of Xn in high dimension along a special
direction u, a modified version, MADk (1 6 k 6 n), has been utilized in the literature to
enhance the implosion BP of MAD; see, e.g., [6, 12, 23]. It is the average of the b(n+k)/2cth and
b(n+k +1)/2cth absolute deviations among the n absolute deviations |x1−Med(xn)|, . . . , |xn−
Med(xn)| for data xn in R1. Note that MAD1 is just the standard MAD. A data set Xn is in
general position if no more than d data points lie in any (d− 1)-dimensional hyperplane. If F

of Xi is absolute continuous, then Xn is in general position almost surely.

Theorem 3. Let w(r) be continuous and 0 6 w(r) 6 Cr for r ∈ [0, 1] and some C > 0 and
w(r) > 0 for r ∈ [1/2, 1]. Let (µ, σ) = (PWM, MADk). Then

BP (Tn, Xn) =




b(n + 1)/2c/n, d = 1,

b(n− 2d + k + 3)/2c/n, d > 2,

for Xn in general position and n > 2(d− 1)2 + k + 1, where k 6 (d− 1) if d > 2.

Remark 4. The theorem indicates that (i) in R1, Tn has the best possible breakdown point
of any affine equivariant location estimator; and (ii) in higher dimension Rd, it has a BP
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b(n− d + 2)/2c/n for σ =MADd−1, which again is the best for any affine equivariant location
estimators constructed in the past two decades. Thus Tn has the best breakdown robustness
among existing estimators.

4.2 Finite and large sample relative efficiency
It is well known that the univariate median pays the price of a low efficiency at normal and light-
tailed models for its best breakdown robustness. Now Tn also possesses the best breakdown
point among any existing affine equivariant competitors in one and higher dimensions. Does it
have to pay the same price?

The asymptotic normality of Tn in R1 established in Section 3 allows one to calculate the
asymptotic relative efficiency and absolute efficiency directly (the latter notion is the relative
efficiency with respect to Cramér-Rao lower bound (crlb); see, e.g., [24, p. 363] for definition
and related discussions). Indeed, we have these efficiency results listed in Table 1. In this
subsection, the weight function w is taken to be the continuously differentiable function

W (r, c, k) = I(r > c) + (e−k(1−r2/c2)2 − e−k)/(1− e−k)I(r < c), (13)

where 0 6 c 6 1 and k > 0 are two parameters. The main idea behind this weight function w is
as follows. For deep data points, we simply average them to gain high efficiency. For less depth
points or points on the outskirts, we exponentially down-weight them to alleviate their influence
and consequently to gain robustness. In general, a small c is favorable at light-tailer F ’s and
a large c at heavy-tailer ones. The same is true for k. A weight function similar to W above
was first used and discussed in [19]. We consider here normal, logistic, double exponential and
cauchy distributions, representing very light- to very heavy-tailed distributions. For simplicity,
we take k = 3 and c to be 0.2 and 0.8 for light- and heavy-tailed distributions, respectively.

Table 1 Asymptotic and absolute efficiency of Tn with w(r) = W (r, c, 3)

F N(0, 1) LG(0,1) DE(0,1) CAU(0,1)

c = 0.2 c = 0.2 c = 0.8 c = 0.8

σ2
X̄n

/σ2
Tn

0.9595 1.0340 1.9563 ∞
crlb/σ2

Tn
0.9595 0.9409 0.9782 0.8960

In R1, Tn has astonishingly high efficiencies, uniformly across a number of light- and heavy-
tailed distributions. Indeed, it is about 90% (or higher) efficient relative to the most efficient
estimator at each model. It is about 96% efficient relative X̄n at normal models and is more
efficient than X̄n at other models. By appropriately tuning c and k, one can get even better
results in practice.

In Rd (d > 1), the complex limiting distribution of Tn makes it difficult to calculate the
asymptotic relative efficiency directly. In the following, we consider the finite sample efficiency
of Tn relative to X̄n at normal and other t models for d = 2, 3, and 4. We assume that
both Tn and X̄n aim at estimating a location parameter θ. We generate m samples, each
with size n, from each model and calculate the “empirical mean squared error” (EMSE) of Tn:∑m

i=1 ‖T i
n − θ‖2/m, where T i

n is the estimate obtained based on the i-th sample. The relative
efficiency of Tn with respect to X̄n is obtained by dividing the EMSE of X̄n by that of Tn. In
our simulation, m = 1000, n = 50, and θ is the origin.
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The efficiency results of Tn relative to X̄n are given in Table 2, where the EMSE’s of X̄n

and Tn are given in the parentheses with those of X̄n on the numerators. For simplicity, we
take k = 3 and let c = 0.8 for t(3) and Cauchy distribution cases. At normal models, we take
c = 1/(1 + 2

√
2d− 3) which decrease at a rate O(1/

√
d) so that the relative efficiency of Tn

increases.

Table 2 Finite sample efficiency of Tn relative to X̄n with w(r) = W (r, c, 3)

F Nd(0, 1) td(3) CAUd(0, 1)

c = 1
1+2

√
2d−3

c = 0.8 c = 0.8

d = 2 0.959 ( 0.03950
0.04118

) 1.962 ( 0.11637
0.05931

) 18157.730 ( 1552.02
0.08547

)

d = 3 0.964 ( 0.06309
0.06547

) 2.076 ( 0.17487
0.08422

) 845324.01 ( 99147.37
0.11729

)

d = 4 0.970 ( 0.07971
0.07465

) 2.070 ( 0.23417
0.11312

) 5694367.8 ( 889577.3
0.15622

)

Inspecting the table entries reveals that (i) like in the univariate case, the maximum depth
estimator is highly efficient relative to the mean at normal and other heavy-tailed distributions
in the high dimensional cases; (ii) the relative efficiency increases as the dimension d increases;
and (iii) the maximum depth estimator is highly robust against heavy-tailed t distributions.
Indeed Tn, unlike the sample mean X̄n, possesses a sample covariance matrix that has finite
entries at multi-dimensional cauchy distributions and that is approximately 0.04 ∗ Id.

The efficiency results in Table 2 do not depend much on the sample size n, Indeed, our
extensive simulation studies confirm this. For example, the relative efficiency of Tn at bivariate
normal models for a variety of sample sizes including 100, 200, . . . , 1000 ranges from 95% to
97%. The high efficiency of Tn relative to X̄n at bivariate normal models is illustrated in the
scatter plots of 400 sample means and sample maximum depth estimators in Figure 1 below.

Figure 1 400 bivariate means and 400 maximum projection depth estimators based on N2(0, I2) samples of

size 500 are scattered roughly in the same pattern.

The results in Table 2 depend on the choices of c and k. Appropriately tuning these param-
eters, one can get better results. For example, with c = 0 at normal models, the efficiencies of
Tn relative to X̄n increase to 100%. But Tn (= X̄n) is no longer robust and conditions on w in
Theorem 3 are violated.

There are many competitors of Tn in the literature. The breakdown points of these esti-
mators, however, are not as high as that of Tn. Furthermore, most leading competitors are
less efficient. For example, at bivariate normal models, the efficiency relative to X̄n is 72% for
transformation-retransformation median (see [25]), 76% for Tukey halfspace median (see [26]),
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78.5% for Hettmansperger-Randles median (see [7]), 78% for the projection median (see [12]),
but 96% for Tn.

We also studied the efficiency of Tn at contaminated (or mixed) normal and other distribu-
tions. Simulation results indicate, as we expect, that the robust Tn is overwhelmingly more
efficient than the sample mean in all those cases.

5 Real data examples

We apply the maximum projection depth estimator to the real data sets to illustrate its (i) high
robustness, (ii) high efficiency, and (iii) computability.

5.1 Gilgai survey data

This data set is generated from a line transect survey in gilgai territory in New South Wales,
Australia. Gilgais are natural gentle depressions in otherwise flat land, and sometimes seem to
be regularly distributed. The data collection was stimulated by the question: are these patterns
reflected in soil properties?

At each of 365 sampling locations on a linear grid of 4 meters spacing, samples were taken at
depths 0–10 cm, 30–40 cm and 80–90 cm below the surface. pH, electrical conductivity (EC)
and chloride content (CC) were measured on a 1:5 soil:water extract from each sample. Further
details may be found in [27]. This data set was also analyzed in [28].

Figure 2 Pair-wise scatter plot of gilgai soil data[27, 28].
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A pair-wise scatter plot of this data set (365 × 9) is given in Figure 2. Inspecting the plot
reveals that there are quite a lot variation and unusual points in the data. Histograms of the
individual variables confirm this observation. It seems that the measurements of the electrical
conductivity and chloride content at 0−10 cm and 30−40 cm depths have extremely high vari-
ability whereas those at 80− 90 cm depth are quite stable except some extreme measurements.
The measurements of pH have much less variability except some extreme measurements at the
deepest level. The coordinate-wise minimum, the sample mean, the coordinate-wise median,
Tn, and the coordinate-wise maximum, of this data set are obtained (in less than 3 minutes)
with a program in Fortran and listed below respectively

(5.6 7.5 4.9 5.0 6.0 15.0 20.0 20.0 50.0),

(7.406 8.787 8.585 20.56 95.77 184.3 171.7 894.3 1450.0),

(7.3 8.9 8.7 13.0 54.0 170.0 38.0 355.0 1400.0),

(8.578 8.128 9.225 18.564 76.14 164.3 98.91 698.4 1327.0),

(9.0 9.7 9.6 240.0 510.0 530.0 3350.0 4770.0 4725.0).

The three location estimates in the middle are quite different from each other. This is due
to the high variability of the data as well as the robustness and efficiency properties of the
estimators. The 7th and 8th components of the sample mean are especially different from those
of the other two. A scatter plot of 7th and 8th components (CC1 and CC2) is given in Figure
3(a) which displays the strong abnormality of these two variables. A histogram of CC1 in
Figure 3(b) indicates that the majority of CC1 values are less than 100. Indeed there are 264
out of 365 (72.3%) of CC1 values no greater than 100. The 7th component of both Tn and
the coordinate-wise median is less than 100 while that of the sample mean is 171.7425. On
the other hand, there are only about 21.6% of CC1 values that are greater than 171.7425. All
the evidence manifests the strong robustness of Tn (and the coordinate-wise median) and the
vulnerability of the sample mean with respect to unusual observations. Geometrically, Tn is
closer to the sample mean than the coordinate-wise median (and the coordinate-wise minimum
and maximum). This reflects that Tn can be very efficient while enjoying the high breakdown
robustness.

Figure 3 (a) Scatter plot of CC1 and CC2. (b) Histogram of CC1.
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6 Concluding remarks

Univariate median possesses the highest breakdown point robustness among all affine equivari-
ant location estimators. It has long served as a very robust measure of the center of univariate
data. Constructing its affine equivariant analogues in Rd (d > 1) is very desirable but turns out
to be non-trivial. Among all constructed, except the projection median in [12], none possesses
a breakdown point higher than b(n − d + 1)/2c/n. Furthermore, like the univariate median,
most of these estimators (including the projection median) have to sacrifice their efficiency for
achieving their high breakdown point robustness.

The maximum depth estimator proposed and studied in this paper not only breaks the
breakdown-point barrier b(n − d + 1)/2c/n that lasted two decades in the literature but also
possesses simultaneously very high efficiencies at a variety of light- and heavy-tailed distribu-
tions in one and higher dimensions.

The limiting distribution of the maximum depth estimator in Rd (d > 1) is somewhat uncom-
mon. It is the minimizer of a random function that involves a Gaussian process. Establishing
such a limiting distribution without the usual symmetry and other strong assumptions on the
underlying distribution is rather challenging and is one of major objectives and contributions
of this paper. In practical inference, bootstrapping techniques can be invoked to estimate the
variance-covariance structure of the estimator. Details will be pursed elsewhere.

Although the maximum depth estimator can possess both the affine equivariance and the
high breakdown point robustness without sacrificing its extremely high efficiency, for these
gains it does pay a high price in the computing. Just like all other affine equivariant loca-
tion estimators that have really high breakdown points, the maximum depth estimator, with
no exception, is computationally intensive. The key difficulty here lies in the calculation of
the outlyingness that is defined based on projections to all unit directions. The related com-
puting is very involved, if not impossible. Recent studies of this author indicate, however,
that the outlyingness function can actually be computed exactly in two and higher dimen-
sions. An implementable algorithm in Rd (d > 2), however, is yet to be developed. In the
simulation studies of this paper, we employed an approximate algorithm that can compute
the depth of a point in Rd (d > 2) quite fast. For the global minimum (maximum), a down-
hill simplex algorithm is also utilized in our calculation. (For the related program, please
see http://www.stt.msu.edu/˜zuo/pmsdmadrdRE.f.htm). A detailed account of the computing
issue of the depth estimator will be pursued elsewhere.

Finally, we remark that the general definition of the location estimator in (3) is not new and
was suggested in [6] under the outlyingness framework. Zuo[12] defined and studies the estimator
(called projection median) under the data depth framework. In those studied µ, however, is
either Med[6] or a general M -estimator[12]. The choice of µ = PWM, with a primary version
suggested first in [12] but defined with a different weight w and with the parameter tuning here,
is first studied in this current paper.

Appendix

Proof of Lemma 1. The assertion on σ is trivial. This assertion and the continuity of w(1) on
[0, 1] imply that uniformly in x ∈ R1 and in u ∈ Sd−1

|x|w(PD(x, Fu)) = |x|w(1)(η(x, Fu))/(1 + |x−Med(Fu)|/MAD(Fu)) < ∞,
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where η(x, Fu) is between 0 and PD(x, Fu). Hence

sup
u∈Sd−1

sup
x∈R1

(|x|+ 1)w(PD(x, Fu)) < ∞. (14)

Clearly
∫

w(PD(x, Fu))dFu > 0 uniformly in u ∈ Sd−1 since w(PD(x, Fu)) > 0 uniformly in
u ∈ Sd−1 for any ‖x‖ 6 M < ∞. This, in conjunction with the last display and the fact that
−µ(F−u) = µ(Fu), gives the desired result.

Proof of Lemma 2. The continuity of Fu and Med(Fu) in u ∈ Sd−1, the compactness of Sd−1,
and Assumption A1 implies that for any ε > 0

δε = min
{

inf
u∈Sd−1

(Fu(Med(Fu) + ε)− 1/2), inf
u∈Sd−1

(1/2− Fu(Med(Fu)− ε))
}

= min{Fu1(Med(Fu1) + ε)− 1/2, 1/2− Fu2(Med(Fu2)− ε)} > 0,

for some fixed u1, u2 ∈ Sd−1. By Theorem 2.3.2 of [3],

P (|Med(Fnu)−Med(Fu)| > ε) 6 2 e−2nδ2
ε , ∀n,

which, together with Borel-Cantelli lemma, ensures the strong consistency of Med(Fnu) with
Med(Fu) uniformly in u ∈ Sd−1. The same argument leads to the same conclusion for
MAD(Fnu) (with MAD(Fu)). That is, almost surely

sup
u∈Sd−1

|Med(Fnu)−Med(Fu)|=o(1), sup
u∈Sd−1

|MAD(Fnu)−MAD(Fu)|=o(1). (15)

We now show the uniform strong consistency of µ(Fnu) with µ(Fu). Write

µ(Fnu)− µ(Fu) =
∫

(x− µ(Fu))w(PD(x, Fnu))dFnu(x)∫
w(PD(x, Fnu))dFnu(x)

. (16)

The numerator can be decomposed into

I1n + I2n :=
∫

(x− µ(Fu))(w(PD(x, Fnu))− w(PD(x, Fu)))dFnu(x)

+
∫

(x− µ(Fu))w(PD(x, Fu))d(Fnu − Fu)(x).

By Lemma 1 and its proof, we see that the integrand of I2n is bounded uniformly in u ∈
Sd−1. It is readily seen that µ(Fu) is continuous in u ∈ Sd−1 and so is I2n consequently.
Employing this continuity and the compactness of Sd−1, and invoking Hoeffding’s inequality
(see Proposition 2.3.2 of [3], for example) and Borel-Cantelli lemma, we see that I2n converges
to 0 a.s. and uniformly in u ∈ Sd−1. If we can now show the same is true for I1n, then with
the same (slightly less involved) argument we can show that the denominator converges a.s. to∫

w(PD(x, Fu))dFu(x) and uniformly in u. The result follows.
To treat I1n, we observe that the continuity of w(1) on [0, 1] implies

∣∣∣∣
∫

(x− µ(Fu))(w(PD(x, Fnu))− w(PD(x, Fu)))dFnu(x)
∣∣∣∣

6
∫
|x− µ(Fu)||w(1)(ηn(x, u))||PD(x, Fnu)− PD(x, Fu)| dFnu(x)

6 C sup
x∈R1

|x− µ(Fu)||PD(x, Fnu)− PD(x, Fu)|,
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for some C > 0, where ηn(x, u) is a point between PD(x, Fnu) and PD(x, Fu). In virtue
of Lemma 1, the uniform boundedness of Med(Fu) and MAD(Fu) in u, Display (15) and
Theorem 2.2 and Remark 2.5 of [12], we have that

sup
x∈R1

(|x|+ |µ(Fu)|)|PD(x, Fnu)− PD(x, Fu)| = o(1), a.s. (17)

uniformly in u ∈ Sd−1. We thus complete the proof of the lemma.

Proof of Lemma 3. Lemmas 1 and 2 imply that there is a C > 0 such that

|O(x, F )−O(y, F )| 6 C ‖x− y‖, sup
x∈S

|O(x, Fn)−O(x, F )| = o(1), a.s. (18)

for any bounded subset S of Rd. Further, for θ = T (F ), G = F, Fn, we have

O(θ, F ) < ∞, O(x,G) →∞, a.s. as ‖x‖ → ∞. (19)

This, in conjunction with the continuity of O(x, F ) in x, implies that

αε := inf
‖x−θ‖>ε

O(x, F ) > O(θ, F ), for any ε > 0, (20)

since otherwise there exist xn (n > 1) and x0 in Rd such that ‖xn − θ‖ > ε, ‖x0 − θ‖ > ε, and
O(θ, F ) = limn→∞O(xn, F ) = O(x0, F ), which, however, is a contradiction. Now in the light
of Displays (18)–(20), there exists an M > 0 such that ‖Tn− θ‖ 6 M a.s. and for n sufficiently
large

O(θ, Fn)< O(θ, F ) +
αε −O(θ, F )

2
= αε +

O(θ, F )− αε

2

= inf
ε6‖x−θ‖6M

O(x, F ) +
O(θ, F )− αε

2

< inf
ε6‖x−θ‖6M

O(x, Fn) = inf
‖x−θ‖>ε

O(x, Fn), a.s.,

which implies the strong consistency of Tn.

Proof of Displays (6) and (7). Assumption A2 permits an asymptotic representation of the
sample Med for any u ∈ Sd−1; see Theorem 2.5.1 of [3], for example. A careful examination of
the proof of that theorem reveals that such representation actually can be uniform in u ∈ Sd−1

by virtue of Assumption A2. Hence

Med(Fnu)−Med(Fu) =
1
n

n∑

i=1

1/2− I(u′Xi 6 Med(Fu))
fu(Med(Fu))

+ R1
n. (21)

where R1
n = O(n−3/4(log n)3/4) uniformly in u ∈ Sd−1. A similar but more involved argument

leads to the asymptotic representation of the sample MAD

MAD(Fnu)−MAD(Fu) =
1
n

n∑

i=1

1/2− I(|u′Xi − au| 6 bu)
fu(au + bu) + fu(au − bu)

+ R2
n, (22)

where R2
n = O(n−3/4(log n)3/4) uniformly in u ∈ Sd−1 if F is symmetric. The proof for non-

symmetric F is the same with more complicated f2(x, u).
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Proof of Lemma 4. By Display (16) and the proof of Lemma 2, the denominator of µ(Fnu)−
µ(Fu) =

∫
w(PD(x, Fu))dFu(x) + o(1), a.s. and uniformly in u ∈ Sd−1 and its numerator can

be decomposed into I1n + I2n with

I1n =
∫

(x− µ(Fu))w(1)(ηn(x, u))(PD(x, Fnu)− PD(x, Fu))dFnu(x),

where ηn(x, u) is a point between PD(x, Fnu) and PD(x, Fu). By Displays (21) and (22), Lemma 1,
and Theorem 2.2 and Remark 2.5 of [12], we have

sup
u∈Sd−1

sup
x∈R1

(|x|+ |µ(Fu)|)|PD(x, Fnu)− PD(x, Fu)| = Op(n−1/2). (23)

This, together with the continuity of w(1) and Display (17), implies that

I1n =
∫

(x− µ(Fu))w(1)(PD(x, Fu))(PD(x, Fnu)− PD(x, Fu))dFnu(x) + op

(
1√
n

)
,

uniformly in u ∈ Sd−1. Now we appeal empirical process theory to show that

I1n =
∫

(x− µ(Fu))w(1)(PD(x, Fu))(PD(x, Fnu)− PD(x, Fu))dFu(x) + op(n−1/2), (24)

uniformly in u ∈ Sd−1. Adopt Pollard[29] notation system and define

F =
{

(u′ · −µ(Fu))w(1)(PD(u′·, Fu))
1 + |u′ · −α|/β

: u ∈ Sd−1, α ∈ Ia, β ∈ Ib

}
,

where Ia = (a1 − δ, a2 + δ), Ib = (b1 − δ, b2 + δ), a1 = infu∈Sd−1 au and a2 = supu∈Sd−1 au are
bounded, b1 = infu∈Sd−1 bu > 0 and b2 = supu∈Sd−1 bu < ∞, and 0 < δ < b1 is a fixed number.
Let γ = (u, α, β). Then the space Γ formed by all γ’s is a bounded subspace of Rd+1. Define

fn(x) = (u′x− µ(Fu))w(1)(PD(u′x, Fu))PD(u′x, Fnu),

f(x) = (u′x− µ(Fu))w(1)(PD(u′x, Fu))PD(u′x, Fu),

for x ∈ Rd. Then f ∈ F and fn ∈ F a.s. for large n. A straightforward but tedious analysis
reveals that for any fi ∈ F corresponding to γi, i = 1, 2,

|f1(x)− f2(x)| 6 M ‖γ1 − γ2‖, ∀γ1, γ2 ∈ Γ,

where γi = (ui, αi, βi), i = 1, 2, and the constant M does not depend on γi, i = 1, 2. In the
light of empirical process theory, F is a Donsker class; see Theorem 2.7.11 of [22] or Example
19.7 of [30], for example. By Display (23) and the boundedness of w(1)(PD(x, Fu)) we have

∫
((x− µ(Fu))w(1)(PD(x, Fu))(PD(x, Fnu)− PD(x, Fu)))2dFu(x) = op(1),

uniformly in u ∈ Sd−1. Now invoking Equicontinuity lemma VII.4.15 of [29] or Proposition
29.24 of [30], we obtain Display (24).

A tedious (technically not very challenging) derivation yields that for x 6= au

PD(x, Fnu)− PD(x, Fu) =
PD 2(x, Fu)
MAD(Fu)

[
sign(x− au) lnu +

1− PD(x, Fu)
PD(x, Fu)

snu

]

+op

(
1√
n

)
, uniformly in x ∈ R1 and in u ∈ Sd−1,
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where lnu := Med(Fnu)−Med(Fu), and snu := MAD(Fnu)−MAD(Fu). Thus,

PD(x, Fnu)− PD(x, Fu) =
∫

h(x, u, y) d(Fn − F )(y) + op

(
1√
n

)
, (25)

uniformly in u ∈ Sd−1 for x 6= au. By Display (24) and the boundedness of (x − µ(Fu))w(1)

(PD(x, Fu))h(x, u, y), and invoking Fubini’s theorem, we have

I1n =
∫ [∫

(y − µ(Fu))w(1)(PD(y, Fu))h(y, u, x)dFu(y)
]
d(Fn − F )(x) + op

(
1√
n

)
,

uniformly in u ∈ Sd−1. This and I2n lead to the desired result.

Proof of Theorem 1. Assume, w.l.o.g., that T (F ) = 0. It is seen that

O(Tn, Fn) 6 O(0, Fn) = O(0, F ) + (O(0, Fn)−O(0, F )) = O(0, F ) + Op(n−1/2).

where the last equality follows from Assumption A2, Lemma 4, and the proof of Theorem 2.2
of [12]. On the other hand, for any v ∈ V (0),

O(Tn, Fn) > v′Tn − µ(Fnv)
σ(Fnv)

=
v′Tn

σ(Fnv)
+ O(0, F ) +

µ(Fv)
σ(Fv)

− µ(Fnv)
σ(Fnv)

,

which, combining with Lemma 4 and the last display, gives

sup
v∈V (0)

v′(n1/2Tn)
σ(Fnv)

6 Op(1). (26)

Assumption A3 implies there are vn ∈ V (0) such that v′n(n1/2Tn) > c‖n1/2Tn‖, which, the last
display, and Lemmas 1 and 2, yield the desired result.

Proof of Theorem 2. We invoke an Argmax continuous mapping theorem (Theorem 3.2.2
of [22]) to fulfill our task here. Assume, w.l.o.g., that T (F ) = 0. Define M(t, v) := (v′t −
Z(v))/σ(Fv), M(t) := supv∈V (0) M(t, v), Mn(t) := supu∈Sd−1(u′t−√n (µ(Fnu)−µ(Fu))/σ(Fnu)
with Z specified before the theorem. It takes several steps to complete the proof.

Firstly, we show that
√

n (µ(Fnu)−µ(Fu)), a process indexed by u ∈ Sd−1, converges weakly
to the gaussian process Z(u). This is done if we can show the functions of g(x, u) with u ∈ Sd−1

form a Donsker class (see [22] or [30] for definition and discussions). Define

G={g(·, u) : u ∈ Sd−1}, G1 =
{

(u′ · −α1)w(PD(u′·, Fu))
ζu

: u ∈ Sd−1, |α1| 6 η

}
,

G2 =
{

f1(·, u)β1 + f2(·, u)β2 : u ∈ Sd−1, |βi| 6 sup
u∈Sd−1

|gi(u)|, i = 1, 2
}

where η = supu∈Sd−1 µ(Fu), ζu =
∫

w(PD(y, Fu))dFu(y), and

g1(u) =
∫

(y − µ(Fu)) sign(y −Med(Fu))w(1)(PD(y, Fu)) PD 2(y, Fu)
MAD(Fu)ζu

dFu(y),

g2(u) =
∫

(y − µ(Fu))w(1)(PD(y, Fu)) (PD(y, Fu)− PD2(y, Fu))
MAD(Fu)ζu

dFu(y).

Following the argument given in the proofs of Theorem 3.3 and Remark 2.4 of [12], we see that
all functions fi(·, u) for u ∈ Sd−1 form a Donsker class for i = 1, 2, respectively. Note that
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gi(u) are bounded for u ∈ Sd−1 and so are the functions in G2. Now invoking Theorem 2.10.6
of [22], we conclude that G2 is Donsker. Employing the same argument for F in the proof
of Lemma 4 and invoking Theorem 2.7.11 of [22], we see that G1 is also Donsker. Obviously
G ⊂ G1 + G2. The latter is the pairwise sums of functions from the two classes. Now in virtue
of Theorems 2.10.1 and 2.10.6 and Example 2.10.7 of [22], we conclude that G is Donsker.
By Lemma 4, we conclude (in virtue of Theorem VII. 21 of [29] or Section 2.1 of [22]) that
{√n (µ(Fnu)−µ(Fu)) : u ∈ Sd−1} converges weakly to {Z(u) : u ∈ Sd−1}, where the Brownian
bridge Z is a tight Borel measurable element in l∞(G) and Z(−u) = −Z(u) with the covariance
specified before the theorem.

Secondly, we show that M(t) has continuous sample paths and unique minimum points t̂

almost surely and t̂ is tight. The continuity is trivial. The tightness is equivalent to the
measurability which is straightforward (see [29], for example) if there exists a minimum. We
now focus on the existence and the uniqueness of t̂. Clearly, M(t) → ∞ as ‖t‖ → ∞ and it is
readily seen that M(·) is convex. The existence of t̂ thus follows. To show the uniqueness, we
follow the line of Massé[31]. Let d > 1. Define M(t̂) := {v ∈ V (0) : M(t̂) = M(t̂, v)}. Clearly,
it is non-empty. Further, if ŝ is another minimizer, then so is αŝ + (1 − α)t̂ for any α ∈ [0, 1]
by the convexity of M(t). Following [14], we can show in a straightforward fashion that

sup
v∈M(t̂)

v′u > 0, ∀u ∈ Sd−1; M(αŝ + (1− α)t̂) = M(t̂) ∩M(ŝ), ∀α ∈ (0, 1). (27)

The linear space spanned by M(αŝ + (1 − α)t̂) for any α ∈ (0, 1) has dimension r > 1.
Otherwise, by the last display M(αŝ + (1 − α)t̂) = {v,−v} ⊆ V (0) for some v, which implies
that V (0) = Sd−1. Since M(t, u) is odd in u,

M(t̂) = M(t̂, v) = sup
u∈Sd−1

M(t̂, u) > inf
u∈Sd−1

M(t̂, u) = M(t̂,−v) = M(t̂),

which implies r = d since 0 = M(t̂) = M(t̂, u) = M(ŝ, u) for any u ∈ V (0). Let v1, . . . , vr be
linearly independent members of M(αŝ + (1 − α)t̂) and G be any r-dimensional linear space
containing t̂ and ŝ. Then Display (27) implies that both points t̂ and ŝ meet the linear system
v′is = Z(vi)−M(t̂)σ(Fvi

), s ∈ G, i = 1, . . . , r, which implies that ŝ = t̂.

Thirdly, we show that Mn converges weakly to M in `∞(K) for every compact K ∈ Rd.
First, employing an argument similar to that in the proof of Theorem 3.5 of [31], we can
show that asymptotically for weak convergence in `∞(K), Mn(t) is equivalent to M∗

n(t) :=
supu∈V (0)(u′t−

√
n (µ(Fnu)−µ(Fu)))/σ(Fnu). Now invoking continuous mapping theorem and

following the proof of lemma A.5 of [12], we can show that M∗
n converges weakly to M in `∞(K)

and hence so does Mn.

Finally, the uniform tightness of
√

n (T (Fn) − T (F )) based on Theorem 1 and the Argmax
theorem complete the proof.

Proof of Theorem 3. Recall (see Definition (1)) that if |x − µ(xn)| = σ(xn) = 0, then the
outlyingness O(x, xn) = 0 for xn in R1 since x is at the “center”.

First, considering the case d = 1, we note that T (Xn) = µ(Xn). Since b(n + 1)/2c/n

is the upper bound of BP of any affine equivariant estimators[4], we need only show that if
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m = b(n + 1)/2c − 1, then m contaminating points can not break down Tn. Clearly for this m

sup
Xn(m)

|Med(Xn(m))| < ∞, sup
Xn(m)

MAD(Xn(m) < ∞.

Let X(1)(m) 6 · · · 6 X(n)(m) be the ordered value of {X1(m), . . . , Xn(m)} = Xn(m). Then it
is not difficult to see that O(X(b(n+1)/2c)(m), Xn(m)) = 0 or 1 for n odd or even respectively.
Hence the denominator of Tn (PWM) is bounded away from 0 uniformly in Xn(m). On the
other hand, we observe

w(PD(Xi(m), Xn(m)))|Xi(m)|
6 w(PD(Xi(m), Xn(m)))(MAD(Xn(m))O(Xi(m), Xn(m)) + |Med(Xn(m))|)
6 C(MAD(Xn(m)) + |Med(Xn(m))|) < ∞,

in virtue of 0 6 w(r) 6 Cr for r ∈ [0, 1]. This implies that the numerator of Tn is bounded
uniformly in Xn(m). The proof for the case d = 1 is completed.

Second, consider the case d = 2. We first show that if m = b(n − 2d + k + 3)/2c, then m

contaminating points are enough to break down Tn. Let l12 be a line determined by X1, X2 ∈
Xn. Move m points from {X4, . . . , Xn} to the same site y on l12 far away from the original
convex hull formed by Xn. Denote the resulting data set Xn(m). Let l3y be the line connecting y

and X3. Let u12(⊥ l12) and u3y(⊥ l3y) be two unit vectors. Since m+d−1 = b(n+k+1)/2c, then
σ(u′12X

n(m)) = σ(u′3yXn(m)) = 0. Thus O(x,Xn(m)) = ∞ for x 6= y and O(y, Xn(m)) < ∞.
Hence Tn(Xn(m)) = y, which breaks down as ‖y‖ → ∞.

Now we show that if m = b(n − 2d + k + 3)/2c − 1, then m contaminating points are not
enough to break down Tn. Since m < b(n+1)/2c and n−m > b(n+k +1)/2c, this, combining
with the result above for the case d = 1, yields

sup
Xn(m)

sup
u∈Sd−1

|µ(u′Xn(m))| < ∞, sup
Xn(m)

sup
u∈Sd−1

σ(u′Xn(m)) < ∞. (28)

Consequently, O(x,Xn(m)) →∞ as ‖x‖ → ∞. Hence it suffices to show that

sup
Xn(m)

inf
‖x‖6M

O(x,Xn(m)) < ∞, (29)

for some large M > 0. Suppose that this is not true, then for any large M > 0, there is a
sequence of contaminated data set Xn1(m), Xn2(m), . . . , such that

inf
‖x‖6M

O(x,Xns(m)) →∞, as s →∞. (30)

Let M be a fixed large number so that any intersecting points of two lines determined by the
original data points of Xn are in the ball with a radius M . Displays (28) and (30) imply that
there is a sequence us ∈ Sd−1 such that

σ(u′sX
ns(m)) → 0, as s →∞. (31)

Since m + d − 1 = b(n + k − 1)/2c, thus there must be lines ls ⊥ us containing d points from
Xn, say, Xs1, . . . , Xsd, and all other m contaminating points of Xns(m) are approaching (as
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s → ∞) or on ls. Now since Xsi, i = 1, . . . , d, are on ls, to have O(Xsi, X
ns(m)) → ∞ as

s → ∞ there must be another sequence of u∗s ∈ Sd−1 that are perpendicular to lines l∗s that
do not contain any Xsi, i = 1, . . . , d. Furthermore, l∗s must contains some other d points of
Xn and all the m contaminating points of Xns(m) must be approaching (as s →∞) or at the
intersecting point ys of ls and l∗s .

By the compactness of Sd−1, there must be subsequences, {ust
} and {u∗st

}, of us and u∗s
respectively such that ust

→ u and u∗st
→ u∗ as t → ∞. Let lst

→ l and l∗st
→ l∗. Then u ⊥ l

and u∗ ⊥ l∗. Since there are only finitely many yst ’s, we can assume without loss of generality
that for sufficiently large t, yst

= y, lst
= l, l∗st

= l∗, ust
= u, and u∗st

= u∗ and y is the
intersecting point of l and l∗ (we can take subsequences if necessarily to achieve this). Note
that σ(u′Xn(m)) is continuous in u for any given Xn(m). So is µ(u′Xn(m)) by the continuity
of w. This and Display (30) imply that there is a sequence vst

∈ Sd−1 such that

O(y, Xnst(m)) =
v′st

y − µ(v′st
Xnst(m))

σ(v′st
Xnst(m))

→∞, as t →∞. (32)

We now seek a contradiction. Since there is a subsequence of vst that converges to v, assume
for simplicity that vst

→ v as t →∞. We first show that

Claim 1. v cannot be u, u∗ or any unit vector perpendicular to a line through y that contains
d points of Xn which also belong to infinitely many Xnst(m)’s.

It suffices to show that v 6= u. Suppose that v = u. Assume for convenience that Xnst
i (m),

i = 1, . . . , m + d, are the points on the line l or approaching y and Xstj , j = 1, . . . , n−m− d,
are the point of Xn ∩Xnst(m). Then it is seen that

|v′(Xnst
i (m)− y)| 6 2σ(v′Xnst(m)), i = 1, 2, . . . , m + d, for t large.

By the proof above for the case d = 1 we see that uniformly in Xnst(m)

1∑n
i=1

w(PD(v′Xnst
i (m), v′Xnst(m))) 6 1

min{w(1/2), w(1)} := N.

The last two displays and the conditions w imply that for t sufficiently large

|v′y − µ(v′Xnst(m))|
σ(v′Xnst(m))

6 |∑m+d
i=1 v′(Xnst

i (m)− y)w(PD(v′Xnst
i (m), v′Xnst(m)))|

σ(v′Xnst(m))
∑n

i=1 w(PD(v′Xnst
i (m), v′Xnst(m))

+
|∑n−m−d

j=1 v′(Xsyj − y)w(PD(v′Xstj , v
′Xnst(m)))|

σ(v′Xnst(m))
∑n

i=1 w(PD(v′Xnst
i (m), v′Xnst(m)))

6 2 +
n−m−d∑

j=1

(|v′Xstj −Med(v′Xnst(m))|+ |v′y −Med(v′Xnst(m))|)CN

σ(v′Xnst(m)) + |v′Xstj −Med(v′Xnst(m))|
< 2(1 + (n−m− d)CN),

which implies that O(y, Xnst(m)) is bounded for large t, a contradiction to (30).
In the above discussion, we have assumed that σ(v′Xnst(m)) > 0. If it is 0, then |v′(Xnst

i (m)−
y)| = 0. Hence Med(v′Xnst(m)) = v′y and MAD(v′Xnst(m)) = 0. We have that µ(v′Xnst(m))
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= v′y and consequently O(y, Xnst(m)) = 0, again a contradiction to (30). Hence v 6= u and we
have proved the claim.

Let |v′st
Xnst

i1 − Med(v′st
Xnst(m))| 6 · · · 6 |v′st

Xnst
in − Med(v′st

Xnst(m))|. Since m + d =
b(n + k + 1)/2c, among Xnst

ij , j = 1, . . . , b(n + k + 1)/2c, there are at least d points of Xn,
say, Xst1, . . . , Xstd. Let lst be the line determined by these d points. Then by the claim
above it can not be the line through y and perpendicular to v for t sufficiently large. Let
Dst

= max16j6d |v′(Xstj − y)|. Then Dst
> 0. Since there are at most finitely many such lst

,
thus

D = min
st

Dst
> 0, for t sufficiently large. (33)

Let Xnst
i0 (m) be any one of m contaminating points in Xnst(m). Then

|v′st
(y −Xnst

i0 (m))| < D

4
, for t sufficiently large. (34)

If there are exactly d points of Xn among Xnst
ij , j = 1, . . . , m + d, then, for a contaminating

point Xnst
i0 (m) of Xnst(m) that is among the m + d points, by (33) and (34) it is seen that for

t sufficiently large

σ(v′st
Xnst(m)) > max

16j6d

|v′st
(Xstj −Xnst

i0 (m))|
2

> max
16j6d

|v′st
(Xstj − y)|

2
− |v′st

(y −Xnst
i0 (m))|

2

> max
16j6d

|v′(Xstj − y)|
4

− D

8
> D

8
> 0.

If there are at least d + 1 points, Xst1, . . . , Xst(d+1), among Xnst
ij , j = 1, . . . , m + d, then

infst1,...,st(d+1) max16j, k6(d+1) |v′(Xstj −Xstk)| > 0 since Xn is in general position. Hence for t

sufficiently large

σ(v′st
Xnst(m)) > max

16j, k6(d+1)

|v′st
(Xstj −Xstk)|

2

> max
16j, k6(d+1)

|v′(Xstj −Xstk)|
4

> inf
st1,...,st(d+1)

max
16j, k6(d+1)

|v′(Xstj −Xstk)|
4

:=
E

8
> 0.

Both cases above lead to a bounded O(y, Xnst(m)) for t sufficiently large, a contradiction
with Display (32). This completes the proof for the case d = 2.

Third, consider the case d > 2. This can be done by mimicking the proof above for d = 2,
replacing lines with hyper-planes and 2 with d.
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