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Abstract

We consider the asymptotics of two depth processes, the projection depth process
and certain generalizations of the Tukey halfspace depth process, and give natural
conditions for the uniform convergence of these processes over certain subsets of
R

d. In general, these processes do not converge uniformly over R
d.
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1 Introduction

An interesting statistical problem is the construction of robust multivariate
location and scatter estimators. Many of these estimators in the litera-
ture are obtained through depth functions. Reviews in this area are Small
(1990), Liu et al. (1999), and Zuo and Serfling (2000). The key idea of
depth functions is to provide a center-outward ordering of multivariate ob-
servations with respect to the underlying data set (or distribution). Points
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deep inside the data cloud get higher depth and those on the outskirts get
lower depth. Depth-induceding ordering provides promising new tools in
multivariate data analysis and inference, just like order and rank statistics
do for univariate data.

There are a number of notions of data depth, including Mahalanobis
depth, halfspace depth (Tukey, 1975) and the simplicial depth (Liu, 1990).
One favorable depth function considered in the literature is the projection
depth function. Projection based location and scatter estimators possess
very desirable properties, such as high robustness and high efficiency, and
behave very well overall compared with their competitors. Consequently,
they represent very favorable choices. The large sample properties of these
estimators, such as asymptotic distribution, asymptotic efficiency, and con-
vergence rate, are essential for statistical inference in practice, and are dic-
tated by the asymptotic behavior of the empirical depth processes. The
latter has not yet been thoroughly studied in the literature and is the focus
of this paper. Results obtained in this paper can be utilized in the study of
the aforesaid depth induced estimators (see Zuo and Cui, 2005; Zuo et al.,
2004) as well as depth induced procedures such as testing and confidence
region estimation.

The paper is organized as follows. In Section 2, we present several
results on the weak convergence of supremum of empirical processes. These
results are of independent interest and utilized in later sections. Many
authors have used empirical processes to obtain asymptotic properties of
depth statistics (see e.g. Arcones et al., 1994).

In Section 3, we study the weak convergence of the empirical projection
depth process

{Gn(x) := n1/2(PD(x, Fn)− PD(x, F )) : x ∈ Rd}, (1.1)

where PD(·, ·) is the “projection depth” defined in (3.3). We use PD(x, Fn)
to estimate PD(x, F ). The asymptotics of the projection depth process are
used in the study of certain statistical properties of the projection depth.
We see that in general this process does not converge when indexed over the
whole space Rd. For example, in the symmetric distribution case, we may
have to exclude a neighborhood of the center of symmetry. The process
then converges uniformly over the resulting space in Rd. Projection depth
is defined based on univariate location and scale estimators (see (3.3)).
We show that our results are applied to a general class of location and
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scale estimators. In particular, our results apply to location estimators
such as the mean, the median, and the Hodges–Lehmann estimator and
scale estimators such as the sample variance, the median of the absolute
deviations (MAD) and the interquantile range.

Section 4 deals with the weak convergence of the so-called halfspace
depth process

{Hn(x) := n1/2(HD(x, Fn)−HD(x, F )) : x ∈ R
d}, (1.2)

where HD stands for “halfspace depth” which is defined in (4.1). In an
attempt to generalize the univariate median to the multivariate setting,
Tukey (1975) introduced the notion of halfspace depth. Further discussions
of halfspace depth were given in Donoho and Gasko (1992) and Rousseeuw
and Ruts (1999). As in the projection depth process case, we show that
the halfspace depth process can converge uniformly over the space Rd ex-
cluding a small neighborhood containing some “irregular” point(s) such as
the center of symmetry of a symmetric distribution.

2 Convergence of certain supremum of stochastic processes

In this section, we present several results on the weak convergence of supre-
mum of stochastic processes. We will use the general definition of weak
convergence of stochastic processes in van der Vaart and Wellner (1996)
and Dudley (1999), i.e. we consider stochastic processes as elements of
l∞(T ), where T is an index set. l∞(T ) is the Banach space consisting of
the bounded functions defined in T with the norm ‖x‖∞ = supt∈T |x(t)|.
To avoid measurability problems we will use outer measures when needed.
To obtain the weak convergence of the process in (3.3), we will use the
following theorem.

Theorem 2.1. Let {Yn(x, u) : x ∈ K,u ∈ T} be a sequence of stochastic
processes and Y : K × T → R be a function, where K is a set and (T, d) is
a metric space. Suppose that:

(i) For each x ∈ K, u(x) = {u ∈ T : Y (x, u) = L(x)} 6= ∅, where
L(x) := sup

u∈T
Y (x, u).

(ii) {n1/2(Yn(x, u) − Y (x, u)) : x ∈ K,u ∈ T} converges weakly to a
stochastic process {W (x, u) : x ∈ K,u ∈ T}.
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(iii) For each δ > 0,

η(δ) := inf
x∈K

inf
u 6∈u(x,δ)

(L(x)− Y (x, u)) > 0,

where u(x, δ) = {u ∈ T : d(u, u(x)) ≤ δ}.

(iv) For each η > 0,

lim
δ→0

Pr ∗{sup
x∈K
| sup
u∈u(x,δ)

W (x, u)− sup
u∈u(x)

W (x, u)| ≥ η} = 0.

Then,

{n1/2(sup
u∈T

Yn(x, u) − sup
u∈T

Y (x, u)) : x ∈ K} w→ { sup
u∈u(x)

W (x, u) : x ∈ K}.

Asymptotics of the supremum of a empirical process were considered
by Massé (2004) in the particular case of the Tukey depth process.

In order to get the asymptotic linear representation, we will use the
following variant of the previous theorem.

Theorem 2.2. With the notation above, let {Zn(x, u) : x ∈ K,u ∈ T} be
another stochastic process. Suppose that:

(i) For each x ∈ K, u(x) = {u ∈ T : Y (x, u) = L(x)} 6= ∅, where
L(x) := sup

u∈T
Y (x, u).

(ii) For each M > 0,

lim
δ→0

lim sup
n→∞

Pr ∗{sup
x∈K

sup
u 6∈u(x,δ)

n1/2(Yn(x, u)− Y (x, u)) ≥M} = 0.

(iii) For each M > 0,

lim
n→∞

Pr ∗
{

sup
x∈K

(
− sup
u 6∈u(x)

(Zn(x, u)

)
≥M

}
= 0.

(iv) For each δ > 0,

η(δ) := inf
x∈K

inf
u 6∈u(x,δ)

(L(x)− Y (x, u)) > 0.
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(v) For each η > 0,

lim
n→∞

Pr ∗
{

sup
x∈K

sup
u∈u(x,δ)

|n1/2(Yn(x, u)− L(x))− Zn(x, u)| ≥ η
}

converges to 0 as δ → 0.

(vi) For each η > 0,

lim
δ→0

lim sup
n→∞

Pr ∗{sup
x∈K

( sup
u∈u(x,δ)

Zn(x, u)− sup
u∈u(x)

Zn(x, u)) ≥ η} = 0.

Then, for each η > 0,

Pr ∗
{

sup
x∈K
|n1/2(sup

u∈T
Yn(x, u)− sup

u∈T
Y (x, u)) − sup

u∈u(x)
Zn(x, u)| ≥ η

}

converges to 0 as n→∞.

The proof of the previous theorem is omitted, since it is similar to that
of Theorem 2.1.

The measurability conditions in the previous theorems are satisfied by
the considered stochastic processes, because these stochastic process are
determined by their values in a fixed countable subset of the index set.

3 Projection depth processes

One of the depth function considered in the literature is the projection
depth function. In this section, we will study the properties of the pro-
jection depth process. Let µ and σ be location and scale functionals in
R. We assume that µ is translation and scale equivariant and σ is scale
equivariant and translation invariant, that is, µ(FsY+c) = sµ(FY ) + c and
σ(FsY +c) = |s|σ(FY ) respectively for any scalars s and c and random vari-
able Y ∈ R. The outlyingness of a point x ∈ Rd with respect to a given
distribution function F of a Rd–valued random vector X is defined as

O(x, F ) = sup
‖u‖=1

|u′x− µ(Fu)|
σ(Fu)

= sup
‖u‖=1

g(x, u, F ), (3.1)
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where Fu is the distribution of u′X, u ∈ Rd, and

g(x, u, F ) =
µ(Fu)− u′x

σ(Fu)
. (3.2)

The projection depth of a point x ∈ Rd with respect to the distribution F
is then defined as

PD(x, F ) =
1

1 +O(x, F )
. (3.3)

When µ(F ) is the median of F and σ(F ) is the median of the abso-
lute deviations (MAD) of F , the projection function above is used in the
construction of the Stahel–Donoho estimator (Donoho, 1982; Stahel, 1981).
This estimator possesses a high breakdown point and has been studied by
Donoho and Gasko (1992); Tyler (1994) and Maronna and Yohai (1995).
In the generality above, the considered projection depth appeared in Zuo
(2003).

Throughout our discussions, µ and σ are assumed to exist for all related
univariate distributions. The empirical versions of g(x, u, F ), O(x, F ), and
PD(x, F ) shall be denoted by g(x, u, Fn), O(x, Fn), and PD(x, Fn) respec-
tively, where Fn is the empirical distribution function. They are obtained
by replacing F with its empirical version Fn in the corresponding formulae.

Since the projection depth function is based on a univariate location
and scale functional, conditions on µ and σ are given first. We use Fnu as
the empirical distribution function of {u′Xi, i = 1, . . . , n} for any u ∈ Rd.

(C1) : sup
‖u‖=1

|µ(Fu)| <∞, sup
‖u‖=1

σ(Fu) <∞, and inf
‖u‖=1

σ(Fu) > 0.

(C1)’ : µ(Fu) and σ(Fu) are continuous in u and σ(Fu) > 0.

(C2) : sup
‖u‖=1

|µ(Fnu)− µ(Fu)| = oP (1), sup
‖u‖=1

|σ(Fnu)− σ(Fu)| = oP (1).

(C3) : sup
‖u‖=1

|µ(Fnu)−µ(Fu)| = o(1) a.s., sup
‖u‖=1

|σ(Fnu)−σ(Fu)| = o(1) a.s..

(C4) : sup
‖u‖=1

√
n|µ(Fnu) − µ(Fu)| = OP (1), sup

‖u‖=1

√
n|σ(Fnu) − σ(Fu)| =

OP (1).
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(C4)’ :

{n1/2 (µ(Fnu)− µ(Fu), σ(Fnv)− σ(Fv)) : ‖u‖ = 1, ‖v‖ = 1}
w→ {(Zµ(u), Zσ(v)) : ‖u‖ = 1, ‖v‖ = 1}

with (Zµ(u), Zσ(v)) having continuous sample paths.

(C4)” : There are stochastic processes {Zµ,n(u) : ‖u‖ = 1} and {Zσ,n(u) :
‖u‖ = 1} such that

sup
‖u‖=1

|√n(µ(Fu)− µ(Fu))− Zµ,n(u)| Pr→ 0,

sup
‖u‖=1

|√n(σ(Fu)− σ(Fu))− Zσ,n(u)| Pr→ 0

and {(Zµ,n(u), Zσ,n(v)) : ‖u‖ = 1, ‖v‖ = 1} w−→ {(Zµ(u), Zσ(v)) :
‖u‖ = 1, ‖v‖ = 1} with (Zµ(u), Zσ(v)) having continuous sample
paths.

In most cases, Zµ,n(u) and Zσ,n(u) satisfy the above conditions.

We now consider the asymptotic behavior of Gn(x) defined in (1.1).
The following result is utilized later.

Theorem 3.1. Under (C1) we have

(1) sup
x∈Rd

(1 + ‖x‖) |PD(x, Fn)− PD(x, F )| = oP (1) or o(1) a.s. if (C2)

or (C3) holds,

(2) sup
x∈Rd

(1 + ‖x‖)√n |PD(x, Fn)− PD(x, F )| = OP (1) if (C4) holds.

For any x, let u(x) be the set of directions satisfying O(x, F ) = g(x,
u, F ). If u(x) is a singleton, we also use u(x) as the unique direction. If
X is a continuous random variable, nonuniqueness of u(x) may occur at
finitely many points. Under minimal conditions, it is possible to get the
asymptotic normality of Gn(x) for a fix x.
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Theorem 3.2. Assume (C1)’ and (C4)’. Then, for each x ∈ Rd,

√
n (PD(x, Fn)− PD(x, F ))

d−→ − sup
u∈u(x)

Z(x, u)

where

Z(x, u) =
Zµ(u)−O(x, F )Zσ(u)

σ(Fu)(1 +O(x, F ))2
.

Remark 3.1. For a given x where u(x) is a singleton, the distribution
of Z(x, u(x)) is typically Gaussian. Cui and Tian (1994) established the
pointwise limiting distribution of Gn(x) for a special case when µ and σ are
the median and MAD functionals respectively.

It is not possible to get the weak convergence of the projection depth
process over the whole Rd. Points x with u(x) different from a singleton
present a problem. The following theorems provide sufficient conditions for
the weak convergence of the projection depth process over certain subsets
of Rd.

Theorem 3.3. Assume that (C1)’ and (C4)’. Let T ⊂ Rd be a set such
that for each M > 0 and each δ > 0,

inf
x∈T

‖x‖≤M
inf

u 6∈u(x,δ)
(O(x, F )− g(x, u, F )) > 0, (3.4)

where u(x, δ) = {u ∈ Rd : ‖u‖ = 1, d(u, u(x)) ≤ δ}. Then,

{√n (PD(x, Fn)− PD(x, F )) : x ∈ T} w−→ {− sup
u∈u(x)

Z(x, u) : x ∈ T}.

Corollary 3.1. Assume that (C1)’ and (C4)’. Suppose that u(x) consists
of a singleton except for finitely many points {y1, . . . , ym}. Then, for each
δ > 0,




√
n (PD(x, Fn)− PD(x, F )) : x ∈ Rd −

m⋃

j=1

B(yj, δ)





w−→



−Z(x, u(x)) : x ∈ R

d −
m⋃

j=1

B(yj, δ)



 ,

where B(y, δ) = {x ∈ Rd : ‖y − x‖ < δ}.
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It is possible to see in simplest cases that it is not possible to get the
weak convergence of the projection depth process over the whole Rd. We
present the following:

Proposition 3.1. Let d = 1, µ(F ) =
∫∞
−∞ xF (dx), and σ(F ) =

(∫∞
−∞(x

−µ(F ))2 F (dx)
)1/2

. Suppose that X has finite fourth moment. Then, the

finite dimensional distributions of {n1/2(O(x, Fn)−O(x, F )) : x ∈ R} con-
verge, but the process does not converge weakly.

The proof of the previous proposition indicates that the process {n1/2

·(O(x, Fn) − O(x, F )) : x ∈ I} does not converge weakly for neither I
= (µ, µ+ δ) nor I = (µ− δ, µ) for any δ > 0.

Using Theorem 2.2 and arguments in the proof of the previous theorems,
it is possible to prove that projection depth process is asymptotically linear.
The proof of the next theorem is omitted.

Theorem 3.4. Assume that (C1)’ and (C4)”. Suppose that u(x) consists
of a singleton except for finitely many points {y1, . . . , ym} with Pr{X =
yj} = 0. Then, for each δ > 0,

sup
x∈Rd−∪m

j=1B(yj ,δ)

∣∣√n (PD(x, Fn)− PD(x, F ))

+
Zµ,n(u(x))−O(x, F )Zσ,n(u(x))

σ(Fu(x))(1 +O(x, F ))2

∣∣∣∣
Pr−→ 0.

We will consider location and scale M-estimators defined through U-
statistics. Given a function h : Rm → R, the U-statistic with kernel h is
defined by

(n−m)!

n!

∑

(i1,...,ik)∈In
m

h(Xi1 , . . . ,Xik),

where Ink = {(i1, . . . , ik) : 1 ≤ ij ≤ n and il 6= ij for j 6= l}.
The previous theorem reduces the problem to the delta method holding

uniformly on {u ∈ Rd : ‖u‖ = 1}. The following theorem gives sufficient
conditions for the first order expansion of a class of projection M-estimators
to go to zero in probability.

Theorem 3.5. Let ψ : R → R be a nonincreasing function. Let k be a
positive integer. Suppose that:
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(i) For each ‖u‖ = 1, there exists a θ0(u) ∈ R such that H(θ0(u), u) = 0,
where H(θ, u) = E[ψ(k−1u′(X1 + · · · +Xk)− θ)].

(ii) 0 < inf‖u‖=1H
′(θ0(u), u) = 0, where H ′(θ, u) is the derivative with

respect to θ at θ0(u).

(iii)

lim
h→0

sup
‖u‖=1

|h−1(H(θ0(u) + h), u)−H(θ0(u), u)) −H ′(θ0(u), u)| = 0.

(iv)

lim
h→0

sup
‖u‖=1

Var(ψ(k−1u′(X1 + · · ·+Xk)− θ0(u) + h)

− ψ(k−1u′(X1 + · · ·+Xk)− θ0(u))) = 0.

(v) There exists a δ > 0 such that

E[ sup
‖u‖=1

sup
|θ−θ0(u)|≤δ

|ψ(k−1u′(X1 + · · ·+Xk)− θ)|2] <∞.

Then,

sup
‖u‖=1

|n1/2(θ̂n(u)− θ0(u)) + (H ′(θ0(u), u))
−1n1/2Hn(θ0(u), u)| Pr→ 0,

where

Hn(θ, u) =
(n− k)!
n!

∑

(i1,...,ik)∈In
k

ψ(k−1u′(Xi1 + · · ·+Xik)− θ),

θ̂∗n(u) = sup{t : Hn(t, u) < 0}, θ̂∗∗n (u) = inf{t : Hn(t, u) > 0}, and θ̂n(u)
= (θ̂∗n(u) + θ̂∗∗n (u))/2.

For some popular location and scale estimator including generalized me-
dians and generalized medians of the absolute deviations, we check (C4)”
in Appendix B.
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4 Generalized Tukey halfspace depth processes

In this section, we study the properties of a generalization of the Tukey
halfspace depth process. Tukey (1975) generalized the median to several
dimensions, using the smallest probability of halfspace containing a point.
Given x ∈ Rd and ‖u‖ = 1, let H(x, u) = {y ∈ Rd : u′(y − x) ≥ 0}. The
Tukey halfspace depth is defined by

HD(x, F ) = inf
‖u‖=1

F (H(x, u)), (4.1)

where F (H(x, u)) means the probability of H(x, u) with respect to the dis-
tribution determined by F . Further properties of the halfspace depth func-
tion was proved by Rousseeuw and Ruts (1999) and Massé (2002) proved
the asymptotic distribution of the Tukey’s halfspace median. Massé (2004)
study the weak convergence of the process

{Hn(x) := n1/2(HD(x, Fn)−HD(x, F )) : x ∈ Rd}. (4.2)

and gave applications to L–statistics over this depth function.

We will consider generalizations of the Tukey halfspace depth function.
A way to generalize the Tukey halfspace depth is:

GHD(x, h, F ) = inf
‖u‖=1

∫
h(u′(y − x))dF (y) (4.3)

where h is a nondecreasing nonnegative function with h(x) = 0 for x < 0
and Eh(‖Y ‖) < +∞. If h(x) = I{x ≥ 0}, GHD(x, h, F ) is just the
Tukey halfspace depth. If X has spherical distribution with center µ, then
GHD(µ, h, F ) = maxx∈Rd GHD(x, h, F ) and lim‖x‖→∞GHD(x, h, F ) = 0.

Sufficient conditions for the weak convergence of

{n1/2(GHD(x, h, Fn)−GHD(x, h, F )) : x ∈ K} (4.4)

follow from the results in Section 2. For any x, let u(x) be the set of
directions satisfying

∫
h(u′(y − x))dF (y) = GHD(x, h, F ).

We consider the following conditions for a function h and a set K of
Rd:

(D1) : E[ sup
x∈K

‖u‖=1

|h(u′(X − x))|2] <∞.
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(D2) : lim
δ→0

sup
x∈K

sup
‖u1−u2‖≤δ

‖u1‖=‖u2‖=1

Var(h(u′1(X − x))− h(u′2(X − x))) = 0.

(D3) : lim
M→∞

sup
x∈K

‖x‖≥M

sup
‖u‖=1

Var(h(u′(X − x))) = 0.

(D4) : For each M > 0 and each δ > 0,

inf
x∈K

‖x‖≤M
inf

u 6∈u(x,δ)

(∫
h(u′(y − x))dF (y)−GHD(x, h, F )

)
> 0,

where u(x, δ) = {u ∈ Rd : ‖u‖ = 1, d(u, u(x)) ≤ δ}.

For the Tukey halfspace depth (h(x) = I(x ≥ 0)) conditions (D1)–(D3)
are satisfied for K = Rd if for each x ∈ Rd and each ‖u‖ = 1, P (u′(X−x) =
0) = 0. Under the previous condition, (D4) is also satisfied for a closed set
K consisting of points x such that u(x) is a singleton.

Condition (i) in Theorem 2.1 follows from the following lemma:

Lemma 4.1. Let h be a real function and let K be a set of Rd satisfying
condition (D1). Then,

{n−1/2
n∑

j=1

(h(u′(Xj − x))− E[h(u′(X − x))]) : x ∈ K, ‖u‖ = 1}

w→ {Vh(x, u) : x ∈ K, ‖u‖ = 1},

where {Vh(x, u) : x ∈ K, ‖u‖ = 1} is a Gaussian process with mean zero
and covariance given by

E[Vh(x1, u1)Vh(x2, u2)] = Cov(h(u′1(X − x1)), h(u
′
2(X − x2))).

If h(x) = x or h(x) = x2 is not possible to obtain the weak convergence
of the stochastic process in the previous lemma for unbounded sets K.

Theorem 4.1. Let K be a set of Rd satisfying (D1)–(D4). Then,

{√n (GHD(x, h, Fn)−GHD(x, h, F )) : x ∈ T} w−→ { inf
u∈u(x)

Vh(x, u) : x ∈ T}.
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Corollary 4.1. Assume that (D1)–(D3). Suppose that u(x) consists of
a singleton except for finitely many points {y1, . . . , ym}. Then, for each
δ > 0,




√
n (GHD(x, h, Fn)−GHD(x, h, F )) : x ∈ R

d −
m⋃

j=1

B(yj, δ)





w−→



Vh(x, u(x)) : x ∈ Rd −

m⋃

j=1

B(yj, δ)



 ,

where B(y, δ) = {x ∈ Rd : ‖y − x‖ < δ}.

Theorem 4.2. Assume that (D1)–(D3). Suppose that u(x) consists of a
singleton except for finitely many points {y1, . . . , ym} with Pr{X = yj} = 0.
Then, for each δ > 0,

sup
x∈Rd−∪m

j=1B(yj ,δ)

n1/2 |(GHD(x, h, Fn)−GHD(x, h, F ))

−(Fn − F )h(u(x)′(· − x))
∣∣ Pr−→ 0.

Another way to generalize the Tukey halfspace depth median is through
outlyingness. Given a monotone function h and one dimensional data, an
estimator is defined as a value θ̂n such that n−1

∑n
j=1 h(Xj −θ̂n) is approxi-

mately zero. Equivalently, θ̂n is a value which minimizes |n−1
∑n

j=1 h(Xj−
x)|, x ∈ R. In the multivariate case, we may define the Tukey outlyingness
with respect to the function h as

TO(x, h, F ) = sup
‖u‖=1

∫
h(u′(y − x)) dF (y). (4.5)

The empirical Tukey halfspace outlyingness is defined as TO(x, h, Fn). We
call a value which minimizes TO(x, h, Fn), x ∈ Rd, a generalized Tukey
halfspace median with respect to the function h. If h(x) = 1− 2I(x ≥ 0),
then TO(x, h, F ) = 1− 2HD(x, F ) and we have the usual Tukey halfspace
median. If h(x) = x, then TO(x, h, Fn) = |X̄−x| and the generalized Tukey
halfspace median is the mean. As in the one dimensional case, monotone
functions h which grow as |x| goes to infinity slower than |x| are prefered.
One such function is h(x) = x, for |x| ≤ k and h(x) = ksign(x), for |x| > k.
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Another possible function is h(x) = |x|p−1sign(x), where 1 ≤ p < 2. More
functions like that are in Chapter 7 in Serfling (1980).

Massé (2004) also obtained similar results for the Tukey halfspace depth
process via a different approach. Other ways to generalized the Tukey
halfspace depth process are in Zhang (2002).

The process convergence results in Sections 3 and 4 can be utilized
immediately for the study of the asymptotic behavior of estimators induced
from the corresponding depth functions, in particular in the study of L–
statistics over depth functions (see Zuo et al., 2004).

Appendix A: Proofs

Proof of Theorem 2.1. By a representation theorem (see for example
Theorem 3.5.1 in Dudley, 1999), we have a version of the stochastic pro-
cesses converging a.s. So, we may assume that

sup
x∈K,u∈T

∣∣∣n1/2(Yn(x, u)− Y (x, u)) −W (x, u)
∣∣∣→ 0 a.s.

and the process W satisfies (iv). We have that

n1/2

(
sup
u∈T

Yn(x, u)− sup
u∈T

Y (x, u)

)

= n1/2 max

(
sup

u∈u(x,δ)
(Yn(x, u)− L(x)), sup

u 6∈u(x,δ)
(Yn(x, u)− L(x))

)
.

Now,

n1/2 sup
u 6∈u(x,δ)

(Yn(x, u)− L(x))

≤ n1/2 sup
u 6∈u(x,δ)

(Yn(x, u)− Y (x, u) − η(δ)) Pr→ −∞,

uniformly in x ∈ K. We also have that

sup
u∈u(x)

W (x, u)
a.s.←− n1/2 sup

u∈u(x)
(Yn(x, u)− Y (x, u))

= n1/2 sup
u∈u(x)

(Yn(x, u)− L(x)) ≤ n1/2 sup
u∈u(x,δ)

(Yn(x, u)− L(x))

≤ n1/2 sup
u∈u(x,δ)

(Yn(x, u) − Y (x, u))
a.s.−→ sup

u∈u(x,δ)
W (x, u),

uniformly on x ∈ K. Hence, the claim follows.
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Proof of Theorem 3.1. We prove only part (2). The proof for part (1)
is similar and thus omitted. It is observed that∣∣∣∣ inf

‖u‖=1
σ(Fnu)− inf

‖u‖=1
σ(Fu)

∣∣∣∣ ≤ sup
‖u‖=1

|σ(Fnu)− σ(Fu)|.

By condition (C4), inf‖u‖=1 σ(Fnu)→ inf‖u‖=1 σ(Fu) in probability as n→
∞. Consequently, inf‖u‖=1 σ(Fnu) is bounded below from 0 in probability
as n → ∞. Write ln(u) = µ(Fnu) − µ(Fu) and sn(u) = σ(Fnu) − σ(Fu).
Note that

|O(x, Fn)−O(x, F )| ≤ sup
‖u‖=1

|u′x||sn(u)| + |µ(Fu)||sn(u)|+ σ(Fu)|ln(u)|
σ(Fnu)σ(Fu)

≤‖x‖Qn +Rn,

where

Qn =

sup
‖u‖=1

|sn(u)|

inf
‖u‖=1

(σ(Fnu)σ(Fu))

and

Rn =

sup
‖u‖=1

|µ(Fu)| sup
‖u‖=1

|sn(u)|+ sup
‖u‖=1

σ(Fu) sup
‖u‖=1

|ln(u)|

inf
‖u‖=1

(σ(Fnu)σ(Fu))
.

By conditions (C1) and (C4) and the boundedness of inf‖u‖=1 σ(Fnu)

away from 0, it is readily seen that |O(x, F̂n)−O(x, F )| = oP (1) uniformly
for bounded x and that

√
nQn and

√
nRn are OP (1). Note further that

|PD(x, Fn)− PD(x, F )| =
|O(x, Fn)−O(x, F )|

(1 +O(x, Fn))(1 +O(x, F ))

≤ |O(x, Fn)−O(x, F )|.
For any fixed M > 0, we have sup‖x‖≤M |Gn(x)| = OP (1). Take M >
sup‖u‖=1 |µ(Fu)|. Then, we see that for sufficiently large n

|Gn(x)| ≤ sup
‖u‖=1

σ(Fnu) sup
‖u‖=1

σ(Fu) (A.1)

×
√
n(‖x‖Qn +Rn)(

‖x‖ − sup
‖u‖=1

|µ(Fnu)|
)(
‖x‖ − sup

‖u‖=1
|µ(Fu)|

) .
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From (C1), (C4) and the boundedness of
√
nQn and

√
nRn it follows

that sup‖x‖>M ‖x‖|Gn(x)| = OP (1). Hence, the claims follows.

Proof of Theorem 3.2. Since

n1/2

(
µ(Fnu)− u′x

σ(Fnu)
− µ(Fu)− u′x

σ(Fu)

)

=
n1/2(µ(Fnu)− µ(Fu))σ(Fu) + n1/2(u′x− µ(Fu))(σ(Fnu)− σ(Fu))

σ(Fu)σ(Fnu)
,

we have that

{n1/2(g(x, u, Fn)− g(x, u, F )) : ‖u‖ = 1}
w→
{
σ(Fu)Zµ(u) + (u′x− µ(Fu))Zσ(u)

σ2(Fu)
: ‖u‖ = 1

}
.

So, by Theorem 2.1, for each x ∈ Rd,

n1/2(O(x, Fn)−O(x, F ))
d→ sup
u∈u(x)

{
Zµ(u)σ(Fu) + (u′x− µ(Fu))Zσ(u)

σ2(Fu)

}
.

This implies that for each x ∈ Rd,

√
n (PD(x, Fn)− PD(x, F )) =

−n1/2(O(x, Fn)−O(x, F ))

(1 +O(x, F ))(1 +O(x, Fn))
d−→ − sup

u∈u(x)
Z(x, u)

where

Z(x, u) =
Zµ(u)−O(x, F )Zσ(u)

σ(Fu)(1 +O(x, F ))2
.

Proof of Theorem 3.3. By (A.1), for each ε > 0,

lim
M→∞

lim sup
n→∞

Pr{ sup
‖x‖≥M

|n1/2(PD(x, Fn)− PD(x, F ))| ≥ ε} = 0.
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So, it suffices to show that for each 0 < M <∞,

{n1/2(PD(x, Fn)− PD(x, F )) : x ∈ T, ‖x‖ ≤M}
w→ {− sup

u∈u(x)
Z(x, u) : x ∈ T, ‖x‖ ≤M}.

This follows from the fact that for each M > 0,

{n1/2(O(x, Fn)−O(x, F )) : x ∈ T, ‖x‖ ≤M}
w→
{

sup
u∈u(x)

σ(Fu)Zµ(u) + (u′x− µ(Fu))Zσ(u)

σ2(Fu)
: x ∈ T, ‖x‖ ≤M

}
.

To get this, we apply Theorem 2.1. It is obvious that for each M > 0,

{n1/2(g(x, u, Fn)− g(x, u, F )) : ‖x‖ ≤M, ‖u‖ = 1}
w→
{
σ(Fu)Zµ(u) + (u′x− µ(Fu))Zσ(u)

σ2(Fu)
: ‖x‖ ≤M, ‖u‖ = 1

}
.

The rest of the conditions in Theorem 2.1 hold trivially.

Proof of Corollary 3.1. We apply Theorem 3.3. First, we note O(x, F )
is continuous, because

|O(x1, F )−O(x2, F )| ≤ sup
‖u‖=1

∣∣∣∣
µ(Fu)− u′x1

σ(Fu)
− µ(Fu)− u′x2

σ(Fu)

∣∣∣∣

≤ ‖x1 − x2‖
inf

‖u‖=1
σ(Fu)

.

We claim that u is a continuous function in Rd − ∪mj=1{yj}. Take x ∈
Rd−∪mj=1{yj}. If u(x) is not continuous at x, then there exists a sequence
xn → x such that u(xn) 6→ u(x). Since ‖u(xn)‖ = 1, we may assume that
u(xn)→ u0 6= u(x). Since O(xn, F )→ O(x, F ),

µ(Fu(xn))− (u(xn))
′xn

σ(Fu(xn))
→

µ(Fu(x))− (u(x))′x

σ(Fu(x))
.

But,
µ(Fu(xn))− (u(xn))

′xn
σ(Fu(xn))

→ µ(Fu0)− u′0x
σ(Fu0)

,

in contradiction. The continuity of u(x) implies that condition (3.4) holds.
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Proof of Proposition 3.1. We have that O(x, F ) = |x−µ|
σ and O(x, Fn)

= |x−x̄|
σn

, where µ = E[X], σ2 = E[(X − µ)2], x̄ = n−1
∑n

i=1Xi and σ2
n =

n−1
∑n

i=1(Xi −x̄)2. By the Central Limit Theorem

(n1/2(x̄− µ), n1/2(σ2
n − σ2))

d→ (Z1, Z2)

where (Z1, Z2) is a Gaussian random vector with zero means and covari-
ances given by

E[Z2
1 ] = σ2, E[Z1Z2] = E[(X − µ)((X − µ)2 − σ2)] and

E[Z2
2 ] = E[((X − µ)2 − σ2)2].

It is easy to see that the finite dimensional distributions of
{
Ln(x) := n1/2

( |x− x̄|
σn

− |x− µ|
σ

)
: x ∈ R

}

converges to those of {W (x) : x ∈ R}, whereW (x) = −σ−1Z1−2−1σ−3(x−
µ)Z2, for x > µ; W (x) = σ−1Z1+2−1σ−3(x−µ)Z2, for x < µ; and W (µ) =

σ−1|Z1|. If we had weak convergence of the process n1/2
(
|x−x̄|
σn
− |x−µ|

σ

)
,

then for each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
d(t1,t2)≤δ

t1,t2∈R

|Ln(t1)− Ln(t2)| ≥ η} = 0,

where d(t1, t2) = E[min(|W (t1) −W (t2)|, 1)] (see Theorem 3 in Arcones,
1996). This implies that for each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
µ<t1,t2≤µ+1

|t1−t2|≤δ

|Ln(t1)− Ln(t2)| ≥ η} = 0. (A.2)

However, this condition does not hold. Take 0 < δ < 1/2. Suppose that
µ ≤ x̄ ≤ µ + 2δ, take t1 = x̄ and t2 = x̄+µ

2 . Then, µ ≤ t1, t2 ≤ µ + 1,

|t2 − t1| ≤ δ, Ln( x̄+µ2 )− Ln(x̄) = n1/2|x̄−µ|(σn+σ)
2σnσ

. So,

Pr{ sup
µ<t1,t2≤µ+1

|t1−t2|≤δ

|Ln(t1)− Ln(t2)| ≥ η}

≥ Pr{µ ≤ x̄ ≤ µ+ 2δ,
n1/2|x̄− µ|(σn + σ)

2σnσ
≥ η} → Pr{Z1 ≥ ησ} > 0,

which contradicts (A.2).
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Proof of Theorem 4.1. Since the class of functions gx,u(y) = u′(y−x) is
a d+ 1 dimensional vector space of functions, by Theorem 4.2.1 in Dudley
(1999), the class of functions, {gx,u : x ∈ Rd, ‖u‖ = 1} is a VC–subgraph
class of functions. By Theorem 4.2.3 in Dudley (1999), so is the class of
functions {h ◦ gx,u : x ∈ Rd, ‖u‖ = 1}. Hence, the claim follows from
the Pollard’s central limit theorem (see e.g. Theorem 6.3.1 in Dudley,
1999).

Proof of Theorem 4.2. We claim that for each ε > 0,

lim
M→∞

lim sup
n→∞

Pr{ sup
x∈K

‖x‖≥M

|n1/2(GHD(x, h, Fn)

−GHD(x, h, F ))| ≥ ε} = 0. (A.3)

Note that

sup
‖x‖≥M

|n1/2(GHD(x, h, Fn)−GHD(x, h, F ))|

≤ sup
x∈K

‖x‖≥M

sup
‖u‖=1

|n1/2(Fn − F )(h(u′(· − x))|

w→ sup
x∈K

‖x‖≥M

sup
‖u‖=1

|Vh(x, u)|

Now, {V (x, u) : x ∈ Rd, ‖u‖ = 1} has a version which is bounded and
uniformly continuous with the respect to the distance

d((x1, u1), (x2, u2)) = Var(h(u′1(X − x1))− h(u′2(X − x2))).

By (D3), have that

sup
x∈K

‖x‖≥M

sup
‖u‖=1

E[(Vh(x, u))
2] = sup

x∈K

‖x‖≥M

sup
‖u‖=1

Var(h(u′(X − x)))

which tends to zero as M →∞. So, (A.3) holds.

By (A.3), we may assume that K is a bounded set.

We apply Theorem 2.1 with Yn(x, u) = −Fnh(u′(· − x)) and Y (x, u)
= −Fh(u′(· − x)) and W (x, u) = −V (x, u). Condition (i) in Theorem 2.1
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follows from Lemma 4.1. Condition (ii) in Theorem 2.1 is assumed. By
(D2), with probability one,

lim
δ→0

sup
x∈K

‖x‖≤M

sup
‖u1−u2‖≤δ

|Vh(x, u2)− Vh(x, u1)| = 0.

Corollary 4.1 follows from Theorem 4.1 directly.

Appendix B: Uniform delta method for projection estimators

To prove that the considered projection location parameters are asymptot-
ically linear uniformly on the projection parameter, we use the following
theorem:

Theorem B.1. Let {Zn(θ, u) : θ ∈ R, u ∈ T} be a sequence of stochastic
processes, where T is an index set. Let θ0 : T → R and b : T → R be two
functions. Suppose that for each u ∈ T and each n, Zn(θ, u) is nondecreas-
ing function in θ. Let {an} be a sequence of real numbers converging to
infinity. Let θ̂∗n(u) = sup{t : Zn(t, u) < 0}, θ̂∗∗n (u) = inf{t : Zn(t, u) > 0},
and θ̂n(u) = (θ̂∗n(u) + θ̂∗∗n (u))/2. Assume that:

(i) inf
u∈T

b(u) > 0.

(ii) For each 0 < M <∞,

sup
u∈T

sup
|τ |≤M

|an(Zn(θ0(u) + a−1
n τ, u)− Zn(θ0(u), u)) − b(u)τ | Pr→ 0.

(iii) sup
u∈T

an|Zn(θ0(u), u)| = OP (1).

Then,

sup
u∈T
|an(θ̂n(u)− θ0(u)) + (b(u))−1anZn(θ0(u), u)| Pr→ 0.
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Proof. Given τ > 0, we prove that

Pr{b(u)an(θ̂n(u)− θ0(u)) + anZn(θ0(u), u) < −τ, for some u ∈ T} → 0
(B.1)

and

Pr{b(u)an(θ̂n(u)− θ0(u)) + anZn(θ0(u), u) ≤ τ for some u ∈ T} → 1.
(B.2)

For each t ∈ R and u ∈ T , {θ̂n(u) < t} ⊂ {Zn(t, u) > 0}. So,

{b(u)an(θ̂n(u)− θ0(u)) + anZn(θ0, u) < −τ for some u ∈ T} (B.3)

= {θ̂n(u) < θ0(u)− a−1
n (b(u))−1(τ + anZn(θ0(u), u)) for some u ∈ T}

⊂ {Zn(θ0(u)− a−1
n (b(u))−1(τ + anZn(θ0(u), u)), u) > 0 for some u ∈ T}.

By conditions (ii) and (iii)

sup
u∈T
|an(Zn(θ0(u)− a−1

n (b(u))−1

× (τ + anZn(θ0(u), u)), u) − Zn(θ0(u), u))
+ (τ + anZn(θ0(u), u))| Pr→ 0.

Thus,

sup
u∈T
|anZn(θ0(u)− a−1

n (b(u))−1(τ + anZn(θ0(u), u))) + τ | Pr→ 0.

This and (B.3) imply (B.1). (B.2) follows similarly.

It is easy to see that θ̂∗n(u) ≤ θ̂∗∗n (u). θ̂∗n(u) and θ̂∗∗n (u) estimate the
smallest and biggest solutions to Zn(θ, u) = 0.

Proof of Theorem 3.5. We apply Theorem B.1 with Zn(θ, u) = Hn(θ, u),
b(u) = H ′(θ0(u), u) and an = n1/2. Condition (i) in Theorem B.1 is as-
sumed. Condition (iii) implies that for each 0 < M <∞,

lim
n→∞

sup
‖u‖=1

sup
|τ |≤M

|n1/2E[Hn(θ0+n−1/2τ, u)−Hn(θ0, u)]−τH ′(θ0(u), u)| = 0.

Hence, to check condition (ii) in Theorem B.1, we need to prove that for
each 0 < M <∞,

sup
‖u‖=1

sup
|τ |≤M

|n1/2(Hn(θ0 + n−1/2τ, u)−Hn(θ0, u)

−H(θ0(u) + n−1/2τ, u) +H(θ0(u), u))| Pr→ 0. (B.4)
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We claim that by the CLT for U–processes indexed by a VC class of func-
tions (Theorem 4.9 in Arcones and Giné, 1993)

{n1/2(Hn(θ, u)−H(θ, u)) : ‖u‖ = 1, |θ − θ0(u)| ≤ δ} (B.5)

converges weakly. We claim that {ψ(k−1u′(x1+ · · ·+xk)−θ) : θ ∈ R, ‖u‖ =
1} is VC subgraph class of functions in the sense of Dudley (1999, p. 159).
Observe that the subgraph of ψ(k−1u′(x1 + · · ·+ xk)− θ) is

{(x1, . . . , xk, t) : 0 ≤ t, ψ−1(t) ≤ k−1u′(x1 + · · ·+ xk)− θ}
∪{(x1, . . . , xk, t) : 0 ≥ t, ψ−1(t) ≥ k−1u′(x1 + · · ·+ xk)− θ}

Since the class of sets where a finite dimensional set of functions is non-
negative is a VC class of sets (Theorem 4.2.1 in Dudley, 1999), the class of
functions {ψ(k−1u′(x1 + · · · + xk) − θ) : θ ∈ R, ‖u‖ = 1} is VC subgraph
class of functions. Condition (v) implies that the subclass {ψ(k−1u′(x1 +
· · ·+ xk)− θ) : |θ− θ0(u)| ≤ δ, ‖u‖ = 1} has an envelope with finite second
moment. So, the stochastic process in (B.5) converges weakly. So, condi-
tion (iv) implies (B.4). Condition (iii) in Theorem B.1 follows from the
weak convergence of the process in (B.5).

When ψ(x) = I(x ≤ 0)− 2−1, Theorem 3.5 gives the following:

Corollary B.1. For ‖u‖ = 1, let F ∗
u (t) = Pr{k−1u′(X1 + · · · +Xk) ≤ t}.

Suppose that:

(i) For each ‖u‖ = 1, there exists m(u) such that F ∗
u (m(u)) = 2−1.

(ii) For each ‖u‖ = 1, F ∗
u
′(m(u)) exists.

(iii) 0 < inf
‖u‖=1

F ∗
u
′(m(u)) <∞.

(iv) lim
h→0

sup
‖u‖=1

|h−1(F ∗
u (m(u) + h)− F ∗

u (m(u))) − F ∗
u
′(m(u))| = 0.

(v) lim
h→0

sup
‖u‖=1

|F ∗
u (m(u) + h)− F ∗

u (m(u))| = 0.

Then,

sup
‖u‖=1

|n1/2(m̂n(u)−m(u)) + (F ∗
u
′(m(u)))−1n1/2 (n− k)!

n!

×
∑

(i1,...,ik)∈In
k

(I(k−1u′(Xi1 + · · · +Xik) ≤ θ0(m))− 2−1)| Pr→ 0,

where m̂n(u) = med{k−1u′(Xi1 + · · · +Xik) : 1 ≤ i1 < · · · < ik ≤ n}.
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The estimator in the previous theorem is the median if k = 1 and
the Hodges–Lehmann estimator if k = 2. The asymptotics of the projec-
tion median was considered by Cui and Tian (1994). Their conditions are
slightly stronger than above and the conclusions are also stronger.

The next theorem considers a general class of scale parameters gener-
alizing the median of the absolute deviations.

Theorem B.2. Under the notation and assumptions in Corollary B.1,
suppose that:

(i) For each ‖u‖ = 1, there exists MAD(u) such that

F ∗
u (m(u) + MAD(u))− F ∗

u (m(u)−MAD(u)) = 2−1.

(ii) For each ‖u‖ = 1, F ∗
u
′(m(u) + MAD(u)) and F ∗

u
′(m(u) −MAD(u))

exist.

(iii) 0 < inf
‖u‖=1

(F ∗
u
′(m(u) + MAD(u))) + F ∗

u
′(m(u) −MAD(u))).

(iv) lim
h→0

sup
‖u‖=1

|h−1(Fu(m(u) + MAD(u) + h) − Fu(m(u) + MAD(u))) −

F ′
u(m(u) + MAD(u))| = 0

and

lim
h→0

sup
‖u‖=1

|h−1(Fu(m(u) − MAD(u) + h) − Fu(m(u) − MAD(u))) −

F ′
u(m(u)−MAD(u))| = 0.

(v)

lim
h→0

sup
‖u‖=1

|F ∗
u (m(u) + MAD(u) + h)− F ∗

u (m(u) + MAD(u))| = 0

and

lim
h→0

sup
‖u‖=1

|F ∗
u (m(u)−MAD(u) + h)− F ∗

u (m(u) −MAD(u))| = 0.

Then,

sup
‖u‖=1

|n1/2(M̂ADn(u)−MAD(u)) + (b(u))−1n1/2 (n− k)!
n!

×
∑

(i1,...,ik)∈In
k

(I(|k−1u′(Xi1 + · · ·+Xik)−m(u)| ≤ MAD(u)) − 2−1)| Pr→ 0,
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where b(u) = F ∗
u
′(m(u) + MAD(u)) + F ∗

u
′(m(u)−MAD(u)),

M̂AD
∗∗
n = inf{t ∈ R :

(n− k)!
n!

∑
(i1,...,ik)∈In

k

I(|k−1u′(Xi1 + · · · +Xik)− m̂n(u)| ≤ t) > 1/2},

M̂AD
∗
n = sup{t ∈ R :

(n− k)!
n!

∑
(i1,...,ik)∈In

k

I(|k−1u′(Xi1 + · · · +Xik)− m̂n(u)| ≤ t) < 1/2},

and M̂ADn = 2−1(M̂AD
∗
n + M̂AD

∗∗
n ).

Proof. Let

Gn(t, v, u) =
(n− k)!
n!

∑

(i1,...,ik)∈In
k

I(|k−1u′(Xi1 + · · ·+Xik)− v| ≤ t).

We apply Theorem B.1 with Zn(θ, u) = Gn(θ,mn(u), u) and an = n1/2. By
the arguments in the Theorem 3.5, we have that

{n1/2(Gn(t, v, u) −G(t, v, u)) : t ≥ 0, r ∈ R, ‖u‖ = 1}

converges weakly, where G(t, v, u) = Pr{|k−1u′(X1 + · · · +Xk) − v| ≤ t}.
By condition (v), for each 0 < M <∞, we have that

sup
‖u‖=1

sup
|τ |≤M

n1/2|Gn(MAD(u) + n−1/2τ,mn(u), u)

−G(MAD(u) + n−1/2τ,mn(u), u) −Gn(MAD(u),m(u), u)

+G(MAD(u),m(u), u)| Pr→ 0.

So, it suffices to prove that

sup
‖u‖=1

sup
|τ |≤M

|n1/2(G(MAD(u) + n−1/2τ,m(u), u)

−G(MAD(u),m(u), u)) − τb(u)| → 0.

This follows from (iv).

When k = 1, the estimator in the previous theorem is the median of the
absolute deviations. For k ≥ 2, medians in the previous are understood in
the sense of Hodges–Lehmann.
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The next theorem considers a general class of scale parameters gener-
alizing the interquantile range. Given 0 < p < 1, we consider the p–th
quantile range QR = F−1(1− 2−1p)− F−1(2−1p).

Theorem B.3. Let 0 < p < 1. Suppose that:

(i) For each ‖u‖ = 1, there exists q1(u) and q2(u) such that Fu(q1(u))
= 2−1p and Fu(q2(u)) = 1− 2−1p.

(ii) For each ‖u‖ = 1 and each i = 1, 2, F ∗
u
′(qi(u)) exists and 0 <

inf‖u‖=1 F
∗
u
′(qi(u)).

(iii) For each i = 1, 2,

lim
h→0

sup
‖u‖=1

|h−1(F ∗
u (qi(u) + h)− F ∗

u (qi(u))) − F ∗
u
′(qi(u))| = 0.

(iv) For each i = 1, 2,

lim
h→0

sup
‖u‖=1

|F ∗
u (qi(u) + h)− F ∗

u (qi(u))| = 0.

Then,

sup
‖u‖=1

|n1/2(Q̂Rn(u)−QR(u))

+ n1/2(F ∗
u
′(q2(u)))

−1(F ∗
n,u(q2(u))− F ∗

u (q2(u)))

− n1/2(F ∗
u
′(q1(u)))

−1(F ∗
n,u(q1(u))− F ∗

u (q1(u)))| Pr→ 0,

where QR(u) = q2(u)− q1(u),

F ∗
n,u(t) =

(n− k)!
n!

∑

(i1,...,ik)∈In
k

I(k−1u′(Xi1 + · · ·+Xik) ≤ t)

q̂∗∗n,2 = inf{t ∈ R : F ∗
n,u(t) > 1 − (p/2)}, q̂∗n,2 = sup{t ∈ R : F ∗

n,u(t)

< 1 − (p/2)}, q̂n,2 = 2−1(q̂∗∗2 + q̂∗2), q̂
∗∗
n,1 = inf{t ∈ R : F ∗

n,u(t) > p/2},
q̂∗n,1 = sup{t ∈ R : F ∗

n,u(t) < p/2}, q̂n,1 = 2−1(q̂∗∗n,1 + q̂∗n,1) and Q̂Rn(u)
= q̂n,2(u)− q̂n,1(u).

When p = 1/2 and k = 1, the estimator QR in the previous theo-
rem is the interquantile range. The previous theorem follows similarly to
Theorems 3.5 and B.2.
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