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Robustness of weighted Lp-depth and
Lp-median

By Yijun Zuo∗

Summary: Lp-norm weighted depth functions are introduced and the local and global
robustness of these weighted Lp-depth functions and their induced multivariate medians
are investigated via influence function and finite sample breakdown point. To study the
global robustness of depth functions, a notion of finite sample breakdown point is intro-
duced. The weighted Lp-depth functions turn out to have the same low breakdown point
as some other popular depth functions. Their influence functions are also unbounded.
On the other hand, the weighted Lp-depth induced medians are globally robust with the
highest possible breakdown point for any reasonable estimator. The weighted Lp-medians
are also locally robust with bounded influence functions for suitable weight functions. Un-
like other existing depth functions and multivariate medians, the weighted Lp depth and
medians are easy to calculate in high dimensions. The price for this advantage is the lack
of affine invariance and equivariance of the weighted Lp depth and medians, respectively.

Keywords: Breakdown point, depth function, efficiency, equivariance, influence func-
tion, Lp-norm, median, robustness. JEL C10, C14.

1. Introduction

Since the introduction of the halfspace depth (Tukey, 1975; Donoho and
Gasko, 1992) and the simplicial depth (Liu, 1990), data depth has become
an important tool for high dimensional data ordering, analysis, and infer-
ence. The key motivation of depth functions in the location setting is to
provide a center-outward ordering of observations in high dimensions where,
unlike in the one-dimensional case, no natural and meaningful order princi-
ple of points exists. Some general treatments of depth functions have been
provided by Liu et al. (1999), Zuo and Serfling (2000a, b) and Mosler (2002).
Among many interesting applications of data depth, employing depth (and
consequently a center-outward ordering) to define multivariate medians is
a paradigm.

A legitimate concern for depth functions and especially depth induced
medians is: How sensitive are they with respect to the assumed underlying
distribution (data)? Are they robust, locally and globally?

In this paper, we extend the Lp-depth defined in Zuo and Serfling (2000a)
and introduce a class of weighted Lp-depth functions. We then focus on the
robustness of the weighted Lp-depth functions and medians induced from
them. Specifically, we investigate the local and the global robustness of these
depth functions and depth medians via influence function and finite sample
breakdown point, respectively. The latter notion, introduced by Donoho
and Huber (1983), has become the most prevailing quantitative measure of
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global robustness of estimators, especially location and scatter estimators.
We adapt the original definition and introduce in this paper a notion of
breakdown point for depth functions.

It turns out that, like some popular depth functions, the weighted Lp-
depth function, with a low breakdown point, is not very robust globally.
Its influence function is also unbounded, although the local shift sensitivity
of this depth function is bounded for suitable weight functions. On the
other hand, the multivariate median induced from the weighted Lp-depth is
globally robust with the best possible breakdown point and locally robust as
well with a bounded influence function for suitable weight and distribution
functions.

The article is organized as follows. In Section 2 we define a class of
weighted Lp-depth functions and investigate the local and global robust-
ness of the depth functions via influence function and a notion of finite
sample breakdown point introduced in the same section. Section 3 is de-
voted to the study of the local and the global robustness of the weighted
Lp-depth induced multivariate medians. The paper ends in Section 4 with
some concluding remarks.

2. Weighted Lp-depth

Zuo and Serfling (2000a) defined a depth function based on the Lp-norm.
Different distances (norms) relative to the underlying distribution (data)
were treated with equal importance (equally weighted). In practice, the
importance (weight, cost, penalty, or incentive) may not be the same for
different distances (norms). This motivates us to define weighted Lp-depth
as follows

WLpD(x;F ) =
1

1 + Ew(‖x−X‖p)
, (1)

where w is a suitable weight function on [0,∞), X ∼ F and “‖ · ‖p” stands
for the Lp-norm (when p = 2 we have the Euclidean norm and write ‖ · ‖
for ‖ · ‖2). We assume that w is non-decreasing and continuous on [0,∞)
with w(∞−) = ∞. We rule out the non-existence case of Ew(‖x − X‖p)
(which gives rise to an unappealing depth 0 for all points) and assume that
Ew(‖x−X‖p) < ∞ for any x ∈ Rd. The latter holds true if Ew(‖X‖p) < ∞
and w does not increase too rapidly in the sense that w(2‖x‖p) ≤ Cw(‖x‖p)
for some C > 0 and any x ∈ Rd (such w includes w(x) =

∑n
i=0 aix

bi , n ≥
0, an, bn > 0, ai, bi ≥ 0). An empirical version of the weighted Lp-depth
function is obtained by replacing F of X in Ew(‖x − X‖p) =

∫
w(‖x −

t‖p)dF (t) with its empirical version Fn.
The weighted Lp-depth possesses some desirable properties of depth func-

tions (see Zuo and Serfling, 2000a, b). For example, it is translation invariant
(can be affine invariant for p = 2 under some modification), maximized at
the center of a (centrally) symmetric distribution for convex w, decreasing
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when a point moves along a ray stemming from the deepest point, and van-
ishing at infinity; see Zuo and Serfling (2000a) for more related discussions.
We now investigate the robustness of the weighted Lp-depth.

2.1. Influence function. Denote by δx the point mass probability dis-
tribution at a fixed point x ∈ Rd. For a given distribution F in Rd and an
ε > 0, the distribution resulting from contaminating F with an ε amount of
the point mass distribution δx is denoted by F (ε, δx) = (1− ε)F + ε δx. The
influence function of a statistical functional T at a given point x ∈ Rd for
a given F is defined as (Hampel et al., 1986)

IF (x;T, F ) = lim
ε→0+

T (F (ε, δx))− T (F )
ε

. (2)

IF (x; T, F ) describes the relative effect (influence) on T of an infinitesimal
point-mass contamination at x, and captures the local robustness of T . The
supremum norm of the influence function is called the gross error sensitivity
of T at F (Hampel et al., 1986). That is,

GRE (T, F ) = sup
x∈Rd

‖IF(x;T, F )‖p. (3)

GRE (T, F ) is the maximum relative effect on T of an infinitesimal point-
mass contamination and measures the local (and the global as well) robust-
ness of T .

When an observation x is slightly shifted to a neighboring point y, the
effect on the functional T can be measured by means of IF(y; T, F ) −
IF(x; T, F ). A measure for the worst case standardized effect of ‘wiggling’
is provided by the local shift sensitivity (LSS) (Hampel et al., 1986)

LSS (T, F ) = sup
x6=y

‖IF(y; T, F )− IF(x; T, F )‖p/‖y − x‖p. (4)

Note that in the original definitions of GRE and LSS, the Euclidean norm
is employed. We adopt the Lp norm here simply for the consistency with
the underlying metric.

In this subsection we investigate the robustness of the weighted Lp-depth
via influence function and gross error and local shift sensitivity. For conve-
nience, we sometimes write F (ε, δx) = Fε for a fixed x. It follows in a
straightforward fashion that

WLpD(y;F (ε, δx))−WLpD(y;F )
ε

=
ε
∫

w(‖y − t‖p)dF (t)− εw(‖y − x‖p)
ε
(
1 +

∫
w(‖y − t‖p)dF (ε, δx)(t)

)(
1 +

∫
w(‖y − t‖p)dF (t)

)

→ Ew(‖y −X‖p)− w(‖y − x‖p)
(1 + Ew(‖y −X‖p))2

, as ε → 0.

Hence, we have
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Proposition 1 The weighted Lp-depth function has the following influence
function

IF(x;WLpD(y; F ), F ) =
Ew(‖y −X‖p)− w(‖y − x‖p)

(1 + Ew(‖y −X‖p))2
. (5)

Clearly, the influence function is continuous. If w is Lipschitz continuous
or differentiable, then so is the influence function. The influence of an in-
finitesimal amount of point mass contamination on the Lp-depth of point y,
however, becomes unbounded as x →∞. That is, GRE(WLpD(y;F ); F ) =
∞. When the point mass contamination occurs at the point y, the influence
on the weighted Lp-depth of y becomes a constant (Ew(‖y −X‖p)− w(0))/
(1 + Ew(‖y −X‖p))2.

The influence function of WLpD(y; F ) and the asymptotic representation
of WLpD(y;Fn) have the following connection

WLpD(y; Fn)−WLpD(y; F ) =
1
n

n∑

i=1

IF(Xi;WLpD(y;F ), F ) + op(n−1/2).

(6)
Hence, the sample weighted Lp-depth of point y is asymptotically nor-
mal with an asymptotic mean WLpD(y; F ) and an asymptotic variance
E(IF(X;WLpD(y), F ))2/n.

The local shift sensitivity of the weighted Lp-depth of point y is

LSS (WLpD(y; F ); F ) = sup
x1 6=x2

|w(‖y − x1‖p)− w(‖y − x2‖p)|
(1 + Ew(‖y −X‖p))2‖x1 − x2‖p

. (7)

When w is Lipschitz continuous with a constant C, then by the triangle
inequality we see that LSS (WLpD(y; F ); F ) ≤ C/(1+Ew(‖y−X‖p))2 < ∞.
Thus, the local shift sensitivity of the weighted Lp-depth is bounded when
w is Lipschitz continuous.

The empirical influence function of a statistical functional T at the em-
pirical distribution function Fn of F can be defined by (see Hampel et al.,
1986)

IF(x; T (Fn), Fn) =
T

(
(1− 1

n+1 )Fn + 1
n+1δx

)
− T (Fn)

1/(n + 1)
(8)

= (n + 1)(T (X1, · · · , Xn, x)− T (X1, · · · , Xn)). (9)

For the weighted Lp-depth of point y, a straightforward calculation yields

IF(x;WLpD(y; Fn), Fn) =
1
n

∑
i w(‖y−Xi‖p)−w(‖y−x‖p)(

1+ 1
n

∑
i w(‖y−Xi‖p)

)(
1+ 1

n+1

(∑
i w(‖y−Xi‖p)+w(‖y−x‖p)

)) . (10)

This empirical influence function clearly converges with probability 1 to
the population counterpart IF(x;WLpD(y; F ), F ). The empirical influence
function possesses many similar properties of the population counterpart.
We conclude this subsection with the following remark.
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Remark (i) The influence function of the weighted Lp-depth of a point y is
bounded whenever the point mass contamination occurs at a point x within
a bounded set but becomes unbounded when x moves to ∞ (unlike in the
halfspace depth case where the influence function is always bounded; see Ro-
manazzi, 2001). (ii) The local shift sensitivity of the weighted Lp-depth of a
point y is bounded when the weight function is Lipschitz continuous (unlike
in the halfspace depth case where the local shift sensitivity is unbounded;
see Romanazzi, 2001).

2.2. Finite sample breakdown point. The influence function only cap-
tures the local robustness of a statistical function. To depict the entire ro-
bustness picture of a statistical function, we need a global robustness mea-
sure. The breakdown point turns out to be a prevailing one. The notion
of finite sample breakdown point of an estimator was first introduced by
Donoho and Huber (1983). Roughly speaking, the finite sample breakdown
point of an estimator is the minimum fraction of ‘bad’ points in a data set
that can render the estimator useless. In the location setting, if the estimator
becomes unbounded under some contamination, then we say the estimator
becomes useless. In the scale (or scatter matrix) setting, if the determinant
of the estimator becomes arbitrary small or large under some contamina-
tion, we say the estimator becomes useless. In the statistical depth function
setting, we now introduce a notion of breakdown point.

Depth functions are usually nonnegative (and bounded). In our following
discussion, we assume that D(x;Fn) ≥ 0. This indeed is true for all common
depth functions and the weighted Lp-depth functions. The boundary depth
value 0 corresponds to a very special location of a point and conveys very
little information about the underlying data set. In the spirit of Donoho and
Huber (1983, see pages 167-168), we say that the depth of a point breaks
down if under some contamination its non-boundary depth value becomes
the boundary value 0 and vice versa. A non-zero depth to a zero depth
corresponds to an explosion breakdown. The minimum of all point-wise
breakdown points will be called the breakdown point of the depth function.
Motivated by this, we formally introduce a notion of breakdown point for
depth functions. Define log a− log b = 0, if a = b = 0.

Definition 1 The finite sample breakdown point of the depth D(x; Xn) of
a point x ∈ Rd at a sample Xn = {X1, · · · , Xn}, BP(D(x; Xn)), is defined
as

BP(D(x;Xn)) = min
{m

n
: sup

Xn
m

∣∣∣ log D(x;Xn)− log D(x; Xn
m)

∣∣∣ = ∞
}
,

(11)
where Xn

m is an arbitrary contaminated data set resulting from replacing m
original sample points of Xn by m arbitrary points in Rd. The breakdown
point of the depth function, BP(D; Xn), is then defined to be BP(D;Xn) =
minx∈Rd BP(D(x; Xn)).
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The above notion of breakdown point is based on replacement contam-
ination. A notion based on addition of contamination can also be defined
(see Donoho and Huber, 1983; and Zuo, 2001).

We remark that the above definition focuses on the special explosion
robustness aspect of a depth function and that other versions of breakdown
point focusing on other robustness aspects of a depth function may also be
introduced. For example, one might incorporate the implosion breakdown
concept into the above definition and assert that the depth of a point also
breaks down whenever it reaches the upper boundary value (1 in many
cases) under some contamination.

Note that in the light of the breakdown point of the depth of a point
we can study the breakdown point of the αth depth region Dα(Xn) :=
{x : D(x; Xn) ≥ α} (0 < α < 1), which can be defined as minx∈Dα(Xn)

BP(D(x; Xn)). Recently, Cramer (2003) and Mosler and Cramer (2004)
also studied the robustness of depth functions with a focus on depth induced
contours and deepest point.

A desirable property of a statistical depth function D(·;F ), as discussed
in Zuo and Serfling (2000a, b), is ‘vanishing at infinity’, that is, sup‖x‖p≥M

D(x;Xn) → 0 as M →∞. This property not only insures the boundedness
of the αth depth region but also facilitates many technical treatments of
depth function related problems. Intuitively, it is also sensible: When a
point moves away from the deepest point to infinity, the point becomes the
least deep one. If this property fails to hold for some contaminated data
Xn

m for some m, then we see that | log D(x,Xn) − log D(x,Xn
m)| → ∞ as

‖x‖ → ∞. Hence, the depth function breaks down in the sense of the above
definition.

Another desirable feature of depth functions is the invariance property.
The depth function D(·; ·) is affine invariant if D(x; Xn) = D(Ax+b; AXn+
b) for any non-singular d × d matrix A and vector b ∈ Rd, where AXn =
{AX1, · · · , AXn}. When A = Id×d, an identity matrix, D(·; ·) is said to be
translation invariant. It is seen that the breakdown point of a depth function
reserves the invariance property of the underlying depth function, namely
BP(D, Xn) = BP(D; AXn + b).

Now, we calculate the breakdown point of some popular depth functions.

Example 1 The Tukey halfspace depth (Tukey, 1975) of a point x ∈ Rd

with respect to a given data set Xn is the minimum fraction of sample
points contained in a closed halfspace with x on its boundary. That is

HD(x; Xn) = min
Hx

{Fn(Hx) : Hx closed halfspace with x on its boundary}.
(12)

Clearly the points on the boundary of the convex hull formed by the sample
points in Xn possess halfspace depth 1/n and the points outside the convex
hull have halfspace depth 0. When we move one sample point on the bound-
ary to infinity, the halfspace depth of the point keeps the same. Hence, there
are points with original 0 (or positive) depth which have positive (or 0) depth
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under the contamination. It follows immediately that BP(HD; Xn) = 1/n.
The halfspace depth of a point does not contain all the information about
the relative ‘distance’ of the point with respect to the center of the data
cloud. The value of the halfspace depth of a point can not be employed
directly to identify outliers among the sample points. Indeed, outliers and
the points on the boundary of the convex hull may all have the same depth
1/n. This disadvantage of the halfspace depth is exactly captured by its
global robustness: a low breakdown point. Note that the depth of a sin-
gle point deep inside halfspace depth contours could be more resistant to a
small amount of contamination and hence have a higher breakdown point.
For example, if HD(x;Xn) = k/n, k ≤ n, then BP(HD(x; Xn)) = k/n. The
depth of the deepest point has the highest breakdown point.

Example 2 The simplicial depth (Liu, 1990) of a point x ∈ Rd with respect
to a given data set Xn is the fraction of simplices formed by sample points
that contain the point x. That is,

SD(x;Xn) =
∑

i1,···, id+1

I(x ∈ S[Xi1 , · · · , Xid+1 ])
/(

n

d + 1

)
, (13)

where S[x1, · · · , xd+1] stands for a simplex with xj as its vertices j =
1, · · · , d + 1, I(·) is the indicator function, and ij , j = 1, · · · , d + 1 are
arbitrary d+1 numbers from {1, · · · , n}. Clearly for this depth function, an
argument similar to the one used for HD gives BP(SD; Xn) = 1/n.

Now, we consider the finite sample breakdown point of the weighted Lp-
depth. Clearly, the weighted Lp-depth of any x ∈ Rd with respect to Xn is
positive and approaches 0 as ‖x‖ → ∞. Now moving a single sample point
of Xn to infinity, we see that WLpD(x; Xn

1 ) → 0 for any x ∈ Rd. Hence for
continuous w with w(∞−) = ∞, we have BP (WLpD; Xn) = 1/n.

Proposition 2 For continuous w with w(∞−) = ∞, the sample weighted
Lp-depth has a breakdown point: BP(WLpD; Xn) = 1/n.

The weighted Lp-depth function has, unfortunately, a low breakdown
point 1/n, just like the halfspace and the simplicial depth functions do. A
natural question is: Is there some depth function that can have a (much)
higher breakdown point? The answer is given in the following example.

Example 3 The projection depth (Liu, 1992; Zuo and Serfling, 2000a, b;
and Zuo, 2003) of a point x ∈ Rd with respect to a given data set Xn is
defined based on the Stahel (1981) and Donoho (1982) outlyingness function
O(x;Xn) as

PD(x; Xn) = 1/(1 + O(x; Xn)), (14)
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where O(x;Xn) = sup‖u‖=1 |u′x− µ(u′Xn)|/σ(u′Xn) with µ and σ be-
ing univariate location and scale estimators and u′X = {u′X1, · · · , u′Xn}.
Consider robust µ and σ such as the median (Med) and a modified me-
dian absolute deviation (MADd): MADd(xn) = Medd{|xi−Med(xn)|} with
Medd = (x(b(n+d)c/2) + x(b(n+1+d)c/2))/2 where xn = {x1, · · · , xn} is a uni-
variate data set and x(1) ≤ x(2) ≤ · · · ≤ x(n) are ordered values. Assume
that Xn is in general position, that is, no more than d points from Xn

lie in any d − 1 dimensional hyperplane. Then PD (x;Xn) is positive for
any x ∈ Rd and approaches 0 as ‖x‖ → ∞. Moving m = b(n − d + 1)/2c
points of Xn to a hyperplane determined by some other d points of Xn, we
see that O(x;Xn

m) = ∞ for all x not on the hyperplane. On the other
hand, this will never happen for any x ∈ Rd if m < b(n − d + 1)/2c
and furthermore O(x,Xn

m) → ∞ as ‖x‖ → ∞ since with such an m we
have supXn

m
sup‖u‖=1 µ(u′Xn

m) < ∞ and 0 < infXn
m

inf‖u‖=1 σ(u′Xn
m) ≤

supXn
m

sup‖u‖=1 σ(u′Xn
m) < ∞ (see the proof of Theorem 3.4 of Zuo, 2003).

Hence, we conclude that BP (PD; Xn) = b(n−d+1)/2c/n (a detailed proof
is somewhat involved and shall be reported elsewhere).

The next natural question is: How high can the breakdown point of
a depth function be? We answer this question for a class of translation
invariant depth functions.

Proposition 3 Let D(·; ·) be translation invariant and vanish at infinity.
Assume there is a point x0 such that D(x0; Xn) > 0 for a given data set
Xn. Then BP (D;Xn) ≤ b(n + 1)/2c/n.

Proof By translation invariance, assume without loss of generality that
D(0; Xn) > 0. Let m = b(n + 1)/2c. Let Xn

m, 1 = {X1 + b, · · · , Xm +
b,Xm+1, · · · , Xn} and Xn

m, 2 = Xn
m 1 − b for b ∈ Rd. By ‘vanish at infinity’

property, D(b; Xn) → 0 as ‖b‖ → ∞. If this no longer holds for D(b; Xn
m 1),

then m contaminating points can break down the depth function. Other-
wise, we have D(0, Xn

m, 2) = D(b,Xn
m, 1) → 0 as ‖b‖ → ∞, which again

shows that m contaminating points can break down the depth function.
Thus, we have the desired result.

3. Weighted Lp-median

A straightforward application of the weighted Lp-depth (or any other depth)
is to define the deepest point based on the depth as a multivariate ana-
logue of the univariate median. The multivariate median induced from the
weighted Lp-depth is called weighted Lp-median. That is,

WLpM (F ) = arg sup
x∈Rd

WLpD (x;F ) = arg inf
x∈Rd

φp(x;F ), (15)

where φp(x; F ) =
∫

(w(‖t− x‖p)− w(‖t‖p))dF (t), 1 ≤ p < ∞. If there is a
non-uniqueness problem, we take the average to take care of it.
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If w is Lipschitz continuous with a constant C (such w includes w(x) =
Cx + B), then φp(x;F ) always exists since |φp(x; F )| ≤ C‖x‖p for fixed
x. If Ew(‖X‖p) < ∞ and w does not increase too rapidly in the sense
that w(2x) ≤ C1w(x) (see Section 2), then φp(x;F ) is again well defined
since w(‖t− x‖p) ≤ w(2‖x‖p) + C1w(‖X‖p). From now on, we assume that
φp(x; F ) is well defined.

The weighted Lp median exists for ‘reasonable’ weight function w and is
unique for ‘reasonable’ distribution F . It is also Fisher consistent for F sym-
metric about θ, that is WLpM (F ) = θ. F of X is said to be symmetric about
θ if X − θ and θ −X have the same distribution. If F is symmetric about 0,
then the weighted Lp-median is odd, that is, WLpM (FX) = −WLpM (F−X).

Proposition 4 (1) WLpM (F ) exists if w is continuous and P{x : w(‖x‖p)
< w(∞−)} > 0; (2) WLpM (F ) is unique if w is strictly convex or if it
is convex and F is not concentrated on a line in Rd; (3) WLpM (F ) is
Fisher consistent for symmetric F and convex w; (4) WLpM (F ) is odd for
F symmetric about the origin; and (5) WLpM (Fn) is odd and translation
equivariant and is symmetric about the center θ of symmetric F and is
unbiased for θ provided that EX exists.

Note that the weighted Lp-median becomes regular M -estimates of mul-
tivariate location under some regularity conditions on w and F (see Huber,
1981) for discussions on M -estimates of location. When w(x) = xα, the sam-
ple weighted Lp-median becomes the Lα

q estimate (q = p) of Rao (1988).
A particularly interesting case of the general weighted Lp-median is the

one with p = 2, although different norms are equivalent in some sense. The
corresponding weighted L2-median is

WL2M (F ) = arg inf
x∈Rd

φ2(x;F ) = arg inf
x∈Rd

∫
(w(‖t− x‖2)− w(‖t‖2))dF (t).

(16)
When w(x) = x, the general weighted L2-median becomes the so-called L1

or spatial median in the literature. An immense amount of research related
to L1-median has been carried out (see for example Hayford, 1902; Haldane,
1948; Brown, 1983; Pollard, 1984; Rao, 1988; Small, 1990; Chaudhuri, 1992;
Chakraborty, Chaudhuri and Oja, 1998; Dodge and Rousson, 1999; and
Hettmansperger and Randles; 2002). The uniqueness of the L1 median is
proved by Milasevic and Ducharme (1987), among others. The L1-median
is Fisher consistent even for halfspace symmetric F (see Zuo and Serfling,
2000c) for the notion of halfspace symmetry and the proof.

In the following we confine attention to the most interesting case: the
weighted Lp-median with p = 2. Many of the following results can actually
be extended for more general p, though.
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3.1. Influence function. In this subsection we investigate the local ro-
bustness of the weighted L2-median via its influence function. For simplicity,
denote by θ(F ) the weighted L2-median.

Proposition 5 Let P (X = x) = 0 for any x ∈ Rd and w be continuously
twice differentiable. Then the influence function of the weighted L2-median
θ(F ) is given by

IF (x; θ(F ), F ) = A−1w(1)(‖x− θ(F )‖) x− θ(F )
‖x− θ(F )‖I(x 6= θ(F )) (17)

as long as

A =
∫ (

w(1)(‖t− θ(F )‖)
( Id×d

‖t− θ(F )‖ −
t− θ(F )

‖t− θ(F )‖2
(t− θ(F ))′

‖t− θ(F )‖
)

+ w(2)(‖t− θ(F )‖) t− θ(F )
‖t− θ(F )‖

(t− θ(F ))′

‖t− θ(F )‖
)

dF (t) (18)

exists and is invertible and consequently

GES (θ(F ); F ) ≤ sup
x∈Rd

w(1)(‖x− θ(F )‖)I(x 6= θ(F ))
/

min
1≤i≤d

|λi(A)|, (19)

where λi(A) are the eigenvalues of A (1 ≤ i ≤ d).

When X
d= −X, then θ(F ) = 0, where ‘ d=’ stands for ‘equal in distribu-

tion’. Furthermore, if e′iX
d= −e′iX, 1 ≤ i ≤ d, with e′i = (eij)1≤j≤d and

eij = I(i = j), 1 ≤ j ≤ d, then

A−1 = diag
(
1
/

E
(
w(1)(‖X‖)/‖X‖

(
1−X2

i /‖X‖2
)

+ w(2)(‖X‖)X2
i /‖X‖2

))
1≤i≤d

(20)

if and only if E[w(1)(‖X‖)/‖X‖(1−X2
i /‖X‖2)+w(2)(‖X‖)X2

i /‖X‖2] exists
and 6= 0, 1 ≤ i ≤ d.

When X is spherical symmetric with a density f , then θ(F ) = 0 and
A−1 = c−1Id×d with

c =
E( (d−1)w(1)(‖X‖)

‖X‖ + w(2)(‖X‖))
d

=
2πd/2

dΓ (d/2)

∫ ∞

0

[
(d− 1)w(1)(r)

r
+ w(2)(r)] rd−1f(r2) dr (21)

provided that c exists and 6= 0.
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It is not difficult to see that a sufficient condition for the existence of A
is the existence of Ew(2)(‖X−θ(F )‖) and Ew(1)(‖X−θ(F )‖)/‖X−θ(F )‖.
The latter is guaranteed if w(2)(y) and w(1)(y)/y are bounded (a.s. Lebesgue
measure) on (0,∞). Examples of such w include w(y) = ay + b or cy2 + d
for a > 0, b ≥ 0, c > 0 and d ≥ 0. For the invertibility of A, by the Cauchy-
Schwarz inequality, w(i)(y) ≥ 0 on (0,∞), i = 1, 2,

∑2
i=1 P (w(i)(‖X −

θ(F )‖) > 0) > 0, and P (Hθ(F )) = 0 for any hyperplane Hθ(F ) containing
θ(F ) are sufficient conditions. Indeed, it is readily seen that these conditions
insure a positive definite matrix A.

Clearly, when A−1 exists and the contamination occurs over a bounded
set in Rd, the influence of a point mass contamination on the weighted L2-
median is bounded. Furthermore, the influence function of the weighted L2-
median is bounded as long as w(1)(·) is bounded on [0,∞) (such w includes
w(x) = ax + b with a > 0 and b ≥ 0) and A−1 exists. Due to the jump at
the point x = θ(F ), the local shift sensitivity of the weighted L2-median
can be unbounded, though.

Note that for symmetric F , by translation equivariance, we can assume,
w. l. o. g., that F is symmetric about the origin. Distributions F satis-
fying e′iX

d= −e′iX, 1 ≤ i ≤ d include the so-called d-version symmetric
distributions (see Zuo, 2003; and Zuo, Cui and Young, 2004): u′X d= a(u)Z
with a(u) = a(−u) > 0 for any ‖u‖ = 1 and univariate random variable
Z

d= −Z. Special cases of d-version symmetry include spherical symmetry
with a(u) = constant, elliptical symmetry with a(u) =

√
u′Σu for some pos-

itive definite matrix Σ and α-symmetry with a(u) = (
∑

i ci|ui|α)1/α with
ci ≥ 0, 0 < α ≤ 2 and u′ = (u1, · · · , ud).

In the special case w(x) = ax + b with a > 0 and b ≥ 0 (this covers the
L1-median case), we can simplify the results in the above proposition and
have

Corollary 1 Let P (X = x) = 0 for any x ∈ Rd and w(x) = ax + b, a > 0
and b ≥ 0. Then

IF (x; θ(F ), F ) = A−1 x− θ(F )
‖x− θ(F )‖I(x 6= θ(F )) (22)

provided that

A =
∫ ( Id×d

‖t− θ(F )‖ −
t− θ(F )

‖t− θ(F )‖2
(t− θ(F ))′

‖t− θ(F )‖
)
dF (t) (23)

exists and is invertible and consequently

GES (θ(F ); F ) = 1/ min
1≤i≤d

|λi(A)| < ∞ (24)

where λi(A) are the eigenvalues of A (1 ≤ i ≤ d).
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When X
d= −X, then θ(F ) = 0. Furthermore, if e′iX

d= −e′iX, 1 ≤ i ≤ d,
with e′i = (eij)1≤j≤d and eij = I(i = j), 1 ≤ j ≤ d, then

A−1 = diag
(
1
/

E(1/‖X‖ −X2
i /‖X‖3)

)
1≤i≤d

(25)

provided that E(1/‖X‖ −X2
i /‖X‖3) exists and 6= 0, 1 ≤ i ≤ d.

When X is spherical symmetric with a density f , then θ(F ) = 0 and

A−1 = c−1Id×d, c =
(d− 1)E(1/‖X‖)

d
=

2(d− 1)πd/2

d Γ (d/2)

∫ ∞

0

rd−2f(r2) dr

(26)
provided that c exists. When X is d-variate standard normal, then θ(F ) = 0
and

A−1 = c−1Id×d =
√

2 dΓ (d/2)
(d− 1)Γ ((d− 1)/2)

Id×d. (27)

Thus, A exists if E‖X − θ(F )‖−1 exists. The latter is guaranteed if F
has a density that is bounded in any bounded region in Rd. The matrix A
is invertible if further P (Hθ(F )) = 0.

To the best of our knowledge, the above general results are new. A bi-
variate influence function of the weighted L2-median in the special case:
d = 2, w(x) = x, and X

d= −X was given in Niinimaa and Oja (1995). The
authors presumed the existence of the matrix

A =

(
E(X2

2/‖X‖3) −E(X1X2/‖X‖3)
−E(X1X2/‖X‖3) E(X2

1/‖X‖3)

)
(28)

(and its inverse) and their influence function is not defined at the special
point x = θ(F ) = 0.

By the corollary, if X ∼ Nd(0, Id×d) and w(x) = ax + b, a > 0, b ≥ 0,
then the gross error sensitivity of the weighted L2-median is

GES (θ(F ); F ) =
d
√

2 Γ (d/2)
(d− 1)Γ ((d− 1)/2)

which is finite for any d ≥ 2 and increases in a rate of
√

d as d → ∞
(indeed GES (θ(F ); F )/

√
d → 1 as d →∞). When d = 2, the GES of these

bivariate weighted median (including the L1-median) is in-between those of
the halfspace median (HM) (see Chen and Tyler, 2002) and the projection
median (PM) (see Zuo, Cui and Young, 2004):

GRE (HM;F ) =
√

2π

2
< GRE (θ(F ); F ) =

2
√

2√
π

< GRE (PM;F ) =
√

2π.
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Under some regularity conditions, we have the asymptotic representation
of the weighted L2-median (the proof is slightly involved and not the focus
of this paper)

θ(Fn)− θ(F ) =
1
n

n∑

i=1

IF(Xi; θ(F ), F ) + op(
1√
n

). (29)

Hence,
√

n (θ(Fn) has the asymptotic mean θ(F ) and the asymptotic co-
variance matrix

E(IF(X; θ(F ), F )IF(X; θ(F ), F )′).

When X ∼ Nd(0, Id×d) and w(x) = ax + b, a > 0, b ≥ 0, the covariance
matrix becomes

cov (
√

n θ(Fn)) =
1
d

( d
√

2 Γ (d/2)
(d− 1) Γ ((d− 1)/2)

)2

Id×d = kdId×d. (30)

Thus, the asymptotic relative efficiency (ARE) of these weighted L2-median
with respect to the mean is 1/kd which increases to 1 as d → ∞. Indeed,
we have the following ARE results:

d = 2 d = 3 d = 4 d = 5

π
4
≈ 0.79 8

3π
≈ 0.85 9π

32
≈ 0.88 128

45π
≈ 0.91

d = 6 d = 7 d = 8

75π
256

≈ 0.92 4608
1575π

≈ 0.93 11025π
36864

≈ 0.94

Table 1. The asymptotic relative efficiency of the weighted L2-median relative
to the mean.

We note that the asymptotic distribution and the efficiency of the L1-
(or spatial) median, as a special case of the weighted L2-median here, have
been discussed by many authors (see for example Huber, 1981; Brown, 1983;
Pollard, 1984; and Chaudhuri, 1992). Indeed, we realized that among others
Brown (1983) also obtained the kd and provided an efficiency table of the
L1-median relative to the mean for d from 2 to 7.

To end this subsection we remark that the weighted L2-median possesses
a bounded influence function for suitable weight and distribution functions.
At standard normal model, it also has a high asymptotic efficiency (relative
to the mean) which approaches 100% rapidly as d increases.
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3.2. Finite sample breakdown point. The weighted L2-median is lo-
cally robust in the sense it possesses a bounded influence function for prop-
erly chosen weight functions. In this section we investigate the global ro-
bustness of the weighted L2-median via its finite sample breakdown point.

The finite sample breakdown point of the L1-median (the special case of
the weighted L2-median with w(x) = x) has been studied in Lopuhaä and
Rousseeuw (1991). They proved that the L1-median has a breakdown point
b(n + 1)/2c/n, the highest possible value for any translation equivariant
location estimator. We end this section with the following slightly more
general result.

Proposition 6 Let w be non-decreasing, w(x) < ∞ for any x ∈ [0,∞)
and w(∞−) = ∞, and w(‖a + b‖) ≤ w(‖a‖) + w(‖b‖) for any a, b ∈ Rd.
Then the sample weighted L2-median has the best possible breakdown point
b(n + 1)/2c/n of any translation equivariant location estimator.

4. Concluding remarks

For studying the global robustness of weighted Lp-depth, a notion of fi-
nite sample breakdown point for general depth functions is introduced. The
weighted Lp-depth turns out to have a low breakdown point, just as some
popular depth functions. The influence function of the weighted Lp-depth
is also unbounded. The weighted Lp-depth thus is not very robust.

On the other hand, the weighted Lp-depth induced medians possess the
best possible global robustness for suitably chosen weight functions. These
weighted medians can be locally robust as well in the sense that they have
bounded influence functions for appropriate weight functions. Robustness
and efficiency of location estimators are uncooperative in general. But the
weighted L2-medians somehow can keep a very good balance between the
two. Indeed, the asymptotic relative efficiency of the medians tends to 100%
rapidly as d increases.

A remarkable advantage of the weighted LP -depth and Lp-medians is
the ease in computation in high dimensions. The price for gaining this big
advantage in computation is the lack of affine invariance and equivariance,
respectively, although the Lp-depth is translation (and even orthogonal)
invariant and the weighted Lp-medians are translation and scale and can be
orthogonal equivariant.

Affine invariance (or equivariance) is certainly a desirable and ideal prop-
erty for depth functions (or location estimators)( see for related discussions
Liu, 1990; and Zuo and Serfling, 2000a, c). This is especially true when the
underlying variables are measurements of the same quantity and are on the
same scale and when linear combinations are actually employed in prac-
tice. However, there is a trade-off between affine invariant depth (or affine
equivariant location estimators) and computability in high dimensions. High
dimensional affine invariant depth or affine equivariant location estimators
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are typically computationally challenging. Fortunately, in many (not all)
practical applications, the coordinates have specific means and represent
measurements of very different types of variables (such as blood pressure,
education level, and marriage status) and the linear combination of the un-
derlying variables may not be very meaningful. The equivariance property
of the Lp- (especially L2-) medians seems adequate in those practical appli-
cations, if one is willing to sacrifice the ideal property for the accuracy and
the ease in computation.

That said, it is still possible to have the ideal and the desirable affine in-
variance (or equivariance) property for the weighted Lp depth (or medians)
if one is willing to pay a higher price in the computing. For example, one can
modify the weighted L2-depth and medians by replacing ‖x‖ in their defi-
nitions with ‖x‖Σ =

√
x′Σ−1x for x ∈ Rd, where Σ is a covariance matrix

of the underlying distribution F (see for example Rao, 1988; and Zuo and
Serfling, 2000a). Also one can employ the transformation-retransformation
technique of Chakraborty, Chaudhuri, and Oja (1998) to achieve the ideal
property. The latter technique is utilized in Hettmansperger and Randles
(2002).

Appendix

Proof (of Proposition 4) The function φ(x;F ) does achieve its mini-
mum at the weighted Lp-median if w is continuous and P{x : w(‖x‖p) <
w(∞−)} > 0. Assume that there is a sequence {xn} in Rd such that
lim infn→∞ φp(xn; F ) = infx∈Rd φp(x; F ) and assume that there is a sub-
sequence {xnk

} of {xn} such that xnk
→ x0 (in the Lp norm sense), then

‖x0‖p < ∞. Since otherwise, by Fatou’s lemma,

inf x∈Rdφp(x;F )

= lim inf
k→∞

∫
w(‖t− xnk

‖p)dF (t)−
∫

w(‖t‖p)dF (t)

≥
∫

w(∞−)dF (t)−
∫

w(‖t‖p)dF (t)

>

∫

w(‖t‖p)<w(∞−)

w(‖t‖p)dF (t) +
∫

w(‖t‖p)=w(∞−)

w(‖t‖p)dF (t)

−
∫

w(‖t‖p)dF (t)

= φp(0; F ),

which is a contradiction. This completes the proof of part (1).
Part (2) can be proved in a straightforward fashion in virtue of the tri-

angle inequality of the Lp norm and the convexity of w. Part (3) follows
from the fact that for any θ∗ ∈ Rd

Ew(‖X − θ‖p) ≤ Ew(‖X − θ∗‖p/2 + ‖X + θ∗ − 2θ‖p/2) ≤ Ew(‖X − θ∗‖p).

Parts (4) and (5) are straightforward.
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Proof (of Proposition 5) For simplicity, write θ(Fε) for the weighted
L2-median under F (ε, δx). When x = θ(F ), then θ(Fε) = θ(F ). This is
because for any y ∈ Rd

φ (y; F (ε, δθ(F )))

= (1− ε)
∫

(w(‖t− y‖)− w(‖t‖))dF (t) + ε(w(‖θ(F )− y‖)− w(‖θ(F )‖)
≥ (1− ε)φ(θ(F ); F ) + ε(w(‖θ(F )− θ(F )‖)− w(‖θ(F )‖))
= φ(θ(F ); F (ε, δθ(F ))),

for any non-decreasing w on [0,∞). When x 6= θ(F ), θ(Fε) 6= x for suffi-
ciently small ε > 0. To prove this assertion, we first note that by unique-
ness and continuity, there is a θ∗ ∈ Rd close enough to θ(F ) such that
φ(x; F ) > φ(θ∗;F ). Consequently, there exists some ε > 0 small enough
such that εw(‖x− θ∗‖) < (1− ε)(φ(x; F )− φ(θ∗; F )). Thus

(1− ε)φ(θ∗;F ) + ε(w(‖x− θ∗‖)− w(‖x‖))
< (1− ε)φ(x; F ) + ε(w(‖x− x‖)− w(‖x‖)).

That is, φ(θ∗; F (ε, δx)) < φ(x;F (ε, δx)). Hence x 6= θ(Fε).
Now we are in a position to derive the influence function of θ(F ) at the

point x (6= θ(F )). Write θε for θ(Fε). Then

(1− ε)
∫

w(1)(‖t− θε‖)−(t− θε)
‖t− θε‖ dF (t) + εw(1)(‖x− θε‖)−(x− θε)

‖x− θε‖ = 0.

Taking derivative with respect to ε in both sides and letting ε → 0, we have

0 =
∫ (

w(1)(‖t− θ(F )‖) d

dε

(−(t− θε)
‖t− θε‖

)∣∣∣
ε=0

+ w(2)(‖t− θ(F )‖)−(t− θε)
‖t− θε‖

d‖t− θε‖
dθε

∣∣∣
ε=0

)
dF (t)

dθε

dε

∣∣∣
ε=0

+ w(1)(‖x− θ(F )‖)−(x− θ(F ))
‖x− θ(F )‖ .

Thus,

A IF(x; θ(F ), F ) = w(1)(‖x− θ(F )‖) x− θ(F )
‖x− θ(F )‖

with

A =
∫ (

w(1)(‖t− θ(F )‖)
( Id×d

‖t− θ(F )‖ −
t− θ(F )

‖t− θ(F )‖2
(t− θ(F ))′

‖t− θ(F )‖
)

+ w(2)(‖t− θ(F )‖) t− θ(F )
‖t− θ(F )‖

(t− θ(F ))′

‖t− θ(F )‖
)

dF (t). (31)
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Hence,

IF(x; θ(F ), F )

=

{
A−1w(1)(‖x− θ(F )‖) x−θ(F )

‖x−θ(F )‖ , x 6= θ(F ) and A−1 exists,

0, x = θ(F ).
(32)

When A−1 exists, it can be seen that the gross error sensitivity of θ(F )
is

GES(θ(F ); F ) ≤ supx∈Rd w(1)(‖x− θ(F )‖)I(x 6= θ(F ))
min1≤i≤d |λi(A)| , (33)

where λi(A) are the eigenvalues of A (1 ≤ i ≤ d).

Now we focus on the matrix A and its inverse. When X
d= −X, then

θ(F ) = 0 by Fisher consistency. If we further have e′iX
d= −e′iX, 1 ≤ i ≤ d,

then the matrix A can be simplified to

A = E

[
w(1)(‖X‖)
‖X‖

(
Id×d − X

‖X‖
X ′

||X‖
)

+ w(2)(‖X‖) X

‖X‖
X ′

‖X‖
]

= diag

(
E

[
w(1)(‖X‖)
‖X‖

(
1− X2

i

‖X‖2
)

+ w(2)(‖X‖) X2
i

‖X‖2
])

1≤i≤d

, (34)

with X ′ = (X1, · · · , Xd). Hence, A has an inverse

A−1 = diag
(
1
/

E
(
w(1)(‖X‖)/‖X‖

(
1−X2

i /‖X‖2
)

+ w(2)(‖X‖)X2
i /‖X‖2

))
1≤i≤d

(35)

if and only if

E[w(1)(‖X‖)/‖X‖(1−X2
i /‖X‖2) + w(2)(‖X‖)X2

i /‖X‖2]
exists and 6= 0 for 1 ≤ i ≤ d. (36)

When X ∼ F is spherically symmetric about the origin, the matrix A
becomes

A =
E((d− 1)w(1)(‖X‖)/‖X‖+ w(2)(‖X‖))

d
Id×d, (37)

because of the independence of X/‖X‖ and ‖X‖ and the fact that
E(X2

i /‖X‖2) = 1/d. If this X has a density f , then

A = c Id×d =
( 2πd/2

dΓ (d/2)

∫ ∞

0

[(d− 1)w(1)(r)/r + w(2)(r)] rd−1f(r2) dr
)
Id×d.

(38)
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Proof (of Proposition 6) Let Xn = {X1, · · · , Xn} be the original
data set and θ(Xn) be the weighted sample median at Xn. Let Xn

m =
{X∗

1 , · · · , X∗
m, Xm+1, · · · , Xn} = {Y1, · · · , Yn} be a contaminated data set

with at most m(< b(n + 1)/2c) original points in Xn being contaminated
(it is understood that Xm+1, · · · , Xn may not be the same n−m points of
Xn for different Xn

m). Let θ(Xn
m) be the weighted sample median at Xn

m.
By the conditions on w we have

w(‖X∗
i −θ(Xn

m)‖)+w(‖θ(Xn
m)‖) ≥ w(‖X∗

i −θ(Xn
m)‖+‖θ(Xn

m)‖) ≥ w(‖X∗
i ‖)

for 1 ≤ i ≤ m and

w(‖Xi − θ(Xn
m)‖) + w(‖Xi‖) ≥ w(‖Xi − θ(Xn

m)‖+ ‖Xi‖) ≥ w(‖θ(Xn
m)‖)

for m + 1 ≤ i ≤ n. Combining the last two displays yields
n∑

i=1

w(‖Yi − θ(Xn
m)‖)

≥
n∑

i=1

w(‖Yi‖) + (n− 2m)w(‖θ(Xn
m)‖)− 2(n−m) sup

i
w(‖Xi‖).

Hence, supXn
m

w(‖θ(Xn
m)‖) must be bounded [≤ 2(n−m) supi w(‖Xi‖)/(n−

2m)] in order for θ(Xn
m) to be the weighted L2 sample median. The desired

result follows immediately from the breakdown point upper bound given in
Lopuhaä and Rousseeuw (1991).
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